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Introduction

 Independent component analysis (ICA) is essential for
blind source separation.

« ICA is applied to separate the mixed signals and find the
Independent components.

* The demixed components can be grouped into clusters
where the intra-cluster elements are dependent and inter-
cluster elements are independent.

* ICA provides unsupervised learning approach to acoustic
modeling, signal separation and many others.
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Blind Source Separation

21 (1) = aisy (1) + arzss (t) + a138@

(1)
o (t) = a9181 (t) + ageso (t) + assss (1)
(1)

(
T3 (t) = 13151 () + a3259 (t) + a3383 (t)

\l /
x=As W=A"1 y=Wx7
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Independent Component Analysis

* Three assumptions
—sources = statistically independent
— independent component = nongaussian distribution
—mixing matrix = square matrix

X = AS
Xy o X | AL o ALIISy, .. Sy
Xm1 th A\nl Anm_ Sm1 Smt
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|ICA Objective Function

Independent Component Analysis

Maximum
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ICA Learning Rule

 ICA demixing matrix can be estimated by optimizing
an objective function D(X, W) via gradient descent
algorithm or natural gradient algorithm

oD (X, W)
W) — W) !
- T owm
oD (X, W)
WrtD — W) _ ! (M Ty ()
=W e WTW
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ICA for Speech Recognition

* Mismatch between training and test data always
exists. Adaptation of HMM parameters is important.

 Eigenvoice (PCA) versus Independent Voice (ICA)
- PCA performs a linear de-correlation process
- |CA extracts the higher-order statistics

E[ee,---e,]=E[e,]E[e,]---E[e,,] uncorrelation = PCA

Ers's’...s" 1= E[s'1E[s'1... E[s". 1 higher-order correlations
[s7s; -~sw]=EIS{1E[s;] - E[sy, ] T1I"erorder &0
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Sparseness & Information Redundancy

* The degree of sparseness in distribution of the
transformed signals is proportional to the amount of
Information conveyed by the transformation.

« Sparseness measurement
—fourth-order statistics (kurtosis) = nongaussianity
kurt(s) = E[s*]/E*[s?]-3
* Information redundancy reduction using ICA is higher than
that using PCA.
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Eigenvoices versus Independent Voices

Independent voice
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Evaluation of Kurtosis

35

30t — Independent voice R 7
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Word Error Rates on Aurora2

11.5
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Test of Independence

* Given the demixing signals y = Wx | the null &
alternative hypotheses are defined as

Hy: y\WP y@ .y are mutually independent
H y(l), y(z), e ,y(d) are not mutually independent.

* If y is Gaussian distributed, we are testing
whether the correlation between % and v is
equal to zero, i.e. Xp = diag{sz} or

Hy : a?sz { (y(i) —p(i)) (y(j) —u(j)) } =0, foralli+#j.
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Likelihood Ratio

_ p(Y|Ho) _ maxuys, p(Y|s, Xp)
p(Y|H;) maxy s p(Y|p, )

ALR

* LR serves as the test statistics which measures
the confidence for H, against H; .

* LR is a measure of independence for
Y = {y1,y2,...,¥7} and can act as an objective
function for finding ICA demixing matrix.

* However, it is not allowed to assume Gaussianity
for ICA problem.
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Nonparametric Approach

* Let each sample be transformed by y: = WX .

* Instead of assuming Gaussianity, we apply the kernel
density estimation

o) = g e (L) i bt

using Gaussian kernel

1 2

p(u) = me_%

» Kernel centroid is given by " = wix, = Z’wmmo)
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Nonparametric Likelihood Ratio

* NLR objective function
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|ICA Learning Procedure

P.a.ra.m et_er ——» Centering —» Whitening
Initialization
X: — X¢— E[X] X; — D127,
Output Stopping NLR-ICA
W criterion Learning
ANLR = Ao W W+ AW

w; — wi/||wi|

* Log likelihood ratio for null and alternative hypotheses
log )\NLR = Lo(W) — Ll(W)

* Maximizing logAxLr With respect to Wyir , we obtain
AW = —n(Vw Lo(W) — Vw L1(W))
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Segment-Based Supervector

Aligned utterance

Aligned utterance

Aligned utterance

Segment-based
supervector matrix
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ICA Objective Function

o -Divergence

\/—\

Independent Component Analysis

Maximum
Likelihood

\_/_\

Kullback-
Leiblier (KL)
Divergence

\/—\

Euclidean
Divergence

\/—\

Kurtosis

\/—\\/\

Negentropy

Cauchy
Schwartz
Divergence

\/—\
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Mutual Information & KL Divergence

« Mutual information between two variables y1 and y»
Is defined by using the Shannon entropy H[-].

* It can be formulated as the KL divergence or relative
entropy between the joint distribution p(yi,y2) and
the product of marginal distribution p(y;)p(y2)

Dxv(y1,y2) = H[p(y1)] + Hlp(y2)] — H|[p(y1,y2)]

Py y2)
// ply1,y2) log p(y1)p(y2) A1y

where Dxr(vi,y2) = 0.
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Divergence Measures

» Euclidean divergence Dg(y1,y2)

/ / (p(y1, y2) — p(y1)p(Y2)) dyrdys

« Cauchy-Schwartz divergence Dcs(y1,y2)

lo g{”p(yl y2) dyrdys - ] p(y1)*p(y2)” dyldyz}
L] 2y, y2)p(3n)p(y2)dyr dys)”

« (v-divergence Dg(yi,ys, )

1_4a2//[1;ap( | 1—|2—a )

—p(y1, y2) T 2 (p(y )p(y2)) 1T/ 2] dyy dyo
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Divergence Measures

. f-divergence Df(yla ?J2)

[[rmmons (Gt ) e

» Jensen-Shannon divergence Djs(y1, y2)

H[Ap(y1,92) + (1 = N)p(y1)p(y2)]
—AH [p(y1,y2)] — (1 = A)H[p(y1)p(y2)]

where 0 < A < 1. Entropy is a concave function.
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Convex Function

* A convex function should meet the Jensen’s
iInequality

FAp(y1, y2) + (1 = A)p(y1)p(y2))
< AMf(p(y1,y2) + (L= A f(py1)p(yz2))

* A general convex function is defined by

. 4 1l —« ].—|—O.’ (1-|-a)/2
f(t)_l—o:z g T it

f(t) >0 for t >0, f(1) =0and f'(1) = 0.
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Convex Divergence

« By assuming equal weight A = 1/2, we have

1 — 2//{ [P(yl yz)+P(yl)p(y2)](1+@)f2

— [p(yhyz)“*“)/ 2+ (p(y1)p(yz))HH)/ 2] } dy, dyo.

* When « = —1, C-DIV is derived as a case with
convex function —log(-)

Dc(y1,y2,—1) = / / { { Y1, Y2) +2P(y1)p(yz)]

-5 1og(p(y1 y2)) = 5 10g(p(y1)p(y2))} dy1dys
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Different Divergence Measures

Symmetric | Convexity |Combination| Special Realization from
Divergence | Parameter | Weight other DIV
KL-DIV No no No a-DIV (a=-1)
o-DIV No a No DIV (using (6))
J-DIV No o No no
JS-DIV A=0.5 no A(convex) | C-DIV(21=0.5, a=1)
Convex-log DIV| A4=0.5 no A(convex) | C-DIV (A=0.5,a=-1)
C-DIV A=0.5 a A (convex) no
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Different Divergence Measures

035 o T T T T T
“
al§ —o— C-DIV, alpha=-1 =
& —— CS-DIV
0.25 F —s%—— alpha-DIV, alpha=1 |
0} ——  KL-DIV
2 E-DIV
& 02p g —=— C-DIV, alpha=1 §
s \ /-
g \ .z‘
% 0.15 | X i
[«}}
>
o)
0.1} i
0.05 } > |
=
0 2 e —— 1
0.2 0.35 0.4 0.45 0.5
B .y, (4, 4)
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Convex Divergence ICA

» C-ICA learning algorithm

oD (X, W)
OW ()

Wt = W) _

DC(X? w: O‘f) —

5 T ] M (1+a)/2
1 — o2 Z: {2 lz (P(Wxt) + 1__[ P(met))]

m=1

" (1+0)/2
_ |:p(th)(1-l—oz)/2 + (H p(wmxt)) :| }

m=1

* Nonparametric C-ICA is established by using
Parzen window density function.
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Simulated Experiments

* A parametric demixing matrix

cosé, sing,
W = _
cosd, sind,

* Two sources: super-Gaussian and sub-Gaussian

distribution
1
= _ 1 S
p(s1) =927, Sl p(s;) = ZZ_EXP(— sz
0, otherwise 2 2
o Kurtosis

—Source 1: -1.13, source 2: 2.23
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Learning Curves
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Experiments on Blind Source Separation

* One music signal and two speech signals from two male
speakers were sampled from ICA'99 BSS Test Sets at
http://sound.media.mit.edu/ica-bench/

* Mixing matrix

08 02 03]
A=| 03 -08 0.2
-03 07 03

 Evaluation metric
—signal-to-interference ratio (SIR)

SIR(dB) =10Ioglo(ZtT:1HStH2/ >l ‘SIHZJ
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Comparison of Different Methods

B Demixed signal 1
[T pemixed signal 2

28 1 Demixed signal 3

SIR (dB)

JADE Fast-ICA KL-ICA  C-ICA, alpha=1C-ICA, alpha=-1
ICA algorithm
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Why Nonstationary Source Separation?

» Real-world blind source separation
—number of sources is unknown
—BSS is a dynamic time-varying system
—mixing process is nonstationary

« Why nonstationary?
—Bayesian method using ARD can determine the changing number
of sources
—recursive Bayesian for online tracking of nonstationary conditions
— Gaussian process provides a nonparametric solution to represent
temporal structure of time-varying mixing system.
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Nonstationary Mixing Systems

* Time-varying mixing matrix
e Source signals may abruptly appear or disappear
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Nonstationary Bayesian (NB) Learning

 Maximum a posteriori estimation of NB-ICA parameters
and compensation parameters

o) — arg max p(Xt|9(t),n(t_1))p (0) ]
0 updating

n'") = arg max p(X: |0 mp(nlo'—)

Learning epoch t Learning epoch t+1

2] (t-1)

Mr Updating

Learning epoch t Learning epoch t+1

Prior Updating
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Model Construction

* Noisy ICA model x: = As; + &
* Likelihood function of an observation x,
p(xe| AD s 30 = N(x,|ADsD) 5(t)‘1]N)

* Distribution of model parameters

M
~source p(sx®. u 40y = T ZW()N S0l )]
k=1

m=1

—mixing matrix p(4"|a!) = H [HN ) IO,&%)_l)]

m=1 [n

—noise  p(c¢| 1) = N(=]0, 307 Iy)
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Prior & Marginal Distributions

* Prior distributions

— precision of noise  p(3"|ug, wsz) = Gam(BM|ug. ws)

M
- precision of mixing matrix p(a'”|u. w.) = || Gam(af ua, wa)
m=1

» Marginal likelihood of NB-ICA model

72
p(X)=1] /p(thﬂ(t),S(t),a(t),5(“)19(14“)|a(t))19(0ﬁ(t)\ugf)¢wg))
=1

< p(s®w® yp® ~Oyp(3® |ug) ’ W(ﬁt))dA(t)ds(t)da(t)dﬁ(t)
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Automatic Relevance Determination

* Detection of source signals

a(t) _ oo, G,Sq? = {@S?n} — 0
" <00 a%)z{agm}#o

—number of sources can be determined
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Compensation for Nonstationary ICA

G0 (@) = n®a®

* Prior density of compensation parameter
— conjugate prior (Wishart distribution)

1 (vt'=-1)/2

_Vt—lAt—l

p(rr](t)lﬁpt_l — {Vt_l,At_l})C (M, I/t_l) 5

viTl-M-2)/2 1 i
( ) = {—51;1“ (Ut—lAt—ln(t))

% |t

C(M, Vt—l) _ ( (M—1)/4 H F /2))_
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Graphical Model for NB-ICA

it /@+

e
L1
NN Mgl

N L M
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Experiments

* Nonstationary Blind Source Separation
—1CA'99 http://sound.media.mit.edu/ica-bench/

e Scenarios
— state of source signals: active or inactive
—source signals or sensors are moving: nonstationary mixing matrix

cos (27 fit)  sin (27 fot)

A —
—sin (2w fit) cos (27 fot)

fi=1/5Hz Jfo= 1/2.5 Hz
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Source Signals and ARD Curves

T T T T T T T T
0.1 —
Saurce
signal 1 0
-0.1 il |
| | | | | | | | |
35 4 4.5 5 5.5 B B.5 7 7.4 Bsec
D 1 T T T T T T T _
Source 0
signal 2
d -0.1 —
-0z

Bsec

800

Alpha
N
8

3.I5 fll fl.l5 5I 5.I5 é E.IE F!' ?.I:S
I/\I I I I/'l I I
. : /_/L'\ ! % /|\/>< %
3.5 4 4.5 5 55 6 6.5 7 7.5
Blue: first source signal
Red: second source signal

8 sec
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Online Gaussian Process (OLGP)

» Basic ideas

—incrementally detect the status of source signals and estimate the
corresponding distributions from online observation data

Y= {X(l)’X@)’... ’Xm}_

—temporal structure of time-varying mixing coefficients A*) are
characterized by Gaussian process.

— Gaussian process is a nonparametric model which defines the prior
distribution over functions for Bayesian inference.

APSIPA DL: Independent Component Analysis and Unsupervised Learning



Model Construction

* Noisy ICA model x® = A®"s®) 4 0

» Likelihood function
p(x®0) | AED gD i)y — N (x(t) |A(t?i)s(t,i)’ﬁ(t?i)_IIN)

* Distribution of model parameters

— source
p(st) [t D) A1) H Zﬂ-mk s LAt )
m=1 Lk=1
— noise

p(e®D | B) = N(e®D | 0, 3007 Iy)

td)y _ (H) (H)
—p(ﬁ( ))—Gam( Ug ", Wgs )
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Gaussian Process

* Mixing matrix
- A" is generated by the latent function f,,,(")

alt) = fnm( (ti—1,i p))

alti—li—p) _ [a(t,i—lp)a(t,i——2) - aq(,f,i,i_p)]T

nm nm

— GP is adopted to describe the distribution of f,,()

fnm(a(tz 1,i— p)) N(O F{,( (tz 1,i—p) (t*r 1,7— p)))

I nm

(t.,9)
nm ? nm 'nm 2 nm

- {Aﬁfn?,pﬁfn?} are hyperparameters of kernel function
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Graphical Model for OLGP-ICA

e s
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Experimental Setup

* Nonstationary source separation using source signals from
— http://lwww.kecl.ntt.co.jp/icl/signal/

* Nonstationary scenarios
— status of source signals: active or inactive
—source signals or sensors are moving: nonstationary mixing matrix

cos (2w fit)  sin (27 fot)

Al —
—sin (2w f1t)  cos (27 fot)

fi=1/20Hz  fo=1/10 Hz
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Criginal signal 2
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25
Mix ed signal 2

1 1 | L |

|
0.5 1 1.5 2 25 3 3.5 4 4.5 S sec
Demix ed signal 1

1
0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 sec
Demix ed signal 2
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Comparison of Different Methods

* Signal-to-interference ratios (SIRs) (dB)

Switching- Online
VB-ICA BICA-HMM ICA VB-ICA OLGP-ICA
Demixed
oy 7.97 9.04 12.06 11.26 17 .24
Demixed | 5 5 15 4.82 4.47 .96
signal 2
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Summary

« We presented speaker adaptation method based on
iIndependent voices by fulfilling ICA perspective.

* A nonparametric likelihood ratio ICA was proposed
according to hypothesis test theory.

« A convex divergence was developed as an optimization
metric for ICA algorithm.

« A nonstationary Bayesian ICA was proposed to deal with
nonstationary mixing system.

* An online Gaussian process ICA was presented for
nonstationary and temporally correlated source
separation.

* |CA methods could be extended to solve nonnegative
matrix factorization and single-channel separation.
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