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Introduction
• Independent component analysis (ICA) is essential for 

blind source separation.

• ICA is applied to separate the mixed signals and find the 
independent components.

• The demixed components can be grouped into clusters
where the intra-cluster elements are dependent and inter-
cluster elements are independent.

• ICA provides unsupervised learning approach to acoustic 
modeling, signal separation and many others.
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Blind Source Separation
• Cocktail-party problem 

• Goal
−Unknown: A and s
−Reconstruct the source signals via demixing matrix W
−Mixture matrix A is assumed to be fixed.
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Independent Component Analysis

• Three assumptions
−sources  statistically independent
− independent component  nongaussian distribution
−mixing matrix  square matrix
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ICA Objective Function
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ICA Learning Rule

• ICA demixing matrix can be estimated by optimizing 
an objective function via gradient descent 
algorithm or natural gradient algorithm 
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ICA for Speech Recognition

• Mismatch between training and test data always 
exists. Adaptation of HMM parameters is important.

• Eigenvoice (PCA) versus Independent Voice (ICA) 
−PCA performs a linear de-correlation process 
− ICA extracts the higher-order statistics 
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Sparseness & Information Redundancy

• The degree of sparseness in distribution of the 
transformed signals is proportional to the amount of 
information conveyed by the transformation.

• Sparseness measurement
− fourth-order statistics (kurtosis)  nongaussianity

• Information redundancy reduction using ICA is higher than 
that using PCA.
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Eigenvoices versus Independent Voices 
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Evaluation of Kurtosis
 

0 5 10 15 20 25 30 35
5

10

15

20

25

30

35

Voice index

K
ur

to
si

s

 

 

Independent voice
Eigenvoice

APSIPA DL: Independent Component Analysis and Unsupervised Learning



13

Word Error Rates on Aurora2

K: number of components L: number of adaptation sentences
K=10 K=15
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Test of Independence
• Given the demixing signals                , the null & 

alternative hypotheses are defined as

• If y is Gaussian distributed, we are testing 
whether the correlation between       and       is 
equal to zero, i.e.                        or
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Likelihood Ratio

• LR serves as the test statistics which measures 
the confidence for       against       .

• LR is a measure of independence for
and can act as an objective 

function for finding ICA demixing matrix.
• However, it is not allowed to assume Gaussianity

for ICA problem.
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Nonparametric Approach

• Let each sample be transformed by                  .

• Instead of assuming Gaussianity, we apply the kernel 
density estimation

using Gaussian kernel

• Kernel centroid is given by
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Nonparametric Likelihood Ratio

• NLR objective function

with multivariate Gaussian kernel   
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ICA Learning Procedure

Output 
W
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• Log likelihood ratio for null and alternative hypotheses

• Maximizing               with respect to     ,     , we obtain
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ICA Objective Function

Independent Component Analysis
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Mutual Information & KL Divergence
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• Mutual information between two variables      and      
is defined by using the Shannon entropy        .

• It can be formulated as the KL divergence or relative 
entropy between the joint distribution                and 
the product of marginal distribution

where                              .



Divergence Measures
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• Euclidean divergence

• Cauchy-Schwartz divergence

• -divergence



Divergence Measures
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• f-divergence

• Jensen-Shannon divergence

where                  . Entropy is a concave function.



Convex Function

)(f : convex function
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• A convex function should meet the Jensen’s 
inequality

• A general convex function is defined by



Convex Divergence
• By assuming equal weight               , we have

• When              , C-DIV is derived as a case with 
convex function
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Different Divergence Measures
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Different Divergence Measures
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Convex Divergence ICA

• C-ICA learning algorithm

• Nonparametric C-ICA is established by using 
Parzen window density function.
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Simulated Experiments

• A parametric demixing matrix

• Two sources: super-Gaussian and sub-Gaussian
distribution

• Kurtosis
−Source 1: -1.13, source 2: 2.23
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KL-DIV

C-DIV alpha=1 C-DIV, alpha= -1 
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Learning Curves
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Experiments on Blind Source Separation

• One music signal and two speech signals from two male 
speakers were sampled from ICA’99 BSS Test Sets at 
http://sound.media.mit.edu/ica-bench/

• Mixing matrix

• Evaluation metric
−signal-to-interference ratio (SIR)
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PC-ICA NC-ICA
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Comparison of Different Methods
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• Real-world blind source separation
−number of sources is unknown
−BSS is a dynamic time-varying system
−mixing process is nonstationary

• Why nonstationary?
−Bayesian method using ARD can determine the changing number 

of sources
− recursive Bayesian for online tracking of nonstationary conditions
−Gaussian process provides a nonparametric solution to represent 

temporal structure of time-varying mixing system.

Why Nonstationary Source Separation?
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Nonstationary Mixing Systems

• Time-varying mixing matrix
• Source signals may abruptly appear or disappear
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Nonstationary Bayesian (NB) Learning

• Maximum a posteriori estimation of NB-ICA parameters 
and compensation parameters
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Model Construction

• Noisy ICA model

• Likelihood function of an observation

• Distribution of model parameters

−source

−mixing matrix

−noise
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Prior & Marginal Distributions

• Prior distributions
−precision of noise

−precision of mixing matrix

• Marginal likelihood of NB-ICA model
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Automatic Relevance Determination

• Detection of source signals

−number of sources can be determined
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Compensation for Nonstationary ICA

• Prior density of compensation parameter
−conjugate prior (Wishart distribution)
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Graphical Model for NB-ICA
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Experiments

• Nonstationary Blind Source Separation
− ICA'99  http://sound.media.mit.edu/ica-bench/

• Scenarios
−state of source signals: active or inactive
−source signals or sensors are moving: nonstationary mixing matrix 

APSIPA DL: Independent Component Analysis and Unsupervised Learning 46



Source Signals and ARD Curves
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Blue: first source signal
Red: second source signal
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Online Gaussian Process (OLGP)

• Basic ideas 

− incrementally detect the status of source signals and estimate the 
corresponding distributions from online observation data

. 

− temporal structure of time-varying mixing coefficients         are 
characterized by Gaussian process.

−Gaussian process is a nonparametric model which defines the prior
distribution over functions for Bayesian inference.
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Model Construction

• Noisy ICA model
• Likelihood function

• Distribution of model parameters
− source

− noise

−P
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Gaussian Process

• Mixing matrix
− is generated by the latent function 

− GP is adopted to describe the distribution of

− are hyperparameters of kernel function
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Graphical Model for OLGP-ICA
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Experimental Setup

• Nonstationary source separation using source signals from
−http://www.kecl.ntt.co.jp/icl/signal/

• Nonstationary scenarios
−status of source signals: active or inactive
−source signals or sensors are moving: nonstationary mixing matrix 
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Comparison of Different Methods

• Signal-to-interference ratios (SIRs) (dB)
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VB-ICA BICA-HMM Switching-
ICA

Online
VB-ICA

OLGP-ICA

Demixed 
signal 1 7.97 9.04 12.06 11.26 17.24 

Demixed 
signal 2 -3.23 -1.5 -4.82 4.47 9.96
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Summary
• We presented speaker adaptation method based on 

independent voices by fulfilling ICA perspective.
• A nonparametric likelihood ratio ICA was proposed 

according to hypothesis test theory. 
• A convex divergence was developed as an optimization 

metric for ICA algorithm.
• A nonstationary Bayesian ICA was proposed to deal with 

nonstationary mixing system.
• An online Gaussian process ICA was presented for 

nonstationary and temporally correlated source 
separation.

• ICA methods could be extended to solve nonnegative 
matrix factorization and single-channel separation.
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