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Abstract—This paper applies root locus theory in order to
conduct a new convergence analysis for the stochastic FxLMS
algorithm, without any simplifying assumption regarding the
secondary path. The main steps to sketch the root locus of the
FxLMS adaptation process are developed. Using the obtained root
locus plot, the upper bound for the adaptation step-size beyond
which the adaptation process becomes unstable is derived. The
proposed bound applies to moving average secondary systems,
while previously proposed ones only apply to pure delay secondary
systems. Results obtained from this study are found to agree
very well with those obtained from the numerical analysis and
simulation results.

Index Terms—Active noise control, FxLMS algorithm, conver-
gence analysis, root locus theory

I. INTRODUCTION

Although Filtered-x LMS Algorithm (FxLMS) is widely used
in different applications of adaptive filtering, its convergence
analysis is still an active area of research. Among available
FxLMS convergence analyses, only a few analyses have in-
tended to derive a convergence condition for the adaptation
process. Besides, available convergence conditions are only
accurate for simplified cases with pure delay secondary paths
or narrow-band noise signals. Long [1] derived a convergence
condition for the FxLMS under assumptions that the secondary
path is a pure delay system and the noise is a broad-band white
signal. A similar condition has been independently reported by
Elliott [2] based on simulation results. Bjarnason [3] conducted
another FxLMS convergence analysis and derived a FxLMS
convergence condition under assumptions that the secondary
path is a pure delay system and the noise signal is a stochastic
narrow-band or stochastic broad-band white signal. Both Long
and Bjarnason’s analyses were conducted under Independence
Assumption [4] stating that consecutive vectors of the input
signal are statistically independent. In 2006 Vicente [5] de-
rived another FxLMS convergence condition assuming that the
secondary path is a pure delay system and the noise signal is a
narrow-band signal. Xiao [6] extended Vicente’s analysis and
derived a FxLMS convergence condition for the case that the
secondary path is a Moving Average (MA) process and the noise
signal is multi-tonal. However, as reported by Xiao, in his work
simulation results were not in good agreement with theoretical
results. Although the convergence analyses carried out in the
above mentioned studies involve sophisticated mathematics
but developing a FxLMS convergence condition for a MA
secondary path and stochastic noise signal has not directly
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Figure 1. Block diagram of the FxLMS algorithm

treated. This paper applies root locus theory in order to conduct
a new FxLMS convergence analysis for a MA secondary
path and stochastic white noise signal. The rest of paper is
organized as follows. Section 2 gives mathematical description
of FxLMS convergence behavior. Section 3 develops necessary
steps to sketch FxLMS root locus plot. Section 4 conducts
a convergence analysis using the root locus plot obtained in
Section 3. Finally, Section 5 gives concluding remarks.

II. SYSTEM MODEL

As shown in figure 1 , the FxLMS minimizes the residual
error e(n) by adjusting the adaptive filter W followed by the
secondary path S. The output signal y (n) can be estimated as

y(n) = w(n)Tx(n); (1)

where x(n) is a L� 1 tap vector of the noise signal x (n):

x(n) = [x(n); x(n� 1); :::; x(n� L+ 1)]
T
; (2)

and w (n) is adaptive weight vector defined as

w (n) = [w0 (n) ; w1 (n) ; :::; wL�1 (n)]
T
: (3)

In order to minimize e(n), the FxLMS updates w (n) using

w (n+ 1) = w (n) + �e (n)xf (n); (4)

where � is adaptation step-size and xf (n) is obtained by
filtering x (n) using an estimate of the secondary path, Ŝ.
Assuming that Ŝ is a MA process of length Q with parameters
s0; s1; :::; sQ�1, xf (n) can be written as

xf (n) =

Q�1X

q=0

sqx(n� q): (5)

In [3], it is show that if R denotes Auto-Correlation Matrix
(ACM) of x (n) and p denotes cross-correlation vector of x (n)
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and d(n), then the optimum solution for w (n) is

wopt = R�1p: (6)

The ACM matrix R can be decomposed to

R = F�FT ; (7)

where F is modal Eigenvectors matrix and � is a diagonal
matrix with eigenvalues �0; �1; :::; �L�1. Using F, rotated input
vector, z(n), is defined as

z (n) , FTx (n) : (8)

Also, rotated weight misalignment vector, c (n), is defined as:

c (n) , FT [w (n)�wopt] ; (9)

In [3], the mean behavior of c (n) is described as

�c (n+ 1) = �c (n)� ��

Q�1X

q=0

s2q�c (n� q) (10)

where �c (n) denotes statistical expectation of c (n).

III. ROOT LOCUS OF THE FXLMS ALGORITHM

Taking z-transform from (10) results in the following char-
acteristic equation.

(z � 1) 1L�1 + ��

Q�1X

q=0

s2qz
�q = 0L�1: (11)

As matrix � is diagonal with �0; �1; :::�L�1 on its diagonal,
(11) can be split into L independent equations that are

z � 1 + ��l

Q�1X

q=0

s2qz
�q = 0 l = 0; � � �L� 1: (12)

These equations can be expressed as

1 + ��l
G (z)

zQ � zQ�1
= 0; (13)

where G (z) is

G (z) = s20z
Q�1 + s21z

Q�2 + :::+ s2Q�1: (14)

For the FxLMS stability, all the roots of (13) should be inside
the unit circle. Since increasing the scalar parameter ��l moves
the roots out of the unit circle, it is sufficient to examine the
roots only when �l = �max, where �max is the maximum value
of f�0; �1; :::�L�1g. Therefore, the FxLMS stability involves
the stability of

1 + ��max

G (z)

zQ � zQ�1
= 0 (15)

Now, let us define the open loop transfer function H (z) as

H (z) = ��max

G (z)

zQ � zQ�1
(16)

and re-express (15) as

1 + ��maxH (z) = 0 (17)

According to the root locus concepts [7], points of the root
locus should satisfy the magnitude criterion,

� =
1

�max jH (z)j
; (18)

and the phase criterion,

]H (z) = 180; (19)

where j:j and ]: denote magnitude and angle. The root locus
consists of a number of branches; for � = 0, the roots of
(13) are located on the start points of these branches and
the roots move on the branches as � increases from zero to
infinity. The number of branches is equal to the number of
poles of H (z). According to (16), H (z) has Q poles. Thus
the FxLMS root locus has Q branches. Let us name these
branches B1; B2; :::; BQ. Based on the root locus concepts [7],
the following steps to sketching B1; B2; :::; BQ are proposed.

Step#1 (Direction of branches): Branches of the root locus
start at poles of open loop system and approach the zeroes of
this system. As the number of zeros is smaller than the number
of poles branches for excess poles approach infinity. Generally,
H (z) has Q � 1 zeros but once s0 = s1 = ::: = sQ0�1 = 0
the number of zeroes reduces to Q�Q0�1. Also, H (z) has a
repeated pole of order Q� 1 at the origin and a single pole at
z = 1. Therefore, it can be assumed that B1 starts at z = 1 and
B2; B3; :::; BQ start at the origin. Depending on the location of
the zeros of G (z) and asymptotes of the root locus, a branch
either ends at a zero or approaches an asymptote.

Step #2 (Departure angles from poles): From the angle
criterion, it can be shown that the departure angle of B1 from
its start point at z = 1 is �1 = 180� and those of other branches
from z = 0 are

�q =
2 (q � 2)

Q� 1
� q = 2; 3; :::; Q (20)

where �q is the departure angle of the q-th branch from its start
point.

Step #3 (Asymptotes): The FxLMS root locus has Q0 + 1
asymptotes. These asymptotes originate on the real axis at the
centroid point xA given by:

xA =

P
[poles of H (z)]�

P
[zeros of H (z)]

Q0 + 1
(21)

and form angles with respect to the real axis of:

�k =
(2k + 1)

Q0 + 1
� k = 0; 1; :::; Q0 (22)

For H (z) given by (16)
X

[poles of H (z)] = 1 (23)
X

[zeros of H (z)] =
X

[zeros of G (z)] (24)

From (14) we obtain

X
[zeros of G (z)] = �

s2Q0+1

s2Q0

(25)
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Substituting (23)-(25) into (21), xA is computed as:

xA =
1 +

s2Q0+1

s2
Q0

Q0 + 1
(26)

Step #4 (Real axis segments): The real segment of the root
locus always lies in a section of the real axis to the left of
an odd number of poles and zeros. Since all the coefficients
of G(z) are positive, G(z) and accordingly H (z) can only
have complex conjugate zeros in the right side of the imaginary
axis. Therefore, there are always an even number of zeros to
the right side of the imaginary axis. On other hand, there is a
single pole at z = 1; therefore the only positive real segment
of the FxLMS root locus always lies in the interval [0; 1]. The
FxLMS root locus may lies in some sections of the negative
real axis, depending on the order of the repeated zero at the
origin and the location of the negative real zeros of G (z).

Step #5 (Break point): Breakaway points occur when
branches of the root locus coincide. It can be found that B1

and B2 intersects each others at a break point on the real axis.
In the following, the location of this point is approximately
calculated. This point satisfies

@

@z

1

H (z)

���
z=xB

= 0 (27)

Substituting (16) into this equation, results in

G
0

(xB)

G (xB)

�
x2B � xB

�
�Q (xB � 1) = 0 (28)

Assuming that the answer is close to z = 1, the following
approximation can be made:

G
0

(xB)

G (xB)
�

G
0

(1)

G (1)
(29)

From (14), the following equation can be obtained:

z�Q+1G (z) =

Q�1X

q=0

s2qz
�q (30)

Setting z = 1 in this equation results in:

G (1) = �2s (31)

Differentiating of both sides of (30) results in:

� (Q� 1) z�QG (z) + z�Q+1G
0

(z) = �

Q�1X

q=0

qs2qz
�q�1

Setting z = 1 in this equation results in:

� (Q� 1)G (1) +G
0

(1) = ��2s (32)

where:

�2s �

Q�1X

q=0

qs2q

z!plane
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1
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Figure 2. Typical behavior of the dominant pole of the FxLMS

Using (31) leads to rewrite the above equation as:

G
0

(1) = (Q� 1)�2s � �2s (33)

Dividing (33) by (31) results in:

G
0

(1)

G (1)
= Q��eq � 1 (34)

where �eq is defined as follows:

�eq =
�2s
�2s

(35)

Substituting (34) into (28) results in:

x2B +
2Q��eq � 1

Q��eq � 1
xB +

Q� 1

Q��eq � 1
= 0 (36)

This equation can be rewritten as follows:

(xB � 1)
2
�

�eq + 1

Q��eq � 1
xB +

�eq

Q��eq � 1
= 0 (37)

Since (xB � 1)
2
� 0 , xB can be approximately obtained as:

xB �
�eq

�eq + 1
(38)

IV. STABILITY ANALYSIS

Branches of the FxLMS root locus has some typical proper-
ties. For example, it can be always seen that B1 starts at z = 1
and moves on the real axis. Once B1 reach the breakaway
point xB , it leaves the real axis. This branch may ends at a
complex zero of H (z) or approach the first asymptote of the
root locus. This typical trajectory of B1 is shown in Figure
2 . Also, it can be always seen that B2 starts at z = 0 and
moves on the positive real axis. Once B2 reach the breakaway
point xB , it leaves the real axis in such a way that points of
this branch are complex conjugates of those of B1. This branch
may end at a zero of H (z), which is the complex conjugate
of the end point of B1, or approach the last asymptote of the
locus. Other branches start at z = 0 and moves towards the
unit circle in order to end at the zeros of H (z) or approach
the asymptotes. One example of the FxLMS root locus for a
particular secondary path is given in Figure 3 .

Since xB is close to z=1, it is expected that the unit circle is
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Figure 3. Root locus of the FxLMS algorithm with S (z) = z�5 and
S (z) = z�3 + z�4 + z�5 + 0:5z�6 + 0:5z�7

closer to the root moving on B1 than the other roots. Therefore,
the dominant root of the system is located on B1. Consequently,
it is expected that the critical point is the intersection of B1 and
the unit circle. In Figure 2, the critical point is shown by zc.
Value of � at the critical point can be considered as the upper
bound of step-size beyond wich the system becomes unstable
(�max). At the first look, calculation of �max is not analytically
possible using information provided by the root locus.

It is found out that �max has a direct relationship with the
distance of xB to z = 1. In other words, the closer distance
between xB and z = 1 the smaller �max. Considering that
xB = �eq=�eq+1, this statement can be re-expressed as: the
greater �eq , the the smaller �max. In the following we explain
this result using a particular example. For example, for the
FxLMS algorithm with S (z) = z�5, the value of �max is
smaller than the case with S1 (z) = z�3+z�4+z�5+0:5z�6+
0:5z�7. This is because according to (35), for S (z) = z�5 we
have �eq = 5 and for S (z) = S1 (z) we have �eq = 4:3571.
Therefore, convergence condition of the FxLMS algorithm with
S (z) = z�5 can be considered as a sufficient condition for
the convergence of the FxLMS algorithm with S (z) = S1 (z).
Figure 3 compares root loci of the FxLMS algorithm with these
two secondary paths.

In general case, convergence condition of the FxLMS al-
gorithm with S (z) = z�4 is a sufficient condition for the
convergence of the FxLMS algorithm with a MA secondary
path whose equivalent delay is �eq if 4 is the least integer
number greater than �eq (or d�eqe). From [1], the convergence
condition of the FxLMS algorithm with pure delay secondary
path z�4 is

� <
1

(L+ 2�)Pxf
(39)

where Pxf is power of the filtered input signal. Therefore, the
sufficient condition for the convergence of the FxLMS with a
general secondary path is

� <
1

(L+ 2 d�eqe)Pxf
(40)

where �eq is the equivalen delay of the secondar path, given in
Eq. 35. Note that the proposed convergence condition applies
to a MA secondary path, but previosuly derived one could only
apply to pure delay secondary paths.

V. SIMULATION RESULTS

To verify the validity of the theoretical result, several computer
simulation with different secondary paths have been carried out.
As stated in [3] by Bjarnason, “the measurement of the stability
bounds is a difficult matter and the results of the measurement
have to be taken with caution. They can be regarded as
guidelines for predicting the behavior of the algorithm for a
white input.” However, in the following, we show the validity of
the proposed convergence condition by estimating convergence
probability of the FxLMS algorithm. For this purpose, we
selected 4 different secondary paths and calculated their �max.
We simulated the FxLMS algorithm for each secondary path
when � is 0:85�max; 0:9�max; 0:95�max; �max; 1:05�max and
1:1�max. For each case we repeated simulation for 50 times
with different random white signals generated by the computer.
Therefore, we had 4 � 50 = 200 simulation experiments for
each �(1200 experiments in total). For each �, the number
of stable experiments in percentage can be interpreted as the
convergence probability of the FxLMS algorithm. When � <
0:9�max all experiments converge. It can be also found that
when � < �max more than 95% of the experiments converge
but when � increases to 1:1�max the convergence probability
is approximately zero. Therefore the proposed condition is a
reliable condition for the convergence of the FxLMS algorithm.

VI. CONCLUSION

Based on the root locus theory, a novel analytical con-
vergence condition for the FxLMS algorithm is proposed
and verified. Compared to the previously derived convergence
conditions, the proposed condition applies to more general
cases. It is shown that the location of the break point of the
root locus plot restricts the upper bound of the convergence
condition. Simulation results with 1200 different cases shows
that this condition is a reliable condition and close to a sufficient
condition for the convergence.
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