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Outline

• Introduction to deep learning
• Deep learning for object recognition
• Deep learning for object segmentation
• Deep learning for object detection
• Open questions and future works



Part I: Introduction to Deep Learning

• Historical review of deep learning
• Introduction to classical deep models
• Why does deep learning work? 
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Neural network
Back propagation

1986

• Solve general learning problems
• Tied with biological system

But it is given up…

• Hard to train
• Insufficient computational resources
• Small training sets
• Does not work well

Nature



Neural network
Back propagation

1986 2006

• SVM
• Boosting
• Decision tree
• KNN
• …

• Flat structures
• Loose tie with biological systems
• Specific methods for specific tasks

– Hand crafted features (GMM-HMM, SIFT, LBP, HOG)

Kruger et al. TPAMI’13

Nature



Neural network
Back propagation

1986 2006

Deep belief net
Science

… …

… …

… …

… … • Unsupervised & Layer-wised pre-training
• Better designs for modeling and training 

(normalization, nonlinearity, dropout) 
• New development of computer architectures

– GPU
– Multi-core computer systems

• Large scale databases

Big Data !

Nature



Machine Learning with Big Data
• Machine learning with small data: overfitting, reducing model complexity 

(capacity)
• Machine learning with big data: underfitting, increasing model complexity, 

optimization, computation resource



How to increase model capacity?

Curse of dimensionality

D. Chen, X. Cao, F. Wen, and J. Sun. Blessing of dimensionality: Highdimensional feature and its efficient 
compression for face verification. In Proc. IEEE Int’l Conf. Computer Vision and Pattern Recognition, 2013.

Blessing of dimensionality

Learning hierarchical feature transforms 
(Learning features with deep structures)



Neural network
Back propagation

1986

• Solve general learning problems
• Tied with biological system

But it is given up…

2006

Deep belief net
Science

deep learning results

Speech

2011

Nature



Rank Name Error 
rate

Description

1 U. Toronto 0.15315 Deep learning
2 U. Tokyo 0.26172 Hand-crafted 

features and 
learning models.
Bottleneck.

3 U. Oxford 0.26979
4 Xerox/INRIA 0.27058

Object recognition over 1,000,000 images and 1,000 categories (2 GPU)

Neural network
Back propagation

1986 2006

Deep belief net
Science Speech

2011 2012

Nature

A. Krizhevsky, L. Sutskever, and G. E. Hinton, “ImageNet Classification with Deep Convolutional Neural Networks,” NIPS, 2012.



Examples from ImageNet



Neural network
Back propagation

1986 2006

Deep belief net
Science Speech

2011 2012

• ImageNet 2013 – image classification challenge
Rank Name Error rate Description

1 NYU 0.11197 Deep learning

2 NUS 0.12535 Deep learning

3 Oxford 0.13555 Deep learning

MSRA, IBM, Adobe, NEC, Clarifai, Berkley, U. Tokyo, UCLA, UIUC, Toronto …. Top 20 
groups all used deep learning

• ImageNet 2013 – object detection challenge
Rank Name Mean Average Precision Description

1 UvA-Euvision 0.22581 Hand-crafted features

2 NEC-MU 0.20895 Hand-crafted features

3 NYU 0.19400 Deep learning



Neural network
Back propagation

1986 2006

Deep belief net
Science Speech

2011 2012

• ImageNet 2014 – Image classification challenge
Rank Name Error rate Description

1 Google 0.06656 Deep learning

2 Oxford 0.07325 Deep learning

3 MSRA 0.08062 Deep learning

• ImageNet 2014 – object detection challenge
Rank Name Mean Average Precision Description

1 Google 0.43933 Deep learning

2 CUHK 0.40656 Deep learning

3 DeepInsight 0.40452 Deep learning

4 UvA-Euvision 0.35421 Deep learning

5 Berkley Vision 0.34521 Deep learning



Neural network
Back propagation

1986 2006

Deep belief net
Science Speech

2011 2012

• ImageNet 2014 – object detection challenge

GoogLeNet
(Google)

DeepID-Net
(CUHK)

DeepInsight UvA-
Euvision

Berkley 
Vision

RCNN

Model 
average

0.439 0.439 0.405 n/a n/a n/a

Single
model

0.380 0.427 0.402 0.354 0.345 0.314

W. Ouyang and X. Wang et al. “DeepID-Net: deformable deep convolutional neural 
networks for object detection”, CVPR, 2014



Neural network
Back propagation

1986 2006

Deep belief net
Science Speech

2011 2012

• Google and Baidu announced their deep 
learning based visual search engines (2013)
– Google 

• “on our test set we saw double the average precision when 
compared to other approaches we had tried. We acquired 
the rights to the technology and went full speed ahead 
adapting it to run at large scale on Google’s computers. We 
took cutting edge research straight out of an academic 
research lab and launched it, in just a little over six months.”

– Baidu

http://googleresearch.blogspot.ca/2013/06/improving-photo-search-step-across.html
http://www.wired.com/wiredenterprise/2013/06/baidu-virtual-search/?utm_source=feedburner&utm_medium=feed&utm_campaign=Feed:+wired/index+(Wired:+Top+Stories)


Neural network
Back propagation

1986 2006

Deep belief net
Science Speech

2011 2012

Face recognition

2014

• Deep learning achieves 99.47% face verification 
accuracy on Labeled Faces in the Wild (LFW), 
higher than human performance
Y. Sun, X. Wang, and X. Tang. Deep Learning Face Representation by Joint 
Identification-Verification. NIPS, 2014.

Y. Sun, X. Wang, and X. Tang. Deeply learned face representations are 
sparse, selective, and robust. CVPR, 2015.



Labeled Faces in the Wild (2007)

Best results without deep learning







Design Cycle start

Collect data

Preprocessing

Feature design

Choose and 
design model

Train classifier

Evaluation

end

Domain knowledge Interest of people working 
on computer vision, speech 
recognition, medical image 
processing,…

Interest of people working 
on machine learning

Interest of people working 
on machine learning and 
computer vision, speech 
recognition, medical image 
processing,…

Preprocessing and feature 
design may lose useful 
information and not be 
optimized, since they are not 
parts of an end-to-end 
learning system

Preprocessing could be the 
result of another pattern 
recognition system



Person re-identification pipeline

Pedestrian 
detection

Pose 
estimation

Body parts 
segmentation

Photometric 
& geometric 

transform

Feature 
extraction

Classification

Face recognition pipeline

Face 
alignment

Geometric 
rectification

Photometric
rectification

Feature 
extraction

Classification



Design Cycle 
with Deep Learning

start

Collect data

Preprocessing
(Optional)

Design network

Feature learning

Classifier

Train network

Evaluation

end

• Learning plays a bigger role in the 
design circle

• Feature learning becomes part of the 
end-to-end learning system

• Preprocessing becomes optional 
means that several pattern 
recognition steps can be merged into 
one end-to-end learning system

• Feature learning makes the key 
difference

• We underestimated the importance 
of data collection and evaluation



What makes deep learning successful 
in computer vision?

Deep learning

Li Fei-Fei Geoffrey Hinton 

Data collection Evaluation task

One million images 
with labels

Predict 1,000 image 
categories

CNN is not new

Design network structure

New training strategies

Feature learned from ImageNet can be well generalized to other tasks and datasets!



Learning features and classifiers separately

• Not all the datasets and prediction tasks are suitable 
for learning features with deep models

Dataset A

feature 
transform

Classifier 1 Classifier 2 ...

Prediction 
on task 1 ...

Prediction 
on task 2

Deep 
learning

Training 
stage A Dataset B

feature 
transform

Classifier B

Prediction on task B 
(Our target task)

Training 
stage B



Deep learning can be treated as a language to 
described the world with great flexibility 

Collect data

Preprocessing 1

Feature design

Classifier

Evaluation

Preprocessing 2

…

Collect data

Feature transform

Feature transform

…

Classifier

Deep neural network

Evaluation

Connection



Introduction to Deep Learning

• Historical review of deep learning
• Introduction to classical deep models
• Why does deep learning work? 



Introduction on Classical Deep Models

• Convolutional Neural Networks (CNN)
– Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based Learning Applied to 

Document Recognition,” Proceedings of the IEEE, Vol. 86, pp. 2278-2324, 1998.

• Deep Belief Net (DBN)
– G. E. Hinton, S. Osindero, and Y. Teh, “A Fast Learning Algorithm for Deep Belief Nets,” 

Neural Computation, Vol. 18, pp. 1527-1544, 2006.

• Auto-encoder
– G. E. Hinton and R. R. Salakhutdinov, “Reducing the Dimensionality of Data with Neural 

Networks,” Science, Vol. 313, pp. 504-507, July 2006.



Classical Deep Models

• Convolutional Neural Networks (CNN)
– First proposed by Fukushima in 1980
– Improved by LeCun, Bottou, Bengio and Haffner in 1998

Convolution Pooling Learned 
filters



Backpropagation

W is the parameter of the network; J is the objective function

Output layer

Hidden layers

Input layer

Target values

Feedforward
operation

Back error 
propagation

D. E. Rumelhart, G. E. Hinton, R. J. Williams, “Learning Representations by Back-propagation Errors,” Nature, Vol. 323, 
pp. 533-536, 1986.



Classical Deep Models

• Deep belief net
– Hinton’06

P(x,h1,h2) = p(x|h1) p(h1,h2)
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Initial pointPre-training:
• Good initialization point
• Make use of unlabeled data



Classical Deep Models

• Auto-encoder
– Hinton and Salakhutdinov 2006

x
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Encoding: h1 = σ(W1x+b1)
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Introduction to Deep Learning

• Historical review of deep learning
• Introduction to classical deep models
• Why does deep learning work? 



Feature Learning vs Feature Engineering



Feature Engineering

• The performance of a pattern recognition system heavily 
depends on feature representations

• Manually designed features dominate the applications of 
image and video understanding in the past
– Reply on human domain knowledge much more than data
– Feature design is separate from training the classifier
– If handcrafted features have multiple parameters, it is hard to 

manually tune them
– Developing effective features for new applications is slow



Handcrafted Features for Face Recognition

1980s

Geometric features

1992

Pixel vector

1997

Gabor filters

2 parameters

2006

Local binary patterns

3 parameters



Feature Learning

• Learning transformations of the data that make it easier to 
extract useful information when building classifiers or 
predictors
– Jointly learning feature transformations and classifiers makes their 

integration optimal
– Learn the values of a huge number of parameters in feature 

representations
– Faster to get feature representations for new applications
– Make better use of big data



Deep Learning Means Feature Learning
• Deep learning is about learning hierarchical feature 

representations

• Good feature representations should be able to disentangle 
multiple factors coupled in the data

Trainable Feature 
Transform

Trainable Feature 
Transform

Trainable Feature 
Transform

Trainable Feature 
Transform

Data …

Classifier

Pixel 1

Pixel n

Pixel 2 Ideal 
Feature 

Transform

view

expression



Deep Learning Means Feature Learning

• How to effectively learn features with deep models
– With challenging tasks
– Predict high-dimensional vectors

Pre-train on 
classifying 1,000 

categories 

Fine-tune on 
classifying 201 

categories 

Feature 
representation

SVM binary 
classifier for each 

category
Detect 200 object classes on ImageNet

W. Ouyang and X. Wang et al. “DeepID-Net: deformable deep convolutional neural 
networks for object detection”, CVPR, 2015



Dataset A

feature 
transform

Classifier A

Distinguish 1000 
categories

Training stage A

Dataset B

feature 
transform

Classifier B

Distinguish 201 
categories

Training stage B

Dataset C

feature 
transform

SVM

Distinguish one 
object class from 
all the negatives

Training stage C

Fixed



Example 1: deep learning generic image features

• Hinton group’s groundbreaking work on ImageNet
– They did not have much experience on general image classification on 

ImageNet
– It took one week to train the network with 60 Million parameters
– The learned feature representations are effective on other datasets 

(e.g. Pascal VOC) and other tasks (object detection, segmentation, 
tracking, and image retrieval)



96 learned low-level filters



Image classification result



Top hidden layer can be used as feature for retrieval



Example 2: deep learning face identity features 
by recovering canonical-view face images

Reconstruction examples from LFW

Z. Zhu, P. Luo, X. Wang, and X. Tang, “Deep Learning Identity Preserving Face Space,” ICCV 2013. 



• Deep model can disentangle hidden factors through feature 
extraction over multiple layers

• No 3D model; no prior information on pose and lighting condition
• Model multiple complex transforms
• Reconstructing the whole face is a much strong supervision than 

predicting 0/1 class label and helps to avoid overfitting

Arbitrary view Canonical view





-45o -30o -15o +15o +30o +45o Avg Pose

LGBP [26] 37.7 62.5 77 83 59.2 36.1 59.3 √

VAAM [17] 74.1 91 95.7 95.7 89.5 74.8 86.9 √

FA-EGFC[3] 84.7 95 99.3 99 92.9 85.2 92.7 x

SA-EGFC[3] 93 98.7 99.7 99.7 98.3 93.6 97.2 √

LE[4] + LDA 86.9 95.5 99.9 99.7 95.5 81.8 93.2 x

CRBM[9] + LDA 80.3 90.5 94.9 96.4 88.3 89.8 87.6 x

Ours 95.6 98.5 100.0 99.3 98.5 97.8 98.3 x

Comparison on Multi-PIE



Deep learning 3D model from 2D images, 
mimicking human brain activities

Z. Zhu, P. Luo, X. Wang, and X. Tang, “Deep Learning and Disentangling Face Representation by Multi-View 
Perception,” NIPS 2014.



Face images in 
arbitrary views

Face identity 
features

Regressor 1 Regressor 2 ...

Reconstruct 
view 1 ...Reconstruct 

view 2

Deep 
learning

Training stage A

feature 
transform

Linear Discriminant
analysis

The two images 
belonging to the 

same person or not 

Training stage B

Two face images 
in arbitrary views

Fixed

Face reconstruction Face verification



Example 3: deep learning face identity features 
from predicting 10,000 classes

• At training stage, each input image is classified into 10,000 
identities with 160 hidden identity features in the top layer

• The hidden identity features can be well generalized to other 
tasks (e.g. verification) and identities outside the training set

• As adding the number of classes to be predicted, the 
generalization power of the learned features also improves

Y. Sun, X. Wang, and X. Tang. Deep Learning Face Representation by Joint Identification-
Verification. NIPS, 2014.



Dataset A

feature 
transform

Classifier A

Distinguish 
10,000 people

Training stage A

Dataset B

feature 
transform

Linear classifier B

The two images 
belonging to the 

same person or not 

Training stage B

Fixed

Face identification Face verification



Deep Structures vs Shallow Structures
(Why deep?)



Shallow Structures

• A three-layer neural network (with one hidden layer) can 
approximate any classification function

• Most machine learning tools (such as SVM, boosting, and 
KNN) can be approximated as neural networks with one or 
two hidden layers

• Shallow models divide the feature space into regions and 
match templates in local regions. O(N) parameters are needed 
to represent N regions

SVM



Deep Machines are More Efficient for 
Representing Certain Classes of Functions

• Theoretical results show that an architecture with insufficient 
depth can require many more computational elements, 
potentially exponentially more (with respect to input size), 
than architectures whose depth is matched to the task 
(Hastad 1986, Hastad and Goldmann 1991)

• It also means many more parameters to learn



• Take the d-bit parity function as an example

• d-bit logical parity circuits of depth 2 have exponential 
size (Andrew Yao, 1985)

• There are functions computable with a polynomial-size logic 
gates circuits of depth k that require exponential size when 
restricted to depth k -1 (Hastad, 1986)

(X1, . . . , Xd) Xi is even



• Architectures with multiple levels naturally provide sharing 
and re-use of components

Honglak Lee, NIPS’10



Humans Understand the World through 
Multiple Levels of Abstractions

• We do not interpret a scene image with pixels
– Objects (sky, cars, roads, buildings, pedestrians) -> parts (wheels, 

doors, heads) -> texture -> edges -> pixels
– Attributes: blue sky, red car

• It is natural for humans to decompose a complex problem into 
sub-problems through multiple levels of representations



Humans Understand the World through 
Multiple Levels of Abstractions

• Humans learn abstract concepts on top of less abstract ones
• Humans can imagine new pictures by re-configuring these 

abstractions at multiple levels. Thus our brain has good 
generalization can recognize things never seen before.
– Our brain can estimate shape, lighting and pose from a face image and 

generate new images under various lightings and poses. That’s why we 
have good face recognition capability.



Local and Global Representations



Human Brains Process Visual Signals 
through Multiple Layers

• A visual cortical area consists of six layers (Kruger et al. 2013)



Joint Learning vs Separate Learning

Data 
collection

Preprocessing 
step 1

Preprocessing 
step 2

… Feature 
extraction

Training or 
manual design

Classification

Manual 
design

Training or 
manual design

Data 
collection

Feature 
transform

Feature 
transform

… Feature 
transform Classification

End-to-end learning

? ? ?

Deep learning is a framework/language but not a black-box model
Its power comes from joint optimization and 

increasing the capacity of the learner



• Domain knowledge could be helpful for designing new 
deep models and training strategies 

• How to formulate a vision problem with deep learning?
– Make use of experience and insights obtained in CV research
– Sequential design/learning vs joint learning
– Effectively train a deep model (layerwise pre-training + fine tuning)

Feature 
extraction

Quantization
(visual words)

Spatial pyramid
(histograms in 
local regions)

Classification

Filtering & max 
pooling

Filtering & 
max pooling

Filtering & 
max pooling

…

Conventional object recognition scheme

Krizhevsky
NIPS’12

Feature 
extraction

↔ filtering

Quantization ↔ filtering

Spatial 
pyramid

↔ multi-level 
pooling



What if we treat an existing deep model as 
a black box in pedestrian detection?

ConvNet−U−MS 

– Sermnet, K. Kavukcuoglu, S. Chintala, and LeCun, “Pedestrian Detection with 
Unsupervised Multi-Stage Feature Learning,” CVPR 2013.



Results on Caltech Test Results on ETHZ



• N. Dalal and B. Triggs. Histograms of oriented gradients for human detection.  
CVPR, 2005. (6000 citations)

• P. Felzenszwalb, D. McAlester, and D. Ramanan. A Discriminatively Trained, 
Multiscale, Deformable Part Model.  CVPR, 2008. (2000 citations)

• W. Ouyang and X. Wang. A Discriminative Deep Model for Pedestrian Detection 
with Occlusion Handling.  CVPR, 2012. 



Our Joint Deep Learning Model

W. Ouyang and X. Wang, “Joint Deep Learning for Pedestrian Detection,” Proc. ICCV, 2013.



Modeling Part Detectors

• Design the filters in the second 
convolutional layer with variable sizes

Part models Learned filtered at the second 
convolutional layer

Part models learned 
from HOG



Deformation Layer



Visibility Reasoning with Deep Belief Net

Correlates with part detection score



Experimental Results
• Caltech – Test dataset (largest, most widely used) 
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Experimental Results
• Caltech – Test dataset (largest, most widely used) 

2000 2002 2004 2006 2008 2010 2012 2014
30

40

50

60

70

80

90

100 95%

Av
er

ag
e 

m
iss

 ra
te

 ( 
%

)



Experimental Results
• Caltech – Test dataset (largest, most widely used) 
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Experimental Results
• Caltech – Test dataset (largest, most widely used) 

2000 2002 2004 2006 2008 2010 2012 2014
30

40

50

60

70

80

90

100 95%
68%

63% (state-of-the-art)

53%

39% (best performing)
Improve by ~ 20%

W. Ouyang, X. Zeng and X. Wang, "Modeling Mutual Visibility Relationship in Pedestrian Detection ", CVPR 2013.
W. Ouyang, Xiaogang Wang, "Single-Pedestrian Detection aided by Multi-pedestrian Detection ", CVPR 2013.
X. Zeng, W. Ouyang and X. Wang, ” A Cascaded Deep Learning Architecture for Pedestrian Detection,” ICCV 2013.
W. Ouyang and Xiaogang Wang, “Joint Deep Learning for Pedestrian Detection,” IEEE ICCV 2013.

W. Ouyang and X. Wang, "A Discriminative Deep Model for Pedestrian Detection with Occlusion Handling,“ CVPR 2012.
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%
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DN-HOG
UDN-HOG
UDN-HOGCSS
UDN-CNNFeat
UDN-DefLayer



Large learning capacity makes high dimensional 
data transforms possible, and makes better use 

of contextual information



• How to make use of the large learning capacity of 
deep models?
– High dimensional data transform
– Hierarchical nonlinear representations

?

SVM + feature
smoothness, shape prior…

Output 

Input

High-dimensional 
data transform



Face Parsing

• P. Luo, X. Wang and X. Tang, “Hierarchical Face 
Parsing via Deep Learning,” CVPR 2012



Motivations

• Recast face segmentation as a cross-modality data 
transformation problem

• Cross modality autoencoder
• Data of two different modalities share the same 

representations in the deep model
• Deep models can be used to learn shape priors for 

segmentation



Training Segmentators





Big data

Rich information

Challenging supervision task 
with rich predictions

How to make use of it?

Capacity

Go deeper

Joint 
optimization

Hierarchical 
feature learning

Go wider

Take 
large input

Capture 
contextual information

Domain 
knowledge

Make learning more efficient

Reduce capacity



Summary

• Automatically learns hierarchical feature representations from 
data and disentangles hidden factors of input data through 
multi-level nonlinear mappings

• For some tasks, the expressive power of deep models 
increases exponentially as their architectures go deep

• Jointly optimize all the components in a vision and crate 
synergy through close interactions among them

• Benefitting the large learning capacity of deep models, we 
also recast some classical computer vision challenges as high-
dimensional data transform problems and solve them from 
new perspectives

• It is more effective to train deep models with challenging 
tasks and rich predictions
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• Introduction to deep learning
• Deep learning for object recognition
• Deep learning for object segmentation
• Deep learning for object detection
• Open questions and future works



Part II: Deep Learning Object 
Recognition 

• Deep learning for object recognition on 
ImageNet

• Deep learning for face recognition
– Learn identity features from joint verification-

identification signals
– Learn 3D face models from 2D images



CNN for Object Recognition on ImageNet

• Krizhevsky, Sutskever, and Hinton, NIPS 2012
• Trained on one million images of 1000 categories 

collected from the web with two GPUs; 2GB RAM on 
each GPU; 5GB of system memory

• Training lasts for one week

Rank Name Error rate Description
1 U. Toronto 0.15315 Deep learning
2 U. Tokyo 0.26172 Hand-crafted 

features and 
learning models.
Bottleneck.

3 U. Oxford 0.26979
4 Xerox/INRIA 0.27058



Model Architecture

• Max-pooling layers follow 1st, 2nd, and 5th convolutional layers
• The number of neurons in each layer is given by 253440, 

186624, 64896, 43264, 4096, 4096, 1000
• 650000 neurons, 60 million parameters, 630 million 

connections



Normalization

• Normalize the input by subtracting the mean image on the 
training set

Mean imageInput image (256 x 256)

Krizhevsky 2012



Activation Function

• Rectified linear unit leads to sparse responses of neurons, 
such that weights can be effectively updated with BP

Krizhevsky 2012

Sigmoid (slow to train) Rectified linear unit (quick to train) √



Data Augmentation

• The neural net has 60M parameters and it overfits
• Image regions are randomly cropped with shift; their 

horizontal reflections are also included

Krizhevsky 2012



Dropout

• Randomly set some input features and the outputs of hidden 
units as zero during the training process

• Feature co-adaptation: a feature is only helpful when other 
specific features are present
– Because of the existence of noise and data corruption, some features 

or the responses of hidden nodes can be misdetected

• Dropout prevents feature co-adaptation and can significantly 
improve the generalization of the trained network

• Can be considered as another approach to regularization
• It can be viewed as averaging over many neural networks
• Slower convergence



Classification Result

Krizhevsky 2012



Detection Result

Krizhevsky 2012



Image Retrieval

Krizhevsky 2012



Adaptation to Smaller Datasets
• Directly use the feature representations learned from ImageNet and

replace handcrafted features with them in image classification, scene
recognition, fine grained object recognition, attribute recognition, image
retrieval (Razavian et al. 2014, Gong et al. 2014)

• Use ImageNet to pre-train the model (good initialization), and use target
dataset to fine-tune it (Girshick et al. CVPR 2014)

• Fix the bottom layers and only fine tune the top layers



GoogLeNet

• More than 20 layers
• Add supervision at multiple layers
• The error rate is reduced from 15.3% to 

6.6% 



Deep Learning Object Recognition 

• Deep learning for object recognition on 
ImageNet

• Deep learning for face recognition
– Learn identity features from joint verification-

identification signals
– Learn 3D face models from 2D images



Deep Learning Results on LFW
Method Accuracy (%) # points # training images

Huang et al. CVPR’12 87% 3 Unsupervised

Sun et al. ICCV’13 92.52% 5 87,628

DeepFace (CVPR’14) 97.35% 6 + 67 7,000,000

Sun et al. (CVPR’14) 97.45% 5 202,599

Sun et al. (NIPS’14) 99.15% 18 202,599

• The first deep learning work on face recognition was done by Huang et al. in 2012. With 
unsupervised learning, the accuracy was 87%

• Our work at ICCV’13 achieved result (92.52%) comparable with state-of-the-art
• Our work at CVPR’14 reached 97.45% close to “human cropped” performance (97.53%)
• DeepFace developed by Facebook also at CVPR’14 used 73-point 3D face alignment and 7 

million training data (35 times larger than us)
• Our most recent work reached 99.15% close to “human funneled” performance (99.20%)

Y. Sun, X. Wang, and X. Tang. Deeply learned face representations are sparse, selective, and robust. 
CVPR, 2015.

New:   DeepID2+  (CVPR’15)     99.47%           18                          450,000



Method Rank-1 (%) DIR @ 1% FAR (%)

COST-S1 [1] 56.7 25

COST-S1+s2 [1] 66.5 35

DeepFace [2] 64.9 44.5

DeepFace+ [3] 82.5 61.9

DeepID2 [4] 91.1 61.6

DeepID2+ [5] 95.0 80.7

Closed- and open-set face identification on LFW

[1] L. Best-Rowden, H. Han, C. Otto, B. Klare, and A. K. Jain. Unconstrained face recognition: 
Identifying a person of interest from a media collection. TR MSU-CSE-14-1, 2014. 
[2] Y. Taigman, M. Yang, M. Ranzato, and L. Wolf. DeepFace: Closing the gap to human-level 
performance in face verifica- tion. In Proc. CVPR, 2014. 
[3] Y. Taigman, M. Yang, M. Ranzato, and L. Wolf. Web- scale training for face identification. 
Technical report, arXiv:1406.5266, 2014.
[4] Y. Sun, X. Wang, and X. Tang. Deep Learning Face Representation by Joint Identification-
Verification. NIPS, 2014.
[5] Y. Sun, X. Wang, and X. Tang. Deeply learned face representations are sparse, selective, 
and robust. CVPR, 2015.



Eternal Topic on Face Recognition

Intra-personal variation

Inter-personal variation

How to separate the two types of variations?



Are they the same person or not?

Nicole Kidman Nicole Kidman



Are they the same person or not?

Melina KanakaredesCoo d’Este



Are they the same person or not?

Elijah Wood Stefano Gabbana



Are they the same person or not?

Jim O’Brien Jim O’Brien



Are they the same person or not?

Jacquline Obradors Julie Taymor



• Out of 6000 image pairs on the LFW test set, 51 pairs 
are misclassified with the deep model

• We randomly mixed them and presented them to 10 
Chinese subjects for evaluation. Their averaged 
verification accuracy is 56%, close to random guess 
(50%)



Linear Discriminate Analysis



LDA seeks for linear feature mapping which maximizes the distance
between class centers under the constraint what the intrapersonal
variation is constant



Deep Learning for Face Recognition

• Extract identity preserving features through 
hierarchical nonlinear mappings

• Model complex intra- and inter-personal 
variations with large learning capacity



Learn Identity Features from Different 
Supervisory Tasks

• Face identification: classify an image into one 
of N identity classes 
– multi-class classification problem

• Face verification: verify whether a pair of 
images belong to the same identity or not 
– binary classification problem



Minimize the intra-personal variation under the constraint
that the distance between classes is constant (i.e. contracting
the volume of the image space without reducing the distance
between classes)

(1, 0, 0)

(0, 1, 0) (0, 0, 1)



Learn Identity Features with 
Verification Signal

• Extract relational features with learned filter pairs

• These relational features are further processed through 
multiple layers to extract global features

• The fully connected layer can be used as features to combine 
with multiple ConvNets

Y. Sun, X. Wang, and X. Tang, “Hybrid Deep Learning for Computing Face Similarities,” Proc. ICCV, 2013.



Results on LFW

• Unrestricted protocol without outside training data



Results on LFW

• Unrestricted protocol using outside training data



(1, 0, 0)

(0, 1, 0) (0, 0, 1)

DeepID: Learn Identity Features with 
Identification Signal

Y. Sun, X. Wang, and X. Tang, “Deep Learning Face Representation from Predicting 10,000 classes,” Proc. CVPR, 2014.



• During training, each image is classified into 10,000 
identities with 160 identity features in the top layer

• These features keep rich inter-personal variations
• Features from the last two convolutional layers are 

effective
• The hidden identity features can be well generalized 

to other tasks (e.g. verification) and identities 
outside the training set



• High-dimensional prediction is more challenging, but 
also adds stronger supervision to the network

• As adding the number of classes to be predicted, the 
generalization power of the learned features also 
improves



Extract Features from Multiple ConvNets



Learn Identity Features with 
Identification Signal

• After combining hidden identity features from 
multiple CovNets and further reducing 
dimensionality with PCA, each face image has 150-
dimenional features as signature 

• These features can be further processed by other 
classifiers in face verification. Interestingly, we find 
Joint Bayesian is more effective than cascading 
another neural network to classify these features



DeepID2: Joint Identification-
Verification Signals

• Every two feature vectors extracted from the same 
identity should  are close to each other

fi and fj are feature vectors extracted from two face images in comparison

yij = 1 means they are from the same identity; yij = -1means different identities

m is a margin to be learned 

Y. Sun, X. Wang, and X. Tang. Deep Learning Face Representation by Joint Identification-Verification. 
NIPS, 2014.



Balancing Identification and 
Verification Signals with Parameter λ

λ = 0: only identification signal
λ = +∞: only verification signal



Rich Identity Information Improves 
Feature Learning 

• Face verification accuracies with the number of 
training identities



Summary of DeepID2

• 25 face regions at different scales and locations 
around landmarks are selected to build 25 neural 
networks

• All the 160 X 25 hidden identity features are further 
compressed into a 180-dimensional feature vector 
with PCA as a signature for each image

• With a single Titan GPU, the feature extraction 
process takes 35ms per image



DeepID2+

• Larger net work 
structures

• Larger training data
• Adding supervisory 

signals at every layer

Y. Sun, X. Wang, and X. Tang. Deeply learned face representations are sparse, selective, and robust. 
CVPR, 2015.



Compare DeepID2 and DeepID2+ on LFW

Comparison of face verification accuracies on LFW with ConvNets trained on 25 face 
regions given in DeepID2

Best single model is improved from 96.72% to 98.70%



Final Result on LFW

Methods High-dim 
LBP [1]

TL Joint 
Bayesian [2]

DeepFace
[3]

DeepID
[4]

DeepID2 
[5]

DeepID2+ 
[6]

Accuracy (%) 95.17 96.33 97.35 97.45 99.15 99.47

[1] Chen, Cao, Wen, and Sun. Blessing of dimensionality: High-dimensional feature and 
its efficient compression for face verification. CVPR, 2013.

[2] Cao, Wipf, Wen, Duan, and Sun. A practical transfer learning algorithm for face 
verification. ICCV, 2013.

[3] Taigman, Yang, Ranzato, and Wolf. DeepFace: Closing the gap to human-level 
performance in face verification. CVPR, 2014. 

[4] Sun, Wang, and Tang. Deep learning face representation from predicting 10,000 
classes. CVPR, 2014. 

[5] Y. Sun, Y. Chen, X. Wang, and X. Tang. Deep Learning Face Representation by Joint 
Identification-Verification. NIPS, 2014.

[6] Y. Sun, X. Wang, and X. Tang. Deeply learned face representations are sparse, 
selective, and robust. CVPR, 2015.



Method Rank-1 (%) DIR @ 1% FAR (%)

COST-S1 [1] 56.7 25

COST-S1+s2 [1] 66.5 35

DeepFace [2] 64.9 44.5

DeepFace+ [3] 82.5 61.9

DeepID2 91.1 61.6

DeepID2+ 95.0 80.7

Closed- and open-set face 
identification on LFW

[1] L. Best-Rowden, H. Han, C. Otto, B. Klare, and A. K. Jain. Unconstrained face recognition: 
Identifying a person of interest from a media collection. TR MSU-CSE-14-1, 2014. 
[2] Y. Taigman, M. Yang, M. Ranzato, and L. Wolf. DeepFace: Closing the gap to human-level 
performance in face verifica- tion. In Proc. CVPR, 2014. 
[3] Y. Taigman, M. Yang, M. Ranzato, and L. Wolf. Web- scale training for face identification. 
Technical report, arXiv:1406.5266, 2014.



Face Verification on YouTube Faces
Methods Accuracy (%)

LM3L [1] 81.3 ± 1.2

DDML (LBP) [2] 81.3 ± 1.6

DDML (combined) [2] 82.3  ± 1.5

EigenPEP [3] 84.8  ± 1.4

DeepFace [4] 91.4  ± 1.1

DeepID2+ 93.2  ± 0.2

[1] J. Hu, J. Lu, J. Yuan, and Y. P. Tan, “Large margin multi-metric learning for face and 
kinship verification in the wild,” ACCV 2014
[2] J. Hu, J. Lu, and Y. P. Tan, “Discriminative deep metric learning for face verification in 
the wild,” CVPR 2014

[4] Y. Taigman, M. Yang, M. Ranzato, and L. Wolf, “DeepFace: Closing the gap to human-
level performance in face verification,” CVPR 2014. 

[3] H. Li, G. Hua, X. Shen, Z. Lin, and J. Brandt, “Eigen-pep for video face recognition,” 
ACCV 2014



• Linear transform
• Pooling
• Nonlinear mapping

High dimensional image space

Inter-class variation

GoogLeNet

Sigmoid Rectified linear unit



• Identification signal is in Sb; 
verification signal is in Sw

• Learn features by joint 
identification-verification

Unified subspace analysis Joint deep learning

• Maximize distance between
classes under constraint
that intrapersonal variation
is constant

• Minimize intra-personal 
variation under constraint 
that the distance between 
classes is constant 

• Linear feature mapping • Hierarchical nonlinear 
feature extraction

• Generalization power increases 
with more training identities



What has been learned by DeepID2+?
Properties owned by neurons?

Moderate sparse

Selective to identities and attributes
Robust to data corruption

These properties are naturally owned by DeepID2+ through large-scale training, 
without explicitly adding regularization terms to the model



Biological Motivation

Winrich A. Freiwald and Doris Y. Tsao, “Functional compartmentalization and viewpoint generalization 
within the macaque face-processing system,” Science, 330(6005):845–851, 2010.

• Monkey has a face-processing network that is made of six 
interconnected face-selective regions

• Neurons in some of these regions were view-specific, while 
some others were tuned to identity across views

• View could be generalized to other factors, e.g. expressions?



Deeply learned features are moderately space

• For an input image, about half of the neurons are activated
• An neuron has response on about half of the images



Deeply learned features are moderately space

• The binary codes on activation patterns of neurons are very 
effective on face recognition

• Activation patterns are more important than activation 
magnitudes in face recognition

Joint Bayesian (%) Hamming distance (%)

Single model 
(real values) 

98.70 n/a

Single model 
(binary code)

97.67 96.46

Combined model 
(real values)

99.47 n/a

Combined model 
(binary code)

99.12 97.47



Deeply learned features are selective to 
identities and attributes

• With a single neuron, DeepID2 reaches 97% recognition 
accuracy for some identity and attribute



Deeply learned features are selective to 
identities and attributes

• With a single neuron, DeepID2 reaches 97% recognition 
accuracy for some identity and attribute

Identity classification accuracy on LFW with 
one single DeepID2+ or LBP feature. GB, CP, 
TB, DR, and GS are five celebrities with the 
most images in LFW.

Attribute classification accuracy on LFW with
one single DeepID2+ or LBP feature.



Deeply learned features are selective to 
identities and attributes

• Excitatory and inhibitory neurons

Histograms of neural activations over identities with the most images in LFW



Deeply learned features are selective to 
identities and attributes

• Excitatory and inhibitory neurons

Histograms of neural activations over gender-related attributes (Male and Female)

Histograms of neural activations over race-related attributes (White, Black, Asian and India)



Histogram of neural activations over age-related attributes (Baby, Child, Youth, Middle Aged, and Senior)

Histogram of neural activations over hair-related attributes (Bald, Black Hair, Gray Hair, Blond Hair, and 
Brown Hair.



DeepID2+

High-dim LBP



DeepID2+

High-dim LBP



Deeply learned features are selective to 
identities and attributes

• Visualize the semantic meaning of each neuron



Deeply learned features are selective to 
identities and attributes

• Visualize the semantic meaning of each neuron

Neurons are ranked by their responses in descending order with respect to test images



DeepID2 features for attribute recognition

• Features at top layers are more effective on recognizing 
identity related attributes

• Features at lowers layers are more effective on identity-non-
related attributes



DeepID2 features for attribute recognition

• DeepID2 features can be directly used for attribute recognition
• Use DeeID2 features as initialization (pre-trained result), and 

then fine tune on attribute recognition 
• Average accuracy on 40 attributes on CelebA and LFWA datasets

CelebA LFWA

FaceTracer [1] (HOG+SVM) 81 74

PANDA-W [2]
(Parts are automatically detected)

79 71

PANDA-L [2]
(Parts are given by ground truth)

85 81

DeepID2 84 82

Fine-tune (w/o DeepID2) 83 79

DeepID2 + fine-tune 87 84

Z. Liu, P. Luo, X. Wang, and X. Tang, “Deep Learning Face Attributes in the Wild,” arXiv:1411.7766, 2014.



Deeply learned features are robust to occlusions

• Global features are more robust to occlusions





Outline

• Deep learning for object recognition on 
ImageNet

• Deep learning for face recognition
– Learn identity features from joint verification-

identification signals
– Learn 3D face models from 2D images



Deep Learning Multi-view 
Representation from 2D Images

• Inspired by brain behaviors [Winrich et al. Science 2010]
• Identity and view represented by different sets of neurons
• Given an image under arbitrary view, its viewpoint can be 

estimated and its full spectrum of views can be  reconstructed

Z. Zhu, P. Luo, X. Wang, and X. Tang, “Deep Learning and Disentangling Face Representation by Multi-View Perception,” 
NIPS 2014.



Deep Learning Multi-view 
Representation from 2D Images

x and y are input and ouput images of 
the same identity but in different views;

v is the view label of the output image;

hid are neurons encoding identity 
features

hv are neurons encoding view features

hr are neurons encoding features to 
reconstruct the output images



Face recognition accuracies across views and illuminations on the Multi-PIE 
dataset. The first and the second best performances are in bold. 



Deep Learning Multi-view 
Representation from 2D Images

• Interpolate and predict images under viewpoints unobserved 
in the training set

The training set only has viewpoints of 0o, 30o, and 60o. (a): the reconstructed 
images under 15o and 45o when the input is taken under 0o.  (b) The input images 
are under 15o and 45o.



Outline

• Introduction to deep learning
• Deep learning for object recognition
• Deep learning for object segmentation
• Deep learning for object detection
• Open questions and future works



Whole-image classification vs
pixelwise classification

• Whole-image classification: predict a single label for 
the whole image

• Pixelwise classification: predict a label at every pixel
– Segmentation, detection, and tracking

• CNN, forward and backward propagation were 
originally proposed for whole-image classification

• Such difference was ignored when CNN was applied 
to pixelwise classification problems, therefore it 
encountered efficiency problems



Pixelwise Classification
• Image patches centered at each pixel are used as the 

input of a CNN, and the CNN predicts a class label for 
each pixel
• A lot of redundant computation because of overlap 

between patches Image patches around
each pixel location

Class label for each pixel

Farabet et al. TPAMI 2013 Pinheiro and Collobert ICML 2014



• Determines which segmentation proposal can best 
represent objects on interest

Classify Segmentation Proposal

Segmentation
Proposals

CNN 
Classifier

Bottle

Chair

Person

Bottle

R. Girshick, J. Donahue, T. Darrell, and J. Malik,  “Rich Feature Hierarchies for Accurate Object Detection and Semantic 
Segmentation” CVPR 2014



Direct Predict Segmentation Maps

P. Luo, X. Wang, and X. Tang, “Pedestrian Parsing via Deep Decompositional Network,” ICCV 2013.



Direct Predict Segmentation Maps

• Classifier is location sensitive has no 
translation invariance
– Prediction not only depends on the neighborhood 

of the pixel, but also its location 

• Only suitable for images with regular 
structures, such as faces and humans



164

Efficient Forward-Propagation of Convolutional
Neural Networks

 Generate the same result as patch-by-patch scanning, with 1500 
times speedup for both forward and backward propagation

H. Li, R. Zhao, and X. Wang, “Highly Efficient Forward and Backward Propagation of Convolutional
Neural Networks for Pixelwise Classification,” arXiv:1412.4526, 2014



The layewise timing and speedup results of the forward and backward propagation 
by our proposed algorithm on the RCNN model with 3X410X410 images as inputs.

Speedup = ))/(( 222 msmsO + s2 is image size and m2 is patch size



Fully convolutional neural network

• Replace fully connected layers in CNN with 1 x 1 
convolution kernel just like “network in network” 
(Lin, Chen and Yan, arXiv 2013)

• Take the whole images as inputs and directly output 
segmentation map

• Has translation invariance like patch-by-patch 
scanning, but with much lower computational cost

• Once FCNN is learned, it can process input images of 
any sizes without warping them to a standard size 

K. Kang and X. Wang, “Fully Convolutional Neural Networks for Crowd Segmentation,” arXiv:1411.4464, 2014



Fully convolutional neural network

Convolution-pooling layers

Fully connected layers “Fusion” convolutional layers 
implemented by 1 x 1 kernel



Summary
• Deep learning significantly outperforms conventional vision 

systems on large scale image classification
• Feature representation learned from ImageNet can be well 

generalized to other tasks and datasets
• In face recognition, identity preserving features can be 

effectively learned by joint identification-verification signals
• 3D face models can be learned from 2D images; identity and 

pose information is encoded by different sets of neurons
• In segmentation, larger patches lead to better performance 

because of the large learning capacity of deep models. It is 
also possible to directly predict the segmentation map.

• The efficiency of CNN based segmentation can be significantly 
improved by considering the differences between whole-
image classification and pixelwise classification
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Outline

• Introduction to deep learning
• Deep learning for object recognition
• Deep learning for object segmentation
• Deep learning for object detection
• Open questions and future works



Part IV: Deep Learning for Object 
Detection

• Pedestrian Detection 
• Human part localization
• General object detection

Deep learning

Face alignment

Pedestrian detection

Object detection

Human pose estimation



Part IV: Deep Learning for Object 
Detection

• Jointly optimize the detection pipeline
• Multi-stage deep learning (cascaded detectors)
• Mixture components
• Integrate segmentation and detection to 

depress background clutters
• Contextual modeling
• Pre-training
• Model deformation of object parts, which are 

shared across classes 



Joint Deep Learning: 
 Jointly optimize the detection pipeline



What if we treat an existing deep model as 
a black box in pedestrian detection?

ConvNet−U−MS 

– Sermnet, K. Kavukcuoglu, S. Chintala, and LeCun, “Pedestrian Detection with 
Unsupervised Multi-Stage Feature Learning,” CVPR 2013.



Results on Caltech TestResults on ETHZ



• N. Dalal and B. Triggs. Histograms of oriented gradients for human detection.  
CVPR, 2005. (6000 citations)

• P. Felzenszwalb, D. McAlester, and D. Ramanan. A Discriminatively Trained, 
Multiscale, Deformable Part Model.  CVPR, 2008. (2000 citations)

• W. Ouyang and X. Wang. A Discriminative Deep Model for Pedestrian Detection 
with Occlusion Handling.  CVPR, 2012. 



Our Joint Deep Learning Model

Feature extraction Deformation handling

W. Ouyang and X. Wang, “Joint Deep Learning for Pedestrian Detection,” Proc. ICCV, 2013.



Modeling Part Detectors

• Design the filters in the second 
convolutional layer with variable sizes

Part models Learned filtered at the second 
convolutional layer

Part models learned 
from HOG



Our Joint Deep Learning Model

Deformation handling



Deformation Layer



Visibility Reasoning with Deep Belief Net



Results on Caltech Test Results on ETHZ



DN-HOG
UDN-HOG
UDN-HOGCSS
UDN-CNNFeat
UDN-DefLayer



Multi-Stage Contextual Deep Learning:

X. Zeng, W. Ouyang and X. Wang, "Multi-Stage Contextual Deep Learning for Pedestrian Detection," ICCV 2013

 Train different detectors for different types of samples
Model contextual information
 Stage-by-stage pretraining strategies



Motivated by Cascaded Classifiers and 
Contextual Boost

• The classifier of each stage deals with a specific set 
of samples

• The score map output by one classifier can serve as 
contextual information for the next classifier

Conventional cascaded classifiers for detection

 Only pass one detection 
score to the next stage
 Classifiers are trained 
sequentially



• Simulate the cascaded classifiers by mining hard samples to train the network 
stage-by-stage

• Cascaded classifiers are jointly optimized instead of being trained sequentially
• The deep model keeps the score map output by the current classifier and it 

serves as contextual information to support the decision at the next stage
• To avoid overfitting, a stage-wise pre-training scheme is proposed to regularize 

optimization



Training Strategies
• Unsupervised pre-train Wh,i+1 layer-by-layer, setting Ws,i+1 = 0, Fi+1 = 0
• Fine-tune all the Wh,i+1 with supervised BP
• Train Fi+1 and Ws,i+1 with BP stage-by-stage
• A correctly classified sample at the previous stage does not influence the 

update of parameters
• Stage-by-stage training can be considered as adding regularization 

constraints to parameters, i.e. some parameters are constrained to be 
zeros in the early training stages

Log error function: 

Gradients for updating parameters: 



Experimental Results

Caltech ETHZ



DeepNetNoneFilter



Comparison of Different Training Strategies

Network-BP: use back propagation to update all the parameters without pre-training
PretrainTransferMatrix-BP:  the transfer matrices are unsupervised pertrained, and then 
all the parameters are fine-tuned
Multi-stage: our multi-stage training strategy



Switchable Deep Network

P. Luo, Y. Tian, X. Wang, and X. Tang, "Switchable Deep Network for Pedestrian Detection", CVPR 2014

 Use mixture components to model complex variations of 
body parts

 Use salience maps to depress background clutters

 Help detection with segmentation information



Switchable Deep Network for 
Pedestrian Detection

• Background clutter and large variations of pedestrian
appearance.

• Proposed Solution. A Switchable Deep Network (SDN)
for learning the foreground map and removing the effect
background clutter.



Switchable Deep Network for 
Pedestrian Detection

• Switchable Restricted Boltzmann Machine



Switchable Deep Network for 
Pedestrian Detection

• Switchable Restricted Boltzmann Machine

ForegroundBackground



Switchable Deep Network for 
Pedestrian Detection

(a) Performance on Caltech Test (b) Performance on ETH



Human Part Localization
 Contextual information is important to segmentation as 

well as detection



Human part localization

• Facial Keypoint Detection
• Human pose estimation

Sun et al. CVPR’ 13

Ouyang et al. CVPR’ 14



Facial Keypoint Detection

• Y. Sun, X. Wang and X. Tang, “Deep Convolutional Network 
Cascade for Facial Point Detection,” CVPR 2013





Comparison with Belhumeur et al. [4], Cao et al. [5] on LFPW test images.

1. http://www.luxand.com/facesdk/
2. http://research.microsoft.com/en-us/projects/facesdk/.
3. O. Jesorsky, K. J. Kirchberg, and R. Frischholz. Robust face detection using the hausdorff distance. In Proc. AVBPA, 2001.
4. P. N. Belhumeur, D. W. Jacobs, D. J. Kriegman, and N. Kumar. Localizing parts of faces using a consensus of exemplars. In Proc. CVPR, 2011.
5. X. Cao, Y. Wei, F. Wen, and J. Sun. Face alignment by explicit shape regression. In Proc. CVPR, 2012.
6. L. Liang, R. Xiao, F. Wen, and J. Sun. Face alignment via component-based discriminative search. In Proc. ECCV, 2008.
7. M. Valstar, B. Martinez, X. Binefa, and M. Pantic. Facial point detection using boosted regression and graph models. In Proc. CVPR, 2010.



Validation.

BioID.

LFPW.



Benefits of Using Deep Model

• The first network that takes the whole face as input needs 
deep structures to extract high-level features

• Take the full face as input to make full use of texture context 
information over the entire face to locate each keypoint

• Since the networks are trained to predict all the keypoints
simultaneously, the geometric constraints among keypoints
are implicitly encoded



Human pose estimation
• W. Ouyang, X. Chu and X. Wang, “Multi-source Deep 

Learning for Human Pose Estimation” CVPR 2014.



Multiple information sources

• Appearance

Presenter
Presentation Notes
There are many information sources for describing human pose. Appearance mixture type. For example, head leaning forward or backward.



Multiple information sources

• Appearance
• Appearance mixture type

Presenter
Presentation Notes
Appearance measured by matching score.



Multiple information sources

• Appearance
• Appearance mixture type
• Deformation

Presenter
Presentation Notes
Deformation among body parts.



Multi-source deep model

Presenter
Presentation Notes
We propose a multi-source deep model that uses multiple information sources to capture the global, complex relationship among body parts.



Experimental results

Method Torso U.leg L.leg U.arm L.arm head Total
Yang&Ramanan CVPR’11 82.9 68.8 60.5 63.4 42.4 82.4 63.6
Multi-source deep learning 89.3 78.0 72.0 67.8 47.8 89.3 71.0

PARSE

Method Torso U.leg L.leg U.arm L.arm head Total
Yang&Ramanan CVPR’11 81.8 65.0 55.1 46.8 37.7 79.8 57.0
Multi-source deep learning 89.1 72.9 62.4 56.3 47.6 89.1 65.6

UIUC People

Method Torso U.leg L.leg U.arm L.arm head Total
Yang&Ramanan CVPR’11 82.9 70.3 67.0 56.0 39.8 79.3 62.8
Multi-source deep learning 85.8 76.5 72.2 63.3 46.6 83.1 68.6

LSP

Up to 8.6 percent  accuracy improvement with global geometric constraints 

Presenter
Presentation Notes
 Our deep model outperforms state-of-the-art by up to 8.6 percent on three public benchmark datasets.



Experimental results

Right: Multi-source deep learning
Left: mixtire-of-parts (Yang&Ramanan CVPR’11)



General Object Detection
 Pretraining
Model deformation of object parts, which are shared across 

classes 
 Contextual modeling



Object detection
Pascal VOC

~ 20 object classes
Training: ~ 5,700 images
Testing:  ~10,000 images

Image-net ILSVRC
~ 200 object classes

Training: ~ 395,000 images
Testing:  ~ 40,000 images



SIFT, HOG, LBP, DPM …

[Regionlets. Wang et al. ICCV’13] [SegDPM. Fidler et al. CVPR’13]



With CNN features

R. Girshick, J. Donahue, T. Darrell, J. Malik, “Rich Feature Hierarchies for Accurate Object Detection and Semantic 
Segmentation,”  CVPR, 2014.



R-CNN: regions + CNN features

Input image Extract region 
proposals (~2k/image)

Compute CNN 
features

2-class linear SVM

Region: 
91.6%/98% recall rate on ImageNet/PASCAL
Selective Search [van de Sande, Uijlings et al. IJCV 2013]. 

Deep model from Krizhevsky, Sutskever & Hinton. NIPS 2012

SVM: Liblinear



RCNN: deep model training
• Pretrain for the 1000-way ILSVRC image 

classification task (1.2 million images)
• Fine-tune the CNN for detection
Transfer the representation learned from ILSVRC

Classification to PASCAL (or ImageNet) detection

Network from Krizhevsky, Sutskever & Hinton. NIPS 2012
Also called “AlexNet”

ImageNetCls Pre-Train 

Det Fine-tune



Experimental results on ILSVRC 2013



Experimental results on ILSVRC 2014

GoogLeNet
(Google)

DeepID-Net
(CUHK)

DeepInsight UvA-
Euvision

Berkley 
Vision

RCNN

Model 
average

0.439 0.439 0.405 n/a n/a n/a

Single
model

0.380 0.427 0.402 0.354 0.345 0.314



DeepID-Net: deformable deep convolutional
neural networks for generic object detection

W. Ouyang and X. Wang, et al. “DeepID-Net: deformable deep convolutional neural networks for object detection,” CVPR 
2015.



RCNN

Image Proposed 
bounding boxes

Selective 
search

AlexNet+
SVM

Bounding box 
regression

person

horse

Detection 
results

Refined 
bounding boxes



RCNN

Image Proposed 
bounding boxes

Selective 
search DeepID-Net

Pretrain, def-
pooling layer, 

sub-box, 
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RCNN



DeepID-Net



RCNN
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Deep model training – pretrain
• RCNN (Cls+Det)

– Pretrain on image-level annotation with 1000 classes
– Finetune on object-level annotation with 200 classes
– Gap: classification vs. detection, 1000 vs. 200

Image classification Object detection



Result and discussion
• Investigation

• Better pretraining on 1000 classes
• Object-level annotation is more suitable for pretraining

• Conclusions
• The supervisory tasks should match at the pre-training 

and fine-turning stages
• Although an application only involves detecting a small 

number of classes, it is better to pretraing with many 
classes outside the application

Image annotation Object annotation

200 classes (Det) 20.7 28.0

1000 classes (Cls-Loc) 31.8 36



RCNN

Image Proposed 
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Selective 
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– Learning deformation [a] is effective in computer vision society.
– Missing in deep model.
– We propose a new deformation constrained pooling layer.

[a] P. Felzenszwalb, R. B. Grishick, D.McAllister, and D. Ramanan. Object detection with discriminatively trained part based models. IEEE Trans. PAMI, 
32:1627–1645, 2010.

Deformation



Deformation Layer [b]

[b] Wanli Ouyang, Xiaogang Wang, "Joint Deep Learning for Pedestrian Detection ",  ICCV 2013.



Modeling Part Detectors
• Different parts have different sizes
• Design the filters with variable sizes

Part models Learned filtered at the second 
convolutional layer

Part models learned 
from HOG



Deformation layer for repeated patterns

Pedestrian detection General object detection

Assume no repeated pattern Repeated patterns



Deformation layer for repeated patterns

233

Pedestrian detection General object detection

Assume no repeated pattern Repeated patterns

Only consider one object class Patterns shared across different object classes



Deformation constrained pooling layer

Can capture multiple patterns simultaneously



Our deep model with deformation layer

Training scheme Cls+Det Loc+Det Loc+Det

Net structure AlexNet Clarifai Clarifai+Def layer

Mean AP on val2 0.299 0.360 0.385

Patterns shared across 
different classes
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Context modeling
• Use the 1000 class 

Image classification 
score. 

• ~1% mAP
improvement.



Context modeling
• Use the 1000-class Image classification score. 

– ~1% mAP improvement.
– Volleyball: improve ap by 8.4% on val2. 

Volleyball

Bathing cap

Golf ball
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Model averaging
• Not only change parameters

– Net structure: AlexNet(A), Clarifai (C), Deep-ID Net (D), 
DeepID Net2 (D2)

– Pretrain:  Classification (C), Localization (L)
– Region rejection or not
– Loss of net, softmax (S), Hinge loss (H)
– Choose different sets of models for different object class

Model 1 2 3 4 5 6 7 8 9 10

Net structure A A C C D D D2 D D D

Pretrain C C+L C C+L C+L C+L L L L L

Reject region? Y N Y Y Y Y Y Y Y Y

Loss of net S S S H H H H H H H

Mean ap 0.31 0.312 0.321 0.336 0.353 0.36 0.37 0.37 0.371 0.374



RCNN

Image Proposed 
bounding boxes

Selective 
search DeepID-Net

Pretrain, def-
pooling layer, 

sub-box, 
hinge-loss

Model 
averaging

Bounding box 
regression

DeepID-Net
Image Proposed 

bounding boxes

Selective 
search

AlexNet+
SVM

Bounding box 
regression

person

horse

person

horse

Box 
rejection

Context 
modelin

g
person

horse

person

horse

person

horse

Detection 
results

Refined 
bounding boxes

Remaining 
bounding boxes



Image Proposed 
bounding boxes

Selective 
search DeepID-Net

Pretrain, def-
pooling layer, 

sub-box, 
hinge-loss

Model 
averaging

Bounding box 
regression

DeepID-Net

person

horse

Box 
rejection

Context 
modelin

g
person

horse

person

horse

person

horse

Remaining 
bounding boxes

Component analysis
Detection Pipeline RCNN 

Box
rejection Clarifai

Loc+
Det

+Def 
layer 

+cont
ext 

+bbox
regr.

Model 
avg. 

mAP on val2 29.9 30.9 31.8 36.0 38.5 39.2 40.1 42.4
mAP on test 38.0 38.6 39.4 41.7



Summary
• Bounding rejection. Save feature extraction by about 

10 times, slightly improve mAP (~1%).
• Pre-training with object-level annotation, more 

classes. 4.2% mAP
• Def-pooling layer. 2.5% mAP improvement
• Contextual modeling. 1% mAP improvement
• Model averaging. 2.3% mAP improvement. Different 

model designs and training schemes lead to high 
diversity
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Outline

• Introduction to deep learning
• Deep learning for object recognition
• Deep learning for object segmentation
• Deep learning for object detection
• Open questions and future works



“Concerns” on deep learning

• C1: Weak on theoretical support (convergence, 
bound, local minimum, why it works)
– It’s true. That’s why deep learning papers were not 

accepted by the computer vision/image processing 
community for a long time. Any theoretical studies in the 
future are important.



Motivations

New objective function

New optimization algorithm

Theoretical analysis

Experimental results

Most computer 
vision/multimedia papers

Deep learning papers for 
computer vision/multimedia

Motivations

New network structure and 
new objective function

Back propagation (standard)

Super experimental results

That’s probably one of the reasons that computer vision and image 
processing people think deep learning papers are lack of novelty and 
theoretical contribution 



“Concerns” on deep learning

• C2: It is hard for computer vision/image processing people to 
have innovative contributions to deep learning. Our job 
becomes preparing the data + using deep learning as a black 
box. That’s the end of our research life. 
– That’s not true. Computer vision and image processing researchers 

have developed many systems with deep architectures. But we just 
didn’t know how to jointly learn all the components. Our research 
experience and insights can help to design new deep models and pre-
training strategies. 

– Many machine learning models and algorithms were motivated by 
computer vision and image processing applications. However, 
computer vision and multimedia did not have close interaction with 
neural networks in the past 15 years.  We expect fast development of 
deep learning driven by applications.



“Concerns” on deep learning

• C3: Since the goal of neural networks is to solve the 
general learning problem, why do we need domain 
knowledge?
– The most successful deep model on image and video 

related applications is convolutional neural network, which 
has used domain knowledge (filtering, pooling)

– Domain knowledge is important especially when the 
training data is not large enough



“Concerns” on deep learning

• C4: Good results achieved by deep learning come 
from manually tuning network structures and 
learning rates, and trying different initializations
– That’s not true. One round evaluation may take several 

weeks. There is no time to test all the settings.
– Designing and training deep models does require a lot of 

empirical experience and insights. There are also a lot of 
tricks and guidance provided by deep learning researchers. 
Most of them make sense intuitively but without strict 
proof.   



“Concerns” on deep learning

• C5: Deep learning is more suitable for industry rather 
than research groups in universities
– Industry has big data and computation resources
– Research groups from universities can contribute on model 

design, training algorithms and new applications   



“Concerns” on deep learning

• C6: Deep learning has different behaviors when the 
scale of training data is different
– Pre-training is useful when the training data small, but 

does not make big difference when the training data is 
large enough

– So far, the performance of deep learning keep increasing 
with the size of training data. We don’t see its limit yet.

– Shall we spend more effort on data annotation or model 
design?



Future works

• Explore deep learning in new applications
– Worthy to try if the applications require features or 

learning, and have enough training data
– We once had many doubts on deep. (Does it work for 

vision? Does it work for segmentation? Does it work for 
low-level vision?) But deep learning has given us a lot of 
surprises. 

– Applications will inspire many new deep models

• Incorporate domain knowledge into deep learning

• Integrate existing machine learning models with 
deep learning



Future works
• Deep learning to extract dynamic features for video 

analysis
• Deep models for structured data
• Theoretical studies on deep learning
• Quantitative analysis on how to design network 

structures and how to choose nonlinear operations of 
different layers in order to achieve feature invariance

• New optimization and training algorithms
• Parallel computing systems and algorithm to train very 

large and deep networks with larger training data



http://mmlab.ie.cuhk.edu.hk/project_deep_learning.html



Thank you!

http://mmlab.ie.cuhk.edu.hk/ http://www.ee.cuhk.edu.hk/~xgwang/
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