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Part I: Introduction to Deep Learning

e Historical review of deep learning
* Introduction to classical deep models
 Why does deep learning work?
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Neural network
Back propagation
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1986

 Solve general learning problems
 Tied with biological system
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Neural network
Back propagation

l Nature

—

1986

 Solve general learning problems
 Tied with biological system

But it is given up...

e Hard to train
e Insufficient computational resources

e Small training sets
 Does not work well



Neural network
Back propagation

l Nature
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1986

SVM
Boosting

Decision tree
KNN

2006

Flat structures

Loose tie with biological systems
Specific methods for specific tasks

— Hand crafted features (GMM-HMM, SIFT, LBP, HOG)

Deep Hierarchy

Flat Processing Scheme

Task A1

Task A2
Task A3
Task An
Task B1
Task B2
Task B3

Task Bn

o
3
o
b
-
2

@
0
m

Level 4

Level 3

Level 2

Level 1

Task 1

Task 2
Task 3
Task 4
Task 5
Task 6
Task 7
Task 8

Task n

Some kind of Features
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Neural network
Back propagation

l Nature

Deep belief net
M Science

1986

Unsupervised & Layer-wised pre-training

Better designs for modeling and training
(normalization, nonlinearity, dropout)

New development of computer architectures
— GPU
— Multi-core computer systems

Large scale databases

Big Data!



Machine Learning with Big Data

Machine learning with small data: overfitting, reducing model complexity
(capacity)

Machine learning with big data: underfitting, increasing model complexity,
optimization, computation resource

Prediction accuracy

A
Deep learning

Other machine learningtools

Size of training data



How to increase model capacity?

Curse of dimensionality

Y

Blessing of dimensionality

.

Learning hierarchical feature transforms
(Learning features with deep structures)

D. Chen, X. Cao, F. Wen, and J. Sun. Blessing of dimensionality: Highdimensional feature and its efficient
compression for face verification. In Proc. IEEE Int’| Conf. Computer Vision and Pattern Recognition, 2013.



Neural network
Back propagation

l Nature
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1986

2006 2011
deep learning results
task hours of DNN-HMM | GMM-HMM
training data with same data
Switchboard (test set 1) 309 18.5 274
Switchboard (test set 2) 309 16.1 23.6
English Broadcast News | 50 17.5 18.8
Bing Voice Search 24 30.4 36.2
(Sentence error rates)
Google Voice Input 5,870 12.3
Youtube 1,400 47.6 523

My
Deep Networks Advance State of Art in Speech A

Deep Learning leads to breakthrough in speech recognition at MSR.

Microsoft



Neural network Deep belief net
Back propagation Science Speech IMAGENET

'/
l Nature l "’l’ l
Microsoft

1986 2006 2011 2012

1 U. Toronto 0.15315 Deep learning
2 U. Tokyo 0.26172 Hand-crafted

3 U. Oxford 0.26979 features and

4 Xerox/INRIA  0.27058 'carning models.

Bottleneck.

Object recognition over 1,000,000 images and 1,000 categories (2 GPU)

A. Krizhevsky, L. Sutskever, and G. E. Hinton, “ImageNet Classification with Deep Convolutional Neural Networks,” NIPS, 2012.



Examples from ImageNet
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images courtesy of ImageNet (http://www.image-net.org/challenges/LSVRC/2010/index)



Neural network Deep belief net
Back propagation Science Speech IMAGENET
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 ImageNet 2013 — image classification chaIIenge

T S 7 T

0.11197 Deep learning
2 NUS 0.12535 Deep learning
3 Oxford 0.13555 Deep learning

MSRA, IBM, Adobe, NEC, Clarifai, Berkley, U. Tokyo, UCLA, UIUC, Toronto .... Top 20
groups all used deep learning

 ImageNet 2013 - object detection challenge

mm Mean Average Precision

UvA-Euvision 0.22581 Hand-crafted features
2 NEC-MU 0.20895 Hand-crafted features
3 NYU 0.19400 Deep learning



Neural network Deep belief net
Back propagation Science Speech IMAGENET
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* ImageNet 2014 — Image classification chaIIenge

T S 7 BT

Google 0.06656 Deep learning
2 Oxford 0.07325 Deep learning
3 MSRA 0.08062 Deep learning

 ImageNet 2014 — object detection challenge

1 Google 0.43933 Deep learning
2 CUHK 0.40656 Deep learning
3 Deeplnsight 0.40452 Deep learning
4 UvA-Euvision 0.35421 Deep learning
5 Berkley Vision  0.34521 Deep learning



Neural network Deep belief net
Back propagation Science Speech IMAGENET
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 ImageNet 2014 — object detection challenge

GooglLeNet | DeepID-Net | Deeplinsight Berkley RCNN
(Google) (CUHK) Vision

Model 0.439 0.439 0.405
average

Single 0.380 0.427 0.402 0.354 0.345 0.314
model

W. Ouyang and X. Wang et al. “DeeplD-Net: deformable deep convolutional neural
networks for object detection”, CVPR, 2014
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 Google and Baidu announced their deep
learning based visual search engines (2013)

— Google

* “on our test set we saw double the average precision when
compared to other approaches we had tried. We acquired
the rights to the technology and went full speed ahead
adapting it to run at large scale on Google’s computers. We
took cutting edge research straight out of an academic
research lab and launched it, in just a little over six months.”

— Baidu



http://googleresearch.blogspot.ca/2013/06/improving-photo-search-step-across.html
http://www.wired.com/wiredenterprise/2013/06/baidu-virtual-search/?utm_source=feedburner&utm_medium=feed&utm_campaign=Feed:+wired/index+(Wired:+Top+Stories)
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e Deep learning achieves 99.47% face verification
accuracy on Labeled Faces in the Wild (LFW),
higher than human performance

Y. Sun, X. Wang, and X. Tang. Deep Learning Face Representation by Joint
Identification-Verification. NIPS, 2014.

Y. Sun, X. Wang, and X. Tang. Deeply learned face representations are
sparse, selective, and robust. CVPR, 2015.



Labeled Faces in the Wild (2007)




Unrestricted, Labeled Outside Data Results

Attribute classifiersil 0.8525 £ 0.0060

Sirmile classifiers1l 0.8414 £ 0.0041

attribute and Simile classifiers1l 0.8554 + 0.0035

Multiple LE + compl® 0.8445 + 0.0046
Associate-Predictl® 0.9057 £ 0.0056
Tom-vs-Pete?? 0.9310 + 0.0135

Tom-ws-Pete + Attributes? 0.9330 £ 0.0128

combined Joint Bayesian® 0.9242 + 0.0108

high-dirm LBRPZ? 0.9517 + 0.0113

DFD33 0.8402 £ 0.0044

TL Joint Bayesian? 0.9633 £ 0.0108

face.com r201161% 0.9130 £ 0.0030

‘ Face++40 0.9727 + 0.0065
‘ DeepFace-ensemble®l 0.9735 £ 0.0025
‘ ConvMet-REMIZ 0.9252 + 0.0038
POOF-gradhist®* 0.9313 + 0.0040

POOF-HOGH 0.9280 + 0.0047

‘ FRAFCNY? 0.9645 £ 0.0025
‘ DesplDd® 0.9745 + 0.0026
GaussianFace®? 0.9852 £ 0.0066

# Deeplpzt® 0.9915 £ 0.0013

Table a: Mean classification accuracy 0 and standard error of the mean Sg.
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Introduction [he 10 Technologies

DeepLearning

With massive
amounts of
computational power,
machines can now
recognize objects and
translale speech in
real time. Artificial
intelligence is finally
getting smart.

Temporary Social
Media

Messages that guickly
self-destruct could
enhance the privacy
of online
communications and
make people freer to
be spontaneous.

Prenatal DNA
Sequencing

Reading the DMNA of
fetuses will be the
next frontier of the
genomic revolution.
But do you really want
to know about the
genetic problems or
musical aptitude of
your unborn child?

Additive
Manufacturing

Skeptical about 3-D
printing? GE, the
world's largest
manufacturer, is on
the verge of using the
technology to make
jet parts.

Memorylmplants

A maverick
neurcscientist
believes he has
deciphered the code
by which the brain
forms long-term
memories. Mext:
testing a prosthetic
implant for people

suffering from long
Yorm mamarnd lmee

Smart Watches

The designers of the
Pebble watch realized
that a mobile phone is
more useful it you

don't have to take it
il AaF vmiiE el ol

Ultra-Efficient Solar
Power

Doubling the
efficiency of a solar
cell would completely
change the
economics of
renewable energy.
Manotechnology just

might make it
el

Big Data from Cheap
Phones

Collecting and
analyzing information
from simple cell
phones can provide
surprising insights into
how people move
about and behave -
and even help us

understand the
enmraard AfF dieasese

Pasl Year:

Baxter: The Blue-
Collar Robot

Rodney Brooks's
newest creation is

easy to interact with,
but the complex
innovations behind the
robol show just how
hard it is to get along
with people. )

Supergrids

A new high-power
circuit breaker could
finally make highly

efficient DC power
frFirde mracstie sl



Design Cycle

Domain knowledge

Preprocessing and feature
design may lose useful
information and not be

optimized, since they are not

parts of an end-to-end
learning system

Preprocessing could be the
result of another pattern
recognition system

start

=

Choose and
design model

e

=

end

Interest of people working
on computer vision, speech
recognition, medical image
processing,...

Interest of people working
on machine learning

Interest of people working
on machine learning and
computer vision, speech
recognition, medical image
processing,...




Person re-identification pipeline

destri Bod Photometric
Pe estr.lan I.Dose. > ody part.s & geometric Featur.e Classification
detection estimation segmentation transform extraction
Face recognition pipeline
.Face Geo.rpetr.lc N Pho'Fo.mejcrlc Feature Classification
alignment rectification rectification extraction
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Design Cycle
with Deep Learning

Learning plays a bigger role in the
design circle

Feature learning becomes part of the
end-to-end learning system

Preprocessing becomes optional
means that several pattern
recognition steps can be merged into
one end-to-end learning system

Feature learning makes the key
difference

We underestimated the importance
of data collection and evaluation

start




What makes deep learning successful
in computer vision?

Li Fei-Fei Geoffrey Hinton

L A =
= n NETT
bl M AGENET

One million images Predict 1,000 image CNN is not new
with labels categories .
Design network structure

New training strategies

Feature learned from ImageNet can be well generalized to other tasks and datasets!



Learning features and classifiers separately

 Not all the datasets and prediction tasks are suitable
for learning features with deep models

Training
stage A

‘ Dataset A ‘

Training

Dataset B ‘ stage B

Deep
learning

Classifier 1 ‘

Classifier 2 ‘

A 4

Prediction
on task 1

+

Prediction
on task 2

Classifier B ‘

I

Prediction on task B
(Our target task)




Deep learning can be treated as a language to
described the world with great flexibility

‘ Collect data ‘ ‘ Collect data ‘

v

‘ Preprocessing 1 ‘

v

‘ Preprocessing 2 ‘ Connection

A G

‘ Feature design ‘

v

‘ Classifier ‘

L

‘ Evaluation ‘ Evaluation




Introduction to Deep Learning

* Introduction to classical deep models



Introduction on Classical Deep Models

e Convolutional Neural Networks (CNN)

— Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based Learning Applied to
Document Recognition,” Proceedings of the IEEE, Vol. 86, pp. 2278-2324, 1998.

 Deep Belief Net (DBN)

— G. E. Hinton, S. Osindero, and Y. Teh, “A Fast Learning Algorithm for Deep Belief Nets,”
Neural Computation, Vol. 18, pp. 1527-1544, 2006.

e Auto-encoder

— G. E. Hinton and R. R. Salakhutdinov, “Reducing the Dimensionality of Data with Neural
Networks,” Science, Vol. 313, pp. 504-507, July 2006.



Classical Deep Models

e Convolutional Neural Networks (CNN)
— First proposed by Fukushima in 1980

— Improved by LeCun, Bottou, Bengio and Haffner in 1998

T A T P 5
RENESNESNE o med
HENESRESEN ;.. .
P £ 5 5 7w [

Convolution Pooling




Backpropagation

W W -9y J(W)

W is the parameter of the network; J is the objective function

A Target values I

¥

Output Iayer I

Feedforward Back error

. 1‘ .
operation | —— Iayers I propagation
|

Input Iayer I v

D. E. Rumelhart, G. E. Hinton, R. J. Williams, “Learning Representations by Back-propagation Errors,” Nature, Vol. 323,
pp. 533-536, 1986.



Classical Deep Models

* Deep belief net pre.training:

e Good initialization point
* Make use of unlabeled data

P(X,hl,hz) = p(xl hl) p(h]_)hZ)

— Hinton’06

e—E(x,hl)

P(x,hp) = ——
Ze_ (X’ l)
X,hy

E(x,h;)=b' x+c' h;+h," Wx

A
Initial

int

h

X

RBM




Classical Deep Models

e Auto-encoder
— Hinton and Salakhutdinov 2006

Encoding: h; = o(W x+b,)
h, = 6(W,h,+b,)

Decoding: h; = o(W’,h,+b,)
X = o(W’ h,+b,)




Introduction to Deep Learning

 Why does deep learning work?



Feature Learning vs Feature Engineering



Feature Engineering

The performance of a pattern recognition system heavily
depends on feature representations

Manually designed features dominate the applications of
image and video understanding in the past

— Reply on human domain knowledge much more than data

— Feature design is separate from training the classifier

— If handcrafted features have multiple parameters, it is hard to
manually tune them

— Developing effective features for new applications is slow



Handcrafted Features for Face Recognition

2 parameters 3 parameters

S0 il
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0
Geometric features Pixel vector Gabor filters Local binary patterns

| | | |

—

1980s 1992 1997 2006




Feature Learning

 Learning transformations of the data that make it easier to

extract useful information when building classifiers or
predictors

— Jointly learning feature transformations and classifiers makes their
integration optimal

— Learn the values of a huge number of parameters in feature
representations

— Faster to get feature representations for new applications
— Make better use of big data



Deep Learning Means Feature Learning

e Deep learning is about learning hierarchical feature

representations
v=F(W FIWHL Pl F(WY . x)
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 Good feature representations should be able to disentangle
multiple factors coupled in the data
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Deep Learning Means Feature Learning

 How to effectively learn features with deep models

— With challenging tasks
— Predict high-dimensional vectors

Feature
Pre-train on Fine-tune on ':> representation
classifying 1,000 |:>' classifying 201 @
categories categories
SVM binary
Detect 200 object classes on ImageNet classifier for each
category

W. Ouyang and X. Wang et al. “DeeplID-Net: deformable deep convolutional neural
networks for object detection”, CVPR, 2015



Training stage A

‘ Dataset A ‘

|

Training stage B

Dataset B ‘

Classifier A ‘

A4

Distinguish 1000
categories

Classifier B ‘

A4

Training stage C

Dataset C

|

feature
transform

|

o]

l

Distinguish 201
categories

Distinguish one
object class from
all the negatives

Fixed



Example 1: deep learning generic image features

Hinton group’s groundbreaking work on ImageNet

77

— They did not have much experience on general image classification on

ImageNet

— It took one week to train the network with 60 Million parameters

— The learned feature representations are effective on other datasets
(e.g. Pascal VOC) and other tasks (object detection, segmentation,

tracking, and image retrieval)

D
v
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X
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96

Max
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Max
pooling
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4096
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96 learned low-level filters




Image classification result

leopard

mite container shi motor scooter
mite container ship motor scooter legpard
black widow lifeboat go-kart jaguar
cockroach amphibian moped cheetah
tick fireboat bumper car snow leopard
starfish drilling platform golfcart Egyptian cat

\

cherry adagascar cat

convertible | agaric dalmatian squirrel monkey
grille | mushroom grape spider monkey

pickup jelly fungus elderberry titi

beach wagon gill fungus |ffordshire bullterrier indri
fire engine | dead-man's-fingers currant howler monkey




Top hidden layer can be used as feature for retrieval
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Example 2: deep learning face identity features
by recovering canonical-view face images

= ’31 be'ﬁ t—-j

w BEETAT

BB T
0= WEE s

Reconstruction examples from LFW

Z. Zhu, P. Luo, X. Wang, and X. Tang, “Deep Learning Identity Preserving Face Space,” ICCV 2013.



e Deep model can disentangle hidden factors through feature
extraction over multiple layers

* No 3D model; no prior information on pose and lighting condition
e Model multiple complex transforms

e Reconstructing the whole face is a much strong supervision than
predicting 0/1 class label and helps to avoid overfitting

Feature Extraction Layers Reconstruction Layer
ny=48 X 48 X 32

FIP
n,=24X 24X 32

agmil nlysa

2=24X24X 32

ny,=96 X 96

ny,=96 X 96

4

W
0 5X5 Locally 5X5 Locally 5X5 Locally § Fully .
X Connected and Connected and Connected Connected v v

Pooling Pooling

Arbitrary view Canonical view
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Comparison on Multi-PIE

LGBP [26] 37.7 62.5 59.2 361 593 V¥
VAAM [17] 74.1 91 95.7 95.7 895 748 869 V
FA-EGFC[3] 84.7 95 99.3 99 929 85.2 92.7
SA-EGFC[3] 93 98.7 99.7 99.7 98.3 0936 97.2
LE[4] + LDA 86.9 955 999 99.7 955 818 93.2 «x
CRBM[9] + LDA 80.3 90.5 949 964 883 89.8 876 «x

<

Ours 95.6 98.5 100.0 99.3 985 97.8 98.3 X
[3] A. Asthana, T. K. Marks, M. J. Jones, K. H. Tieu, and M. Rohith. Fully [17] S.Li, X. Liu, X. Chai, H. Zhang, S. Lao, and S. Shan. Morphable displacement
automatic pose-invariant face recognition via 3d pose normalization. In ICCV, field based image ";13‘0'1"18 for face recognition across pose. In ECCV, pages
pages 937-944, 2011. 1,5,6 102-115.2012. 1,2,5,6

[4] Z. Cao, Q. Yin, X. Tang, and J. Sun. Face recognition with learning-based [26] W. Zhang, S. Shan, W. Gao. X. Chen. and H. Zhang. Local gabor binary

descriptor. In CVPR, pages 2707-2714, 2010. 2, 3,6 pattern histogram sequence (lgbphs): A novel non-statistical model for face
T representation and recognition. In /CCV, volume 1, pages 786-791, 2005. 5, 6

[9] G. B. Huang, H. Lee, and E. Learned-Miller. Learning hierarchical represen-
tations for face verification with convolutional deep belief networks. In CVPR,
pages 2518-2525, 2012. 3,6



Deep learning 3D model from 2D images,
mimicking human brain activities

5
b -he i

Z. Zhu, P. Luo, X. Wang, and X. Tang, “Deep Learning and Disentangling Face Representation by Multi-View
Perception,” NIPS 2014.



Training stage A Training stage B

Face images in Two face images
arbitrary views in arbitrary views
feature :
Fixed
Deep transform
learning

|

Linear Discriminant

Regressor 1 Regressor 2

analysis
y y L
Reconstruct || Reconstruct The two images
view 1 view 2 belonging to the
same person or not

Face reconstruction Face verification



Example 3: deep learning face identity features
from predicting 10,000 classes

e At training stage, each input image is classified into 10,000
identities with 160 hidden identity features in the top layer

 The hidden identity features can be well generalized to other
tasks (e.g. verification) and identities outside the training set

 As adding the number of classes to be predicted, the
generalization power of the learned features also improves

Convolutional Soft-max
Convolutional Ia_f:-r
layer 2 Convolutional Convolutional -3
1 layer 3 layerd 160" |
----:;'J' ﬁ- £ -_ . o - 7 :::’-:‘.'-f_‘_- 2 h -_:._11I Ilf.-
A6 Le {[ -;42 /: 8[1: :
40 60 I o P
20 40 m 40 i 60 Max- poolmg ISR B Y
1 20 Max-pooling alzypei?'ozmg layer 3
Input layer layer 1 Derﬂa h|dﬂen-
. entity - :
. . . e eatures p
Y. Sun, X. Wang, and X. Tang. Deep Learning Face Representation by Joint Identification {DEEpID}

Verification. NIPS, 2014.



Training stage A

‘ Dataset A ‘

|

Classifier A ‘

A 4
Distinguish
10,000 people

Face identification

Training stage B

‘ Dataset B ‘

|

feature
transform

|

‘ Linear classifier B ‘

|

The two images
belonging to the
same person or not

Fixed

Face verification



Deep Structures vs Shallow Structures
(Why deep?)



Shallow Structures

e Athree-layer neural network (with one hidden layer) can
approximate any classification function

e Most machine learning tools (such as SVM, boosting, and
KNN) can be approximated as neural networks with one or
two hidden layers

e Shallow models divide the feature space into regions and

match templates in local regions. O(N) parameters are needed
to represent N regions

SVM  9(z) =b+ > aiK(r, ;)




Deep Machines are More Efficient for
Representing Certain Classes of Functions

 Theoretical results show that an architecture with insufficient
depth can require many more computational elements,
potentially exponentially more (with respect to input size),
than architectures whose depth is matched to the task
(Hastad 1986, Hastad and Goldmann 1991)

e [t also means many more parameters to learn



e Take the d-bit parity function as an example

. d .
X, ... X d 1, if >Jj_; Xiseven
X X €401} +__>{ —1. otherwise

e d-bit logical parity circuits of depth 2 have exponential
size (Andrew Yao, 1985)

® @
5, &® & ¥

o o O(d
Reuse partial © @90 @ “— (d)

computation Y. & ® %

¢ RY ®
X; @ X

Shallow structure Deep structure

e There are functions computable with a polynomial-size logic
gates circuits of depth k that require exponential size when
restricted to depth k -1 (Hastad, 1986)



e Architectures with multiple levels naturally provide sharing
and re-use of components

Honglak Lee, NIPS’10



Humans Understand the World through
Multiple Levels of Abstractions

e We do not interpret a scene image with pixels

— Objects (sky, cars, roads, buildings, pedestrians) -> parts (wheels,
doors, heads) -> texture -> edges -> pixels

— Attributes: blue sky, red car

e |tis natural for humans to decompose a complex problem into
sub-problems through multiple levels of representations

bullding




Humans Understand the World through
Multiple Levels of Abstractions

e Humans learn abstract concepts on top of less abstract ones

e Humans can imagine new pictures by re-configuring these
abstractions at multiple levels. Thus our brain has good
generalization can recognize things never seen before.

— Our brain can estimate shape, lighting and pose from a face image and
generate new images under various lightings and poses. That’s why we

have good face recognition capability.



Local and Global Representations

Global representation N Blue eyes? (1/0)
L

Local representation



Human Brains Process Visual Signals
through Multiple Layers

e Avisual cortical area consists of six layers (Kruger et al. 2013)

Hyppocampus Prefrontal cortex

Memory (non motor) FEF, 5C, Occulomotar

F5 (Hand control)

Premotor

A
FEF, 5C g
N
Dorsal s
F 4 pathway '§
.. N
&
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Joint Learning vs Separate Learning

Manual
design

!

Feature
extraction

Classification

Feature
transform

Training or Training or
manual design manual design
Data R Preprocessing Preprocessing
collection step 1 step 2
?@ 291 A
Data Feature Feature
collection transform transform

End-to-end learning

Classification

Deep learning is a framework/language but not a black-box model

Its power comes from joint optimization and
increasing the capacity of the learner




e Domain knowledge could be helpful for designing new
deep models and training strategies

e How to formulate a vision problem with deep learning?
— Make use of experience and insights obtained in CV research
— Sequential design/learning vs joint learning
— Effectively train a deep model (layerwise pre-training + fine tuning)

- Spatial pyramid F . .
Feature Quantization L eature &S filt
) —_— i in > | Classification ] Itering
extraction (visual words) (histograms in extraction

local regions)

224

Conventional object recognition scheme Quantization <> filtering

pyramid pooling

A
\ \s 3 \ K \ Spatial .y multi-level
N x.%\' \ \13 \ \13
. d- g - \ ‘_..1____" 1 11 ense nse

g B ... Filtering&max Filtering & Filtering & Krizhevsky
; pooling max pooling  max pooling NIPS’12



What if we treat an existing deep model as
a black box in pedestrian detection?

convolutions subsampling convolutions  full

l l connection

subsampling output

T

convolutions subsampling
nput 1st stage 2nd stage classifier

ConvNet-U-MS

— Sermnet, K. Kavukcuoglu, S. Chintala, and LeCun, “Pedestrian Detection with
Unsupervised Multi-Stage Feature Learning,” CVPR 2013.
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 N. Dalal and B. Triggs. Histograms of oriented gradients for human detection.
CVPR, 2005. (6000 citations)

 P. Felzenszwalb, D. McAlester, and D. Ramanan. A Discriminatively Trained,
Multiscale, Deformable Part Model. CVPR, 2008. (2000 citations)

e W. Ouyang and X. Wang. A Discriminative Deep Model for Pedestrian Detection
with Occlusion Handling. CVPR, 2012.



Our Joint Deep Learning Model

Convolutional Average Convolutional Deformation V'S'?"'ty
: reasoning and

layer 1 pooling layer 2 layer : )
classification

()
= 40 0-0 O

20| &

W. Ouyang and X. Wang, “Joint Deep Learning for Pedestrian Detection,” Proc. ICCV, 2013.



Modeling Part Detectors

e Design the filters in the second
convolutional layer with variable sizes

Part models learned
from HOG

Head-torso Head-shoulder Legs

O] ! ( O 1 D R at level 3 at level 2 at level 2
Level 3 I:D 0l ]U: . m— .
.
W (] W ) e |
Level 2 _I H [l 0 % .
\. "y
¢ | ‘
Sl I ﬁ m Head-shoulder Full-body Torso
L ) at level 3 at level 3 at level 2

Part models Learned filtered at the second
convolutional layer

=




Deformation Layer

Summed map

Part score

M, D,

Part detection
map

Deformation maps




Visibility Reasoning with Deep Belief Net
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Experimental Results

e Caltech — Test dataset (largest, most widely used)
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Experimental Results

e Caltech — Test dataset (largest, most widely used)
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Rapid object detection using a boosted cascade of simple features
P Viola, M Jones - ... Vision and Pattern Recognition, 2001. CVPR _._, 2001 - ieeexplore.ieee.org.org

Abstract This paper describes a machine learning approach for visual object detection which |
Is capable of processing images extremely rapidly and achieving high detection rates. This
work is distinguished by three key contributions. The first is the infroduction of a new ...

Cited by 7647 Related articles  All 201 versions Import into BibTeX More«




Experimental Results

e Caltech — Test dataset (largest, most widely used)
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Histograms of oriented gradients for human detection

N Dalal, B Triggs - ... and Pattern Recognition, 2005. CVPR 2005 ..., 2005 - ieeexplore.ieee.org
... We study the issue of feature sets for human detection, showing that lo- cally normalized
Histogram of Oriented Gradient (HOG) de- scriptors provide excellent performance relative

to other ex- isting feature sets including wavelets [17,22]. ...

Cited by 5438 Related articles All 106 versions Import into BibTeX More~




Experimental Results

e Caltech — Test dataset (largest, most widely used)
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Object detection with discriminatively trained part-based models

PF Felzenszwalb, RB Girshick... - Pattern Analysis and ..., 2010 - ieeexplore.ieee.org
Abstract We describe an object detection system based on mixtures of multiscale
deformable part models. Our system is able to represent highly variable object classes and
achieves state-of-the-art results in the PASCAL object detection challenges. While ...

Cited by 964 Related articles All 43 versions Import into BibTeX More~




Experimental Results

e Caltech — Test dataset (largest, most widely used)
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W. Ouyang and X. Wang, "A Discriminative Deep Model for Pedestrian Detection with Occlusion Handling,” CVPR 2012.

W. Ouyang, X. Zeng and X. Wang, "Modeling Mutual Visibility Relationship in Pedestrian Detection ", CVPR 2013.
W. Ouyang, Xiaogang Wang, "Single-Pedestrian Detection aided by Multi-pedestrian Detection ", CVPR 2013.

X. Zeng, W. Ouyang and X. Wang, ” A Cascaded Deep Learning Architecture for Pedestrian Detection,” ICCV 2013.
W. Ouyang and Xiaogang Wang, “Joint Deep Learning for Pedestrian Detection,” IEEE ICCV 2013.
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Large learning capacity makes high dimensional
data transforms possible, and makes better use
of contextual information



e How to make use of the large learning capacity of

deep models?

— High dimensional data transform

— Hierarchical nonlinear representations

SVM + feature
; smoothness, shape prior...

High-dimensional
data transform

Output

Input

D
I
i)

— @




Face Parsing

 P. Luo, X. Wang and X. Tang, “Hierarchical Face
Parsing via Deep Learning,” CVPR 2012




Motivations

Recast face segmentation as a cross-modality data
transformation problem

Cross modality autoencoder

Data of two different modalities share the same
representations in the deep model

Deep models can be used to learn shape priors for
segmentation



Training Segmentators
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Big data

Challenging supervision task
with rich predictions

Rich information

How to make use of it?

Hierarchical
feature learning

Capture
contextual information

Reduce|capacity

Joint
optimization

Go wider

Domain

Go deeper knowledge

Make learning more efficient



Summary

Automatically learns hierarchical feature representations from
data and disentangles hidden factors of input data through
multi-level nonlinear mappings

For some tasks, the expressive power of deep models
increases exponentially as their architectures go deep

Jointly optimize all the components in a vision and crate
synergy through close interactions among them

Benefitting the large learning capacity of deep models, we
also recast some classical computer vision challenges as high-
dimensional data transform problems and solve them from
new perspectives

It is more effective to train deep models with challenging
tasks and rich predictions
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Outline

* Deep learning for object recognition



Part Il: Deep Learning Object
Recognition

Deep learning for object recognition on
mageNet

Deep learning for face recognition

— Learn identity features from joint verification-
identification signals

— Learn 3D face models from 2D images



CNN for Object Recognition on ImageNet

Krizhevsky, Sutskever, and Hinton, NIPS 2012

Trained on one million images of 1000 categories
collected from the web with two GPUs; 2GB RAM on

each GPU; 5GB of system memory

Training lasts for one week

Rank [Name |Erorrate | Description _

1
2
3
4

U. Toronto
U. Tokyo

U. Oxford
Xerox/INRIA

0.15315
0.26172
0.26979
0.27058

Deep learning

Hand-crafted
features and
learning models.
Bottleneck.



Model Architecture

Max-pooling layers follow 15t, 2", and 5% convolutional layers

The number of neurons in each layer is given by 253440,
186624, 64896, 43264, 4096, 4096, 1000

650000 neurons, 60 million parameters, 630 million
connections
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Normalization

e Normalize the input by subtracting the mean image on the
training set

Input image (256 x 256) Mean image

Krizhevsky 2012



Activation Function

e Rectified linear unit leads to sparse responses of neurons,
such that weights can be effectively updated with BP

f(x) = tanh(x) f(x) = max(0, x)

Sigmoid (slow to train) Rectified linear unit (quick to train) '\/

Krizhevsky 2012



Data Augmentation

e The neural net has 60M parameters and it overfits

* Image regions are randomly cropped with shift; their
horizontal reflections are also included

Krizhevsky 2012



Dropout

Randomly set some input features and the outputs of hidden
units as zero during the training process

Feature co-adaptation: a feature is only helpful when other
specific features are present

— Because of the existence of noise and data corruption, some features
or the responses of hidden nodes can be misdetected

Dropout prevents feature co-adaptation and can significantly
improve the generalization of the trained network

Can be considered as another approach to regularization
It can be viewed as averaging over many neural networks
Slower convergence



Classification Result

mite

container s

motor scooter

mite

black widow
cockroach
tick

container ship

motor scooter

lifeboat
amphibian
fireboat

drilling platform

go-kart
moped
bumper car
golfcart

legpard

jaguar
cheetah
snow leopard
Egyptian cat
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convertible | agaric dalmatian -qg. ifrel monkey
grille mushroom grape spider monkey

pickup jelly fungus elderberry titi

beach wagon gill fungus |ffordshire bullterrier indri
fire engine dend-man's-ﬂngers currant howler monkey

Krizhevsky 2012



Detection

cradie

Result

wood rabnp

balance beam
cinema

marimba
parallel bars

computer keyboard

bottlecap

cradle
bassinet
diaper
crib

wood ral:lblt
grny fox

wallaby

arter snake

Walker hound

bottletap || | harvester diamondback beagle
magnetic compass thresher leatherback turtle Walker hound
puck plow sandbar English foxhound

stopwatch tractor echidna muzzle

disk brake tow truck armadillo || Italian greyhound

Krizhevsky 2012



Image Retrieval

Krizhevsky 2012



Adaptation to Smaller Datasets

e Directly use the feature representations learned from ImageNet and
replace handcrafted features with them in image classification, scene
recognition, fine grained object recognition, attribute recognition, image
retrieval (Razavian et al. 2014, Gong et al. 2014)

e Use ImageNet to pre-train the model (good initialization), and use target
dataset to fine-tune it (Girshick et al. CVPR 2014)

* Fix the bottom layers and only fine tune the top layers
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GoogleNet

* More than 20 layers
* Add supervision at multiple layers g
* The error rate is reduced from 15.3% to E‘Eﬁ'

6.6%



Deep Learning Object Recognition

 Deep learning for face recognition

— Learn identity features from joint verification-
identification signals



Deep Learning Results on LFW
e T S ey

Huang et al. CVPR'12 87%

Sun et al. ICCV’13 92.52%
DeepFace (CVPR’14) 97.35%
Sun et al. (CVPR’14)  97.45%
Sun et al. (NIPS’'14) 99.15%

New: DeeplD2+ (CVPR’15) 99.47%

6+ 67
5

18

18

Unsupervised
87,628
7,000,000
202,599
202,599
450,000

The first deep learning work on face recognition was done by Huang et al. in 2012. With

unsupervised learning, the accuracy was 87%

Our work at ICCV’13 achieved result (92.52%) comparable with state-of-the-art
Our work at CVPR’14 reached 97.45% close to “human cropped” performance (97.53%)
DeepFace developed by Facebook also at CVPR’14 used 73-point 3D face alignment and 7

million training data (35 times larger than us)

Our most recent work reached 99.15% close to “human funneled” performance (99.20%)

Y. Sun, X. Wang, and X. Tang. Deeply learned face representations are sparse, selective, and robust.

CVPR, 2015.



Closed- and open-set face identification on LFW

Method Rank-1 (%) DIR @ 1% FAR (%)
COST-S1 [1] 56.7 25

COST-S1+s2 [1] 66.5 35

DeepFace [2] 64.9 44.5

DeepFace+ [3] 82.5 61.9

DeeplD2 [4] 91.1 61.6

DeeplD2+ [5] 95.0 80.7

[1] L. Best-Rowden, H. Han, C. Otto, B. Klare, and A. K. Jain. Unconstrained face recognition:
Identifying a person of interest from a media collection. TR MSU-CSE-14-1, 2014.

[2] Y. Taigman, M. Yang, M. Ranzato, and L. Wolf. DeepFace: Closing the gap to human-level
performance in face verifica- tion. In Proc. CVPR, 2014.

[3] Y. Taigman, M. Yang, M. Ranzato, and L. Wolf. Web- scale training for face identification.

Technical report, arXiv:1406.5266, 2014.
[4] Y. Sun, X. Wang, and X. Tang. Deep Learning Face Representation by Joint Identification-

Verification. NIPS, 2014.

[5] Y. Sun, X. Wang, and X. Tang. Deeply learned face representations are sparse, selective,
and robust. CVPR, 2015.



Eternal Topic on Face Recognition

Inter-personal variation

How to separate the two types of variations?



Are they the same person or not?

Nicole Kidman Nicole Kidman



Are they the same person or not?

Coo d’Este Melina Kanakaredes



Are they the same person or not?

Elijah Wood Stefano Gabbana



Are they the same person or not?

Jim O’Brien Jim O’Brien



Are they the same person or not?

Jacquline Obradors Julie Taymor



e Out of 6000 image pairs on the LFW test set, 51 pairs
are misclassified with the deep model

e We randomly mixed them and presented them to 10
Chinese subjects for evaluation. Their averaged
verification accuracy is 56%, close to random guess

(50%)



Linear Discriminate Analysis

. |WFS£,W|
W' = argmax ;
W WS, W|

Sy = an(ik —T)(%Xp — T)" o Z(ik — Xp) (X — Xp)'

S, —TT X; — X7 )(X; — Xp.) o Z Xj)t
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W = arg max WIS, W| st |WFS“.W| =1

LDA seeks for linear feature mapping which maximizes the distance
between class centers under the constraint what the intrapersonal
variation is constant

¥i = f':xi!':] — Wrxi

fﬂ- — Ell'gll:‘l;ilﬁ Z |.f|:i|[. ] — flzi.[,-" ]|3

kk

s.t Z fxi) — flx;))P =1

(i,7)E0,



Deep Learning for Face Recognition

e Extract identity preserving features through
hierarchical nonlinear mappings

e Model complex intra- and inter-personal
variations with large learning capacity



Learn ldentity Features from Different
Supervisory Tasks

e Face identification: classify an image into one
of N identity classes

— multi-class classification problem

e Face verification: verify whether a pair of
images belong to the same identity or not

— binary classification problem



Minimize the intra-personal variation under the constraint
that the distance between classes is constant (i.e. contracting
the volume of the image space without reducing the distance

between classes) N

y = f(x); g = softmax()

fr=argmin |1 f(xi) = fx))]1

(2.7)€Q;

st 19(f(x:)—g(f(x;))] =1, label(x;) # label(x;)



Learn ldentity Features with
Verification Signal

e Extract relational features with learned filter pairs
y! = f (U + kY xat + B2« 2?)
 These relational features are further processed through
multiple layers to extract global features

 The fully connected layer can be used as features to combine
with multiple ConvNets

Convolutional Fully-
layer 1 Convolutional connected

layer 2 Convolutional layer
1 layer 3 Convolutiongl, Soft-max
H layer 4 layer
= ;ir:'f-’,a; I 21K e
: O A
a0 60 30 Ty
50 10\ 20 60" Max-pooling 80
3 20 Max-pooling alé-pec;ozmg layer 3
Input layer layer 1 Y

Y. Sun, X. Wang, and X. Tang, “Hybrid Deep Learning for Computing Face Similarities,” Proc. ICCV, 2013.



Results on LFW

* Unrestricted protocol without outside training data

Method

Accuracy (%)

Conv Ne t-RBM I_'J'I'E'.V ious [43]

91.75 £ 0.48

VMRS [3]

92.05 £ 0.45

CMD+SLBP [23]

92.58 + 1.36

VisionLabs ver. 1.0 [1]

92.90 £ 0.31

Fisher vector faces [41] 093.03 £ 1.05
High-dim LBP [13] 03.18 £ 1.07
Aurora [19] 03.24 = 0.44
ConvNet-RBM 93.83 £+ 0.52

true positive rate

0.8H{"

v ConvNet-RBM previous (unrestrict) [43]
CMD+SLBP [23]
— VisionLabs ver. 1.0 [1]

0.7 J Fisher vector faces [41]
] — High-dim LBP (unrestrict) [13]
] Aurora [19]
_ ConvNet-RBM (unrestrict)
0'60 0.1 0.2 0.3 0.4

false positive rate



Results on LFW

 Unrestricted protocol using outside training data

Method Accuracy (%) %
Joint Bayesian [12] 092.42 + 1.08 o
ConvNet-RBM previous [43] 92.52 + 0.38 T 0.8 f-mmmrmrrmr b -
Tom-vs-Pete (with attributes) [4] 93.30 &= 1.28 2 : :
High-dim LBP [13] O5.17T£1.13 3 __JomtBayesanWDReD[12]
TL Joint Bayesian [10] 96.33 &= 1.08 07 Tgn:\jvse_l;ete (‘E{ﬁ\ggﬁgégﬁﬂ aces) [431)
ConvNet-RBM 97.08 1= 0.28 —— High-dim LBP (WDRef) [13]
TL Joint Bayesian [10]
0.6 l ConvNet-RBIM (CelebFacesl)

0 0.1 0.2 0.3 0.4



DeeplD: Learn Identity Features with
ldentification Signal

4
\_. -
Soft-max
layer 1 Convolutional |ai‘.:"r
layer 2 Convolutional Convolutional :
1 layer 3 layer 4 15([} i
= y .,-:'." 1 3 L T i[:‘: il %_""Su:h_:‘tgw; II'.L.'II .
40 : Max-pooling " - |iF
1 20 Max-[z::?:noling Malz—pec;ozlmg layer 3
Input layer layer 1 ¥ DE!EJD hidden
identity @
features p
(DeeplD)

Y. Sun, X. Wang, and X. Tang, “Deep Learning Face Representation from Predicting 10,000 classes,” Proc. CVPR, 2014.



During training, each image is classified into 10,000
identities with 160 identity features in the top layer

These features keep rich inter-personal variations

Features from the last two convolutional layers are
effective

The hidden identity features can be well generalized
to other tasks (e.g. verification) and identities
outside the training set

Convolutional Soft-max
Convolutional layer
layer 2 Convolutional Convolutional -9
1 layer 3 layer4 1g0" |
4248 | % f[ 32 /.’.'Z'__;'su_‘_*j:_::;: Yol
40 60 AN
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Input layer layer 1 Y DEEEF h|dden-
entity - :
features n

(DeeplD)



 High-dimensional prediction is more challenging, but
also adds stronger supervision to the network

* As adding the number of classes to be predicted, the
generalization power of the learned features also

Improves

Convolutional Soft-max
Convolutional layer
layer 2 Convolutional Convolutional -3
1 layer 3 layer4 160" |
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Extract Features from Multiple ConvNets

Multiple ConvNets
n~ 10000 n ~ 10000

OO0 --- OO Identityclasses Q) =« - Q00

Deep hidden p— ® x_____

identity features | O . O 160 coe |O. .« O} 160
(DeeplD) R o .
80@- - - -0 Feature extracting@). o]F

layer 4
Feat tracti
240 O . O ed Uli'g;é}; :EEC INng lo o O| 360

n
140 QO+ - - OO e X L. . ) 1920
‘I‘ 1
feature extractin
392000 - ® layer 1 'DO t' OO]5D4U

Face patches H ﬂ e



Learn ldentity Features with
ldentification Signal

e After combining hidden identity features from
multiple CovNets and further reducing
dimensionality with PCA, each face image has 150-
dimenional features as signature

 These features can be further processed by other
classifiers in face verification. Interestingly, we find
Joint Bayesian is more effective than cascading
another neural network to classify these features



DeeplD2: Joint Identification-
Verification Signals

* Every two feature vectors extracted from the same
identity should are close to each other

2 .-
fj H2 1t Yij = 1

5 |Ifi
Verif(fi, fi, yii, Ope) = X 2 2 ..
I smax (0,m — [|fi — fill,)” ifyi; = —1

f;and f; are feature vectors extracted from two face images in comparison

y; =1 means they are from the same identity; y; = -1means different identities

m is a margin to be learned

Y. Sun, X. Wang, and X. Tang. Deep Learning Face Representation by Joint Identification-Verification.
NIPS, 2014.



Balancing Identification and
Verification Signals with Parameter A

verification accuracy (%)
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Rich Identity Information Improves

Feature Learning

e Face verification accuracies with the number of
training identities
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Summary of DeeplD2

o 25 face regions at different scales and locations
around landmarks are selected to build 25 neural
networks

e All the 160 X 25 hidden identity features are further
compressed into a 180-dimensional feature vector
with PCA as a signature for each image

 With a single Titan GPU, the feature extraction
process takes 35ms per image



DeeplD2+

Id Ve Id
J
e Larger net work (00000 -+ 00000)
Conv-4 A A3 Conv-4
structures - ee000¢ - 'eeee®
* Larger training data 00000 c: (00000 |
e Addi . Conv-3 A v AS Conv-3
. Ing supervisory 00000 I__|d e__ " 90000
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Conv-2 A Ve AS
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Y. Sun, X. Wang, and X. Tang. Deeply learned face representations are sparse, selective, and robust.
CVPR, 2015.



Compare DeeplD2 and DeeplD2+ on LFW

11U 1| MDeepID2
MDeeplD2+

10 15 20 25
net ID

Comparison of face verification accuracies on LFW with ConvNets trained on 25 face
regions given in DeeplD2

Best single model is improved from 96.72% to 98.70%



Final Result on LFW

High-dim | TL Joint DeepFace | DeeplD | DeeplD2 | DeeplD2+
LBP [1] CEVESELIPARRE] [4] [5] [6]

Accuracy (%) 95.17 96.33 97.35 97.45 99.15 99.47

[1] Chen, Cao, Wen, and Sun. Blessing of dimensionality: High-dimensional feature and
its efficient compression for face verification. CVPR, 2013.

[2] Cao, Wipf, Wen, Duan, and Sun. A practical transfer learning algorithm for face
verification. ICCV, 2013.

[3] Taigman, Yang, Ranzato, and Wolf. DeepFace: Closing the gap to human-level
performance in face verification. CVPR, 2014.

[4] Sun, Wang, and Tang. Deep learning face representation from predicting 10,000
classes. CVPR, 2014.

[5] Y. Sun, Y. Chen, X. Wang, and X. Tang. Deep Learning Face Representation by Joint
Identification-Verification. NIPS, 2014.

[6] Y. Sun, X. Wang, and X. Tang. Deeply learned face representations are sparse,
selective, and robust. CVPR, 2015.



Closed- and open-set face
identification on LFW

Method Rank-1 (%) DIR @ 1% FAR (%)
COST-S1 [1] 56.7 25

COST-S1+s2 [1] 66.5 35

DeepFace [2] 64.9 44.5

DeepFace+ [3] 82.5 61.9

DeeplD2 91.1 61.6

DeeplD2+ 95.0 80.7

[1] L. Best-Rowden, H. Han, C. Otto, B. Klare, and A. K. Jain. Unconstrained face recognition:
Identifying a person of interest from a media collection. TR MSU-CSE-14-1, 2014.

[2] Y. Taigman, M. Yang, M. Ranzato, and L. Wolf. DeepFace: Closing the gap to human-level
performance in face verifica- tion. In Proc. CVPR, 2014.

[3] Y. Taigman, M. Yang, M. Ranzato, and L. Wolf. Web- scale training for face identification.
Technical report, arXiv:1406.5266, 2014.



Face Verification on YouTube Faces
Wethods | Accuracy 06

LM3L [1] 81.3+1.2
DDML (LBP) [2] 81.3+1.6
DDML (combined) [2] 823 1.5
EigenPEP [3] 84.8 £1.4
DeepFace [4] 914 +1.1
DeeplD2+ 93.2 +£0.2

[1] J. Hu, J. Ly, J. Yuan, and Y. P. Tan, “Large margin multi-metric learning for face and
kinship verification in the wild,” ACCV 2014

[2] J. Hu, J. Lu, and Y. P. Tan, “Discriminative deep metric learning for face verification in
the wild,” CVPR 2014

[3] H. Li, G. Hua, X. Shen, Z. Lin, and J. Brandt, “Eigen-pep for video face recognition,”
ACCV 2014

[4] Y. Taigman, M. Yang, M. Ranzato, and L. Wolf, “DeepFace: Closing the gap to human-
level performance in face verification,” CVPR 2014.



GooglLeNet

Sigmoid Rectified linear unit

f(x) = tanh(x) f(x) = max(0, x)

* Linear transform

 Pooling

 Nonlinear mapping



Unified subspace analysis

Identification signal is in S;
verification signal isin S,

Maximize distance between
classes under constraint
that intrapersonal variation
Is constant

Linear feature mapping

Joint deep learning

Learn features by joint
identification-verification

Minimize intra-personal
variation under constraint
that the distance between
classes is constant

Hierarchical nonlinear
feature extraction

Generalization power increases
with more training identities



What has been learned by DeeplD2+?

Properties owned by neurons?

Moderate sparse

Selective to identities and attributes

Robust to data corruption

These properties are naturally owned by DeeplD2+ through large-scale training,
without explicitly adding regularization terms to the model



Biological Motivation

tNﬂmt.

e Monkey has a face-processing network that is made of six
interconnected face-selective regions

 Neurons in some of these regions were view-specific, while
some others were tuned to identity across views

 View could be generalized to other factors, e.g. expressions?

Winrich A. Freiwald and Doris Y. Tsao, “Functional compartmentalization and viewpoint generalization
within the macaque face-processing system,” Science, 330(6005):845-851, 2010.



Deeply learned features are moderately space

 For an input image, about half of the neurons are activated

 An neuron has response on about half of the images
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Deeply learned features are moderately space

The binary codes on activation patterns of neurons are very
effective on face recognition

Activation patterns are more important than activation
magnitudes in face recognition

_ Joint Bayesian (%) | Hamming distance (%)

Single model 98.70 n/a
(real values)

Single model 97.67 96.46
(binary code)

Combined model 99.47 n/a
(real values)

Combined model 99.12 97.47
(binary code)



Deeply learned features are selective to

identities and attributes

e With a single neuron, DeeplD2 reaches 97% recognition
accuracy for some identity and attribute

Al btk

_____ 30

20
Lk ik
10 20

O = N W

30

George W Bush Background

= 4000

c 100

3 2000

>

= 9% 5 % 5

> George W Bush Background

® 400

S 200 2000

N

o s 5
Male Female

2

(1]

c

3 1

3

w

0 5. 0. S .
Male Female

2

g]

c

S .

=3

0 5 0 5

image number

10000

5000

foo

200 300 400 500
number of activated neurons

on each image

1 2 3 4
number of images on which, , o¢
each neuron are activated



Deeply learned features are selective to
identities and attributes

e With a single neuron, DeeplD2 reaches 97% recognition
accuracy for some identity and attribute

1 1
%) >,
© ®
= —
© BDeeplD2+ @ WDeeplD2+
c . . = ) -
S gHigh-dim 506 gHigh-dim
So6 LBP g LBP
@ @ 0.4
© ©
Q [&]
0.4 0.2 : : :
GB CP TB DR GS Male White Black Asian Indian
Identity classification accuracy on LFW with Attribute classification accuracy on LFW with

one single DeeplD2+ or LBP feature. GB, CP, one single DeeplD2+ or LBP feature.
TB, DR, and GS are five celebrities with the
most images in LFW.
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Deeply learned features are selective to
identities and attributes
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Deeply learned features are selective to
identities and attributes

e Excitatory and inhibitory neurons

0577 0.8652 0361 0.9644 0065 0.9627 0873 0.9625 0617 0.9388 1003 0.8752 0491 0.8736 0063 0.8520 0575 0.8493 0410 0.8410
0 5 0 5 0 5 0 5 0 5
0577 0361 0065 0873 0617 1003 0491 0063 0575 0410
0 5 0 5 0 5 0 5 0 5 0 5 0 5 0 5 0 5 0 5

Histograms of neural activations over gender-related attributes (Male and Female)
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Deeply learned features are selective to
identities and attributes

e Visualize the semantic meaning of each neuron

High Resp. <= Low Resp. High Resp. <= Low Resp.

Gender Hair Color

Face Shape Eye Shape




Deeply learned features are selective to
identities and attributes

e Visualize the semantic meaning of each neuron

Test Image Activations Neurons

Neurons are ranked by their responses in descending order with respect to test images



DeeplD2 features for attribute recognition

Features at top layers are more effective on recognizing
identity related attributes

Features at lowers layers are more effective on identity-non-
related attributes

M FNet (FC) M FNet(C4) M FNet(C3)

Identity-related Attributes Identity-non-related Attributes

95% 91%

590% 87%

3 85% I 83% I I|

< 80% I II 79% I I
75% 75%

Male Young Senior Asian Wearing Black  Pomty Mastache
Hat Hair Nose



DeeplD2 features for attribute recognition

e DeeplD2 features can be directly used for attribute recognition

e Use DeelD2 features as initialization (pre-trained result), and
then fine tune on attribute recognition

e Average accuracy on 40 attributes on CelebA and LFWA datasets

FaceTracer [1] (HOG+SVM) 81 74
PANDA-W [2] 79 71
(Parts are automatically detected)

PANDA-L [2] 85 81
(Parts are given by ground truth)

DeeplD2 84 82
Fine-tune (w/o DeeplD2) 83 79
DeeplID2 + fine-tune 87 84

Z. Liu, P. Luo, X. Wang, and X. Tang, “Deep Learning Face Attributes in the Wild,” arXiv:1411.7766, 2014.



verification accuracy

Deeply learned features are robust to occlusions

Global features are more robust to occlusions
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Outline

 Deep learning for face recognition

— Learn 3D face models from 2D images



Deep Learning Multi-view
Representation from 2D Images

* Inspired by brain behaviors [Winrich et al. Science 2010]
e |dentity and view represented by different sets of neurons

 Given an image under arbitrary view, its viewpoint can be
estimated and its full spectrum of views can be reconstructed

i i R
I rJethctl B i
5 bl B

Z.Zhu, P. Luo, X. Wang, and X. Tang, “Deep Learning and Disentangling Face Representation by Multi-View Perception,”
NIPS 2014.




Deep Learning Multi-view
Representation from 2D Images

Us
y (:)@ * x and y are input and ouput images of
X U, T the same identity but in different views;
h,(QOQO)

v is the view label of the output image;

h'd are neurons encoding identity
features

h'are neurons encoding view features

h"are neurons encoding features to
X reconstruct the output images



Avg. 0° —15° 415° —30° +30° —45° +45° —60° +460°

Raw Pixels+LDA 36.7 813 592 583 355 373 210 19.7 128 7.63
LBP [ ]+LDA 50.2 89.1 774 79.1 568 559 352 297 162 14.6
Landmark LBP [6]+LDA 63.2 949 839 829 714 682 528 483 355 321
CNN+LDA 58.1 646 662 628 60.7 636 564 579 464 442
FIP [28]+LDA 72.9 943 914 90.0 789 825 661 620 493 425
RL [28]+LDA 70.8 943 905 898 775 800 63.6 595 446 389
MTL+RL+LDA 74.8 93.8 91.7 896 801 833 704 638 515 502
MVP, ;q+LDA 61.5 925 854 849 643 670 516 454 351 28.3

1
MVP, ;q+LDA 79.3 95.7 933 922 834 839 752 70.6 60.2 60.0

2
MVPhg +LDA 72.6 910 86.7 84.1 746 742 685 638 557 56.0
MVPhZ +LDA 62.3 834 773 73.1 620 639 573 532 444 469

Face recognition accuracies across views and illuminations on the Multi-PIE
dataset. The first and the second best performances are in bold.

[1] T. Ahonen, A. Hadid, and M. Pietikainen. Face description with local binary patterns: Application to face

recognition. TPAMI, 28:2037-2041, 2006.

[6] Dong Chen, Xudong Cao, Fang Wen, and Jian Sun. Blessing of dimensionality: High-dimensional feature

and its efficient compression for face verification. In CVPR, 2013.

[28] Z.Zhu, P. Luo, X. Wang, and X. Tang. Deep learning identity preserving face space. In ICCV, 2013.




Deep Learning Multi-view
Representation from 2D Images

* Interpolate and predict images under viewpoints unobserved
in the training set

k

1

Dy v Ny Yy ey O
% 2 a0y e ﬁil!'b'w
betacticl - b h&ﬂil‘?ﬁﬂ"

(a)
The training set only has viewpoints of 0°, 30°, and 60°. (a) the reconstructed
images under 15° and 45° when the input is taken under 0°. (b) The input images
are under 15° and 45°.



Outline

* Deep learning for object segmentation



Whole-image classification vs
pixelwise classification

Whole-image classification: predict a single label for
the whole image

Pixelwise classification: predict a label at every pixel
— Segmentation, detection, and tracking

CNN, forward and backward propagation were
originally proposed for whole-image classification

Such difference was ignored when CNN was applied
to pixelwise classification problems, therefore it
encountered efficiency problems



Pixelwise Classification

* |mage patches centered at each pixel are used as the
input of a CNN, and the CNN predicts a class label for
each pixel

e A lot of redundant computation because of overlap

between patches Image patches around

each pixel location

Trained CNN

Class label for each pixel

Farabet et al. TPAMI 2013  Pinheiro and Collobert ICML 2014



Classify Segmentation Proposal

e Determines which segmentation proposal can best
represent objects on interest

"~ Segmentatio
Proposals |

R. Girshick, J. Donahue, T. Darrell, and J. Malik, “Rich Feature Hierarchies for Accurate Object Detection and Semantic
Segmentation” CVPR 2014



Direct Predict Segmentation Maps

occlusion estimation layers completion layers decomposition layers (transformation)
r - A\ = s N A N\
0
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W
2
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v Wegs [Cfaces

P. Luo, X. Wang, and X. Tang, “Pedestrian Parsing via Deep Decompositional Network,” ICCV 2013.



Direct Predict Segmentation Maps

e Classifier is location sensitive has no
translation invariance

— Prediction not only depends on the neighborhood
of the pixel, but also its location

* Only suitable for images with regular
structures, such as faces and humans



Efficient Forward-Propagation of Convolutional
Neural Networks

e Generate the same result as patch-by-patch scanning, with 1500
times speedup for both forward and backward propagation

Input Image CNN

Target Label Map
Patches :

Predictions Labels
F — 4
L~ 4

L] -

- oo

Layer Layer

ey <> CNN CNN

CNN

CNN CNN
Layer Layer

Forward Backward Selecting Errors on
l Propagation l Propagation -! Pizels via Error Mask
(b) Our approach

H. Li, R. Zhao, and X. Wang, “Highly Efficient Forward and Backward Propagation of Convolutional
Neural Networks for Pixelwise Classification,” arXiv:1412.4526, 2014



Speedup = C)(Szm2 /(s + m)2) s2 is image size and m2 is patch size

Bwd. Prop.

Layer Type convll pooll ] tanh11 convl2 convl3 conv2] pool21 tanh21
Kernel Size / Stride 25 % 8 % 8/1 2% 2/2 - 50 x 8 X 8/1 32 x1x 1/1 25 x 8 x 811 2% 2/2 -
Sliding Window 30485.6 1960.2 693.0 59017.2 6473.1 63548.4 3322 08.14
Fwd. Prop. (ms)
Our Method 4398 0.854 0.337 24.42 2.466 28.90 0.70 0.227
Fwd. Prop. (ms)
Speedup by Ours 89781 22053 2056.4 2416.8 26313 2198.9 474.6 426.7
Fwd. Prop.
Sliding Window 3961.5 10054.8 602.6 146019.3 25206.7 133706.2 1623.8 106.7
Bwd. Prop. (ms)
Our Method 8.193 1.428 0.282 66.55 6.778 71.69 0.844 0.245
Bwd. Prop. (ms)
Speedup by Ours 9027.4 70412 2136.9 2194.1 3718.9 1865.1 1923.9 66278
Bwd. Prop.
Layer Type conv2?2 conv23 conv3l pool31 tanh31 conv32 conv33 Overall
Kernel Size 7 Stride 50 x 8 x 8/1 32 % 1 x 1/1 25 x 8 x 8/1 2% 2/2 - 50 X 8 x 8/1 32 x 1 x 1/1 o
Sliding Window 14765.3 2433.4 17059.8 32,15 13.81 17015.4 2069.7 204997.4
Fwd. Prop. (ms)
Our Method 18.98 1.920 20.55 0.488 0.164 10.76 1.080 116.2
Fwd. Prop. (ms)
Speedup by Ours 777.9 1267 4 830.2 65.9 84.2 1581.4 1016.4 1935.6
Bwd. Prop.
Sliding Window 287441 85223 16727.5 128.358 15.91 8657.7 2793.6 456871.1
Bwd. Prop. (ms)
Our Method 52.35 5.368 50.89 0.630 0.180 20.47 3.117 298.0
Fwd. Prop. (ms)
Speedup by Qurs 549.1 1587.6 3287 203.7 88.4 2038 896.2 1533.

The layewise timing and speedup results of the forward and backward propagation
by our proposed algorithm on the RCNN model with 3X410X410 images as inputs.




Fully convolutional neural network

 Replace fully connected layers in CNN with 1 x 1
convolution kernel just like “network in network”
(Lin, Chen and Yan, arXiv 2013)

 Take the whole images as inputs and directly output
segmentation map

e Has translation invariance like patch-by-patch
scanning, but with much lower computational cost

* Once FCNN is learned, it can process input images of
any sizes without warping them to a standard size

K. Kang and X. Wang, “Fully Convolutional Neural Networks for Crowd Segmentation,” arXiv:1411.4464, 2014



Fully convolutional neural network

(a) CNN Patch-scanning (b) CNN Regression (c) FCNN Segmentation (d) FCNN Feature Maps

— % Convolution-pooling layers

Fully connected layers

A

“Fusion” convolutional layers
implemented by 1 x 1 kernel




Summary

Deep learning significantly outperforms conventional vision
systems on large scale image classification

Feature representation learned from ImageNet can be well
generalized to other tasks and datasets

In face recognition, identity preserving features can be
effectively learned by joint identification-verification signals

3D face models can be learned from 2D images; identity and
pose information is encoded by different sets of neurons

In segmentation, larger patches lead to better performance
because of the large learning capacity of deep models. It is
also possible to directly predict the segmentation map.

The efficiency of CNN based segmentation can be significantly
improved by considering the differences between whole-
image classification and pixelwise classification
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Outline

 Deep learning for object detection



Part IV: Deep Learning for Object
Detection

* Pedestrian Detection
e Human part localization

 General object detection

Human pose estimation

Pedestrian detection



Part IV: Deep Learning for Object
Detection

Jointly optimize the detection pipeline
Multi-stage deep learning (cascaded detectors)
Mixture components

Integrate segmentation and detection to
depress background clutters

Contextual modeling
Pre-training

Model deformation of object parts, which are
shared across classes



Joint Deep Learning:

<> Jointly optimize the detection pipeline



What if we treat an existing deep model as
a black box in pedestrian detection?

convolutions subsampling convolutions  full

l l connection

subsampling output

T

convolutions subsampling
nput 1st stage 2nd stage classifier

ConvNet-U-MS

— Sermnet, K. Kavukcuoglu, S. Chintala, and LeCun, “Pedestrian Detection with
Unsupervised Multi-Stage Feature Learning,” CVPR 2013.
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 N. Dalal and B. Triggs. Histograms of oriented gradients for human detection.
CVPR, 2005. (6000 citations)

 P. Felzenszwalb, D. McAlester, and D. Ramanan. A Discriminatively Trained,
Multiscale, Deformable Part Model. CVPR, 2008. (2000 citations)

e W. Ouyang and X. Wang. A Discriminative Deep Model for Pedestrian Detection
with Occlusion Handling. CVPR, 2012.



Our Joint Deep Learning Model
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W. Ouyang and X. Wang, “Joint Deep Learning for Pedestrian Detection,” Proc. ICCV, 2013.




Modeling Part Detectors

e Design the filters in the second
convolutional layer with variable sizes

Part models learned
from HOG

Head-torso Head-shoulder Legs
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Part models Learned filtered at the second
convolutional layer
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Our Joint Deep Learning Model
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Multi-Stage Contextual Deep Learning:

<> Train different detectors for different types of samples
<> Model contextual information

<> Stage-by-stage pretraining strategies

X. Zeng, W. Ouyang and X. Wang, "Multi-Stage Contextual Deep Learning for Pedestrian Detection," ICCV 2013



Motivated by Cascaded Classifiers and
Contextual Boost

 The classifier of each stage deals with a specific set
of samples

 The score map output by one classifier can serve as
contextual information for the next classifier

T T T T E . _
— E—— 00— — ‘ " *¢* Only pass one detection
3 ﬂF @F @F JlF ‘¢ . scoreto the next stage
rass = & Classifiers are trained
E . P sequentially
- WS

Conventional cascaded classifiers for detection




e Simulate the cascaded classifiers by mining hard samples to train the network
stage-by-stage

e Cascaded classifiers are jointly optimized instead of being trained sequentially

 The deep model keeps the score map output by the current classifier and it
serves as contextual information to support the decision at the next stage

* To avoid overfitting, a stage-wise pre-training scheme is proposed to regularize
optimization

Pedestrian?
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essing/ (O
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Hidden /(_D @ I -

variables

Layer2:h, \ / : L Ir-m

Hidden
variables |




Training Strategies

Unsupervised pre-train W, ;,, layer-by-layer, setting W, ., =0, F,, =0

Fine-tune all the Wy, ;,, with supervised BP
Train F;,; and W, ., with BP stage-by-stage

A correctly classified sample at the previous stage does not influence the

update of parameters

Stage-by-stage training can be considered as adding regularization
constraints to parameters, i.e. some parameters are constrained to be

zeros in the early training stages

y (O
W ﬁ Wi,
h3
' R
L 5
L"‘yerz’hz \

Wh,

Wi

Log error function:

E=—llogy—(1-1)log(1—1y)

Gradients for updating parameters:
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False positives of Net-NoneFilters
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Comparison of Different Training Strategies

miss rate

mm =49 PretrainTransferMatrix—BP

10 10°
false positives per image
Network-BP: use back propagation to update all the parameters without pre-training
PretrainTransferMatrix-BP: the transfer matrices are unsupervised pertrained, and then

all the parameters are fine-tuned
Multi-stage: our multi-stage training strategy



Switchable Deep Network

<> Use mixture components to model complex variations of
body parts

<> Use salience maps to depress background clutters

< Help detection with segmentation information

P. Luo, Y. Tian, X. Wang, and X. Tang, "Switchable Deep Network for Pedestrian Detection", CVPR 2014



Switchable Deep Network for
Pedestrian Detection

Background clutter and large variations of pedestrian
appearance.

Proposed Solution. A Switchable Deep Network (SDN)
for learning the foreground map and removing the effect
background clutter.



Switchable Deep Network for
Pedestrian Detection

e Switchable Restricted Boltzmann Machine

K K
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Switchable Deep Network for
Pedestrian Detection

e Switchable Restricted Boltzmann Machine

Background Foreground
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Human Part Localization

<> Contextual information is important to segmentation as
well as detection



Human part localization

e Facial Keypoint Detection
e Human pose estimation




Facial Keypoint Detection

e Y.Sun, X. Wang and X. Tang, “Deep Convolutional Network
Cascade for Facial Point Detection,” CVPR 2013
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Comparison with Liang et al. [6], Valstar et al. [7], Luxand Face SDK [1] and Microsoft
Research Face SDK [2] on BiolD and LFPW.
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http://www.luxand.com/facesdk/

http://research.microsoft.com/en-us/projects/facesdk/.
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Validation.




Benefits of Using Deep Model

 The first network that takes the whole face as input needs
deep structures to extract high-level features

e Take the full face as input to make full use of texture context
information over the entire face to locate each keypoint

e Since the networks are trained to predict all the keypoints
simultaneously, the geometric constraints among keypoints
are implicitly encoded



Human pose estimation

e W. Ouyang, X. Chu and X. Wang, “Multi-source Deep
Learning for Human Pose Estimation” CVPR 2014.




Multiple information sources

e Appearance

Appearance
~ score
|



Presenter
Presentation Notes
There are many information sources for describing human pose. Appearance mixture type. For example, head leaning forward or backward.


Multiple information sources

e Appearance
 Appearance mixture type

'Appearance |
score



Presenter
Presentation Notes
Appearance measured by matching score.


Multiple information sources

e Appearance
 Appearance mixture type

e Deformation

Appearance! . .
score



Presenter
Presentation Notes
Deformation among body parts.
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Presenter
Presentation Notes
We propose a multi-source deep model that uses multiple information sources to capture the global, complex relationship among body parts.


Experimental results

Method ______|Torso | Uleg |Lleg |Uarm |Larm | head | Total _

Yang&Ramanan CVPR'11 82.9 68.8 60.5 63.4 42.4 82.4 63.6
Multi-source deep learning 89,3 78.0 72.0 67.8 47.8 89.3 71.0
Method ______|Torso | Uleg |Lleg |Uarm _|Larm | head |Total _
Yang&Ramanan CVPR’11 81.8 65.0 55.1 46.8 37.7 79.8 57.0
Multi-source deep learning 89,1 72.9 62.4 56.3 47.6 89.1 65.6

Yang&Ramanan CVPR’11 82.9 70.3 67.0 56.0 39.8 79.3 62.8
Multi-source deep learning 858 76.5 72.2 63.3 46.6 83.1 68.6

Up to 8.6 percent accuracy improvement with global geometric constraints


Presenter
Presentation Notes
 Our deep model outperforms state-of-the-art by up to 8.6 percent on three public benchmark datasets.


Experimental results

Left: mixtire-of-parts (Yang&Ramanan CVPR’11)
Right: Multi-source deep learning



General Object Detection

<> Pretraining

<> Model deformation of object parts, which are shared across

classes
<> Contextual modeling



Object detection

Pascal VOC Image-net ILSVRC
~ 20 object classes ~ 200 object classes
Training: ~ 5,700 images Training: ~ 395,000 images

Testing: ~10,000 images Testing: ~ 40,000 images




SIFT, HOG, LBP, DPM ..

A SegDPM (2013) O O
Regionlets Regionlets (2013) % DPM++, Selective

(2013) DPM++  MKL,  Search,
D<P>M Selective DPM++,
<& ? Search MKL

DPM, MKL
DPM HOG+BOW

VOC'07 VvOC’08 VOC09 VOC10 VOC'11l VOC12
PASCAL VOC challenge dataset

APost-
competition
results (2013 -
present)

¢Top
competition
results (2007 -
2012)

[Regionlets. Wang et al. ICCV’13] [SegDPM. Fidler et al. CVPR’13]
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53.7% 53.3%
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PASCAL VOC challenge dataset

APost-
competition
results (2013 -
present)

¢Top
competition
results (2007 -
2012)

R. Girshick, J. Donahue, T. Darrell, J. Malik, “Rich Feature Hierarchies for Accurate Object Detection and Semantic

Segmentation,” CVPR, 2014.



R-CNN: regions + CNN features

aeroplane? no.

erson? ves.
Y y

tvimonitor? no.

Input image Extract region Compute CNN 2-class linear SVM
proposals (~2k/image) features

Region:

91.6%/98% recall rate on ImageNet/PASCAL

Selective Search [van de Sande, Uijlings et al. 1JCV 2013].
Deep model from Krizhevsky, Sutskever & Hinton. NIPS 2012

SVM: Liblinear



RCNN: deep model training

e Pretrain for the 1000-way ILSVRC image
classification task (1.2 million images)

 Fine-tune the CNN for detection

» Transfer the representation learned from ILSVRC
Classification to PASCAL (or ImageNet) detection

Pre-Train
‘ ImageNetCls } ..........
~~~>

ot}

-
-
—____—
—

Fine-tune

Network from Krizhevsky, Sutskever & Hinton. NIPS 2012

Also called “AlexNet”



Experimental results on ILSVRC 2013

ILSVRC2013 detection test set mAP

"R—-CNN BB

*OverFeat (2) 24.3%

UvA—Euvision 22.6%

"NEC-MU 20.9%

31.4%

*OverFeat (1) 1 9.4% .
Toronto A 11 5% -
SYSU_Vision 10.5% -
GPU_UCLA 9.8% |
Delta 6.1% | ; ]

I post competition result
UIUC-IFP §1.0% _ : Bl competition result n

0 20 40 60 80

mean average precision (MAP) in %

100



Experimental results on ILSVRC 2014

GooglLeNet | DeepID-Net | Deeplinsight Berkley RCNN
(Google) (CUHK) Vision

Model 0.439 0.439 0.405
average
Single 0.380 0.427 0.402 0.354 0.345 0.314

model



DeeplID-Net: deformable deep convolutional
neural networks for generic object detection

W. Ouyang and X. Wang, et al. “DeeplD-Net: deformable deep convolutional neural networks for object detection,” CVPR
2015.
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Mean ap 31.4 to 40.67 (new result on )

Proposed " Detection | Reined |

Image bounding boxes results bounding boxes
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Detection

Image roposed
bounding boxes results
DeeplD-Net
| Selective 3
search L DeeplD-Net
r—

= pooling layer,
sub-box,

¥ o

roposed Rmainin
Image : inoe-
; bounding boxes bounding boxes hinge-loss
Model
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DeeplD-Net

. convé| defé conv7,

128

~onv6; defé; conv7;!f

128 128




Proposed Detection

Image :
& bounding boxes results

DeeplD-Net

e Selective
' search

3 DeeplD-Net

 m—

retrain, de
g pooling layer,

sub-box,
hinge-loss

¥ Vb

Proposed Remaining
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Deep model training — pretrain

e RCNN (Cls+Det)
— Pretrain on image-level annotation with 1000 classes
— Finetune on object-level annotation with 200 classes
— Gap: classification vs. detection, 1000 vs. 200

Image classification Object detection



Result and discussion

* |nvestigation

e Better pretraining on 1000 classes
e Object-level annotation is more suitable for pretraining

e Conclusions

* The supervisory tasks should match at the pre-training
and fine-turning stages

e Although an application only involves detecting a small
number of classes, it is better to pretraing with many
classes outside the application

_ Image annotation Object annotation

200 classes (Det) 20.7 28.0
1000 classes (Cls-Loc) 31.8 36



Proposed Detection

Image :
& bounding boxes results
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e Selective
' search
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Deformation

— Learning deformation [a] is effective in computer vision society.
— Missing in deep model.

— We propose a new deformation constrained pooling layer.

5 _.
f

=

=
-
=
=
&

[a] P. Felzenszwalb, R. B. Grishick, D.McAllister, and D. Ramanan. Object detection with discriminatively trained part based models. IEEE Trans. PAMI,
32:1627-1645, 2010.



Deformation Layer [b]

J\’T

E : — max bTY)
Bp — Mp + Cn,pDn:p Sp = 1(1;‘3% bp
n=1 .
s \
filter ”rl_
mput C om?olu‘rimf'*
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Output b

Deformation
penalty

[b] Wanli Ouyang, Xiaogang Wang, "Joint Deep Learning for Pedestrian Detection ", ICCV 2013.



Modeling Part Detectors

e Different parts have different sizes
e Design the filters with variable sizes

Part models learned
from HOG

Head-torso Head-shoulder Legs

O] ! ( O 1 D R at level 3 at level 2 at level 2
Level 3 I:D 0l ]U: . m— .
.
W (] W ) e |
Level 2 _I H [l 0 % .
\. "y
¢ | ‘
Sl I ﬁ m Head-shoulder Full-body Torso
L ) at level 3 at level 3 at level 2

Part models Learned filtered at the second
convolutional layer

=




Deformation layer for repeated patterns

Pedestrian detection General object detection

Assume no repeated pattern Repeated patterns




Deformation layer for repeated patterns

Pedestrian detection General object detection

Assume no repeated pattern Repeated patterns

Only consider one object class  Patterns shared across different object classes




Deformation constrained pooling layer

Can capture multiple patterns simultaneously
N

b(fﬂ,y) _ (kx-z+iky-y+7) |

max {m
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. III
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\ |
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Our deep model with deformation layer

Existing deep model (clarifai-fast)

convs fc6  fc7

%’Q‘:‘\.{:onv6| defé, conv7/, 00
a\"‘_‘: !
\
Layers with 128 I )
def-pooling
layers convé; defé 7
4 ERvos  Celos convi Patterns shared across
u—»u{ «—— different classes
128 128
Cls+Det
Net structure AlexNet Clarifai Clarifai+Def layer

Mean AP on val2 0.299 0.360 0.385



Proposed Detection
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Context modeling

Existing deep model (clarifai-fast)

* Use the 1000 class
Image classification

conv fce6  fc7

200-
class
scroes

Score.

—
L ;5:;*'
- -
-

| \ -.ﬁ'\l‘\
~y g - —————————————— 1
. 1% mAP Candidate ‘\.".E{\gonvsu def6, conv7/,!
. region LI
Improvement. Layers
with W
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pooling
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_____ I}?_ o |_2_B_ | efined
_ 200-
class

scroes

1000-
class

Deep model (clarifai-fast) for 1000-class :smres

e e ——— — e e e = =




Context modeling

e Use the 1000-class Image classification score.
— ~1% mAP improvement.
— Volleyball: improve ap by 8.4% on val2.

| / Volleyball

| > Golf ball
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Proposed Detection

Image :
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Model averaging

 Not only change parameters

— Net structure: AlexNet(A), Clarifai (C), Deep-ID Net (D),
DeeplD Net2 (D2)

— Pretrain: Classification (C), Localization (L)

— Region rejection or not

— Loss of net, softmax (S), Hinge loss (H)

— Choose different sets of models for different object class

Net structure D
Pretrain C C+L C C+L C+L C+L L L L L
Reject region? Y N Y Y Y Y Y Y Y Y
Loss of net S S S H H H H H H H

Mean ap 0.31 0.312 0.321 0.336 0.353 0.36 0.37 0.37 0.371 0.374



Proposed " Detection - Refined |

Image bounding boxes results bounding boxes
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Component analysis

Box Loc+ | +Def [+cont| +bbox | Model
Detection Pipeline | RCNN | rejection | Clarifai | Det |layer| ext | regr. | avg.

mAP on val2 29.9 30.9 31.8 36.0 385 39.2 40.1 424
mMAP on test 38.0 38.6 394 41.7

DeeplD-Net

retrain, def-
ooling layer, §
sub-box,
hinge-loss

Proposed Remaining
bounding boxes bounding boxes

Model
averaging




Summary

Bounding rejection. Save feature extraction by about
10 times, slightly improve mAP (~1%).

Pre-training with object-level annotation, more
classes. 4.2% mAP

Def-pooling layer. 2.5% mAP improvement
Contextual modeling. 1% mAP improvement

Model averaging. 2.3% mAP improvement. Different
model designs and training schemes lead to high
diversity
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Outline

 Open questions and future works



“Concerns” on deep learning

e C1: Weak on theoretical support (convergence,
bound, local minimum, why it works)

— It’s true. That’s why deep learning papers were not
accepted by the computer vision/image processing
community for a long time. Any theoretical studies in the
future are important.



Most computer
vision/multimedia papers

Motivations

Deep learning papers for
computer vision/multimedia

|

Motivations

New objective function

|

|

New optimization algorithm

New network structure and
new objective function

|

|

Theoretical analysis

Back propagation (standard)

|

|

Experimental results

Super experimental results

That’s probably one of the reasons that computer vision and image
processing people think deep learning papers are lack of novelty and

theoretical contribution ®




“Concerns” on deep learning

e (C2:ltis hard for computer vision/image processing people to
have innovative contributions to deep learning. Our job
becomes preparing the data + using deep learning as a black
box. That’s the end of our research life.

— That’s not true. Computer vision and image processing researchers
have developed many systems with deep architectures. But we just
didn’t know how to jointly learn all the components. Our research
experience and insights can help to design new deep models and pre-
training strategies.

— Many machine learning models and algorithms were motivated by
computer vision and image processing applications. However,
computer vision and multimedia did not have close interaction with
neural networks in the past 15 years. We expect fast development of
deep learning driven by applications.



“Concerns” on deep learning

e (C3:Since the goal of neural networks is to solve the
general learning problem, why do we need domain
knowledge?

— The most successful deep model on image and video
related applications is convolutional neural network, which
has used domain knowledge (filtering, pooling)

— Domain knowledge is important especially when the
training data is not large enough



“Concerns” on deep learning

 C4: Good results achieved by deep learning come
from manually tuning network structures and
learning rates, and trying different initializations

— That’s not true. One round evaluation may take several
weeks. There is no time to test all the settings.

— Designing and training deep models does require a lot of
empirical experience and insights. There are also a lot of
tricks and guidance provided by deep learning researchers.
Most of them make sense intuitively but without strict
proof.



“Concerns” on deep learning

 C5: Deep learning is more suitable for industry rather
than research groups in universities
— Industry has big data and computation resources

— Research groups from universities can contribute on model
design, training algorithms and new applications



“Concerns” on deep learning

 C6: Deep learning has different behaviors when the
scale of training data is different

— Pre-training is useful when the training data small, but
does not make big difference when the training data is
large enough

— So far, the performance of deep learning keep increasing
with the size of training data. We don’t see its limit yet.

— Shall we spend more effort on data annotation or model
design?



Future works

 Explore deep learning in new applications

— Worthy to try if the applications require features or
learning, and have enough training data

— We once had many doubts on deep. (Does it work for
vision? Does it work for segmentation? Does it work for
low-level vision?) But deep learning has given us a lot of
surprises.

— Applications will inspire many new deep models

* |ncorporate domain knowledge into deep learning

e |ntegrate existing machine learning models with
deep learning



Future works

Deep learning to extract dynamic features for video
analysis

Deep models for structured data
Theoretical studies on deep learning

Quantitative analysis on how to design network
structures and how to choose nonlinear operations of
different layers in order to achieve feature invariance

New optimization and training algorithms

Parallel computing systems and algorithm to train very
large and deep networks with larger training data
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o I 1. P Luo, x. Wang, and . Tang, "Pedestrian Parsing via Deep Decompositional Neural Metwork," in Procesdings of [EEE Infernational Conference oh
ﬁ A ;‘; AL Complfer Vision (ICCV) 2013 [POF] [Froject Page)
PmEmPn A~ demo code that shows you how the frontal-view face image of a query face image is reconstructed. Zin
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EEMEERE  Rererence
Gy & g 1. Z.Zhu, P. Luo, ¥ Wang, and ¥ Tang, "Deep Learning ldentity Preserving Face Space " in Procesdings of [EEE International Conference an
Compufer Vision (IGCY) 2013 [POF] [Project Page)
hlatlab training and testing source code for pedestrian detection using the proposed approach. Models trained on INEIA and Caltech are provided. Wehpage
Reference:
1. Wanli Quyang, Xiaogang YWang, "Joint Deep Learning for Pedestrian Detection”, in Proceedings of IEEE Infernational Conference on Computer \sion
(ICC) 2013 [POF) [Project Page]
2. Wanli Ouyang, Xigogang Wang, "A Discriminative Deep Model for Pedestrian Detection with Occlusion Handling", in Proceedings of IEEE Conference
an Comgputer Vision and Patfern Recognifion (CWwRR) 2012 [PDF] [Project Page]
Executable files for the face detector and facial point detector. Webpage

Feference:
1.%. 5un, ¥.Wang and ¥. Tang, "Deep Convolutional Metwork Cascade for Facial Point Detection," in Proceedings of IEEE Conference on Complier

Vision ahd Pafiern Recognifion {CVPR), pp. 3476-3483, 2013 [PDF] [Project Page]

http://mmlab.ie.cuhk.edu.hk/project_deep_learning.html
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