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Abstract—In this paper, we present a feature enhancement
method that uses neural networks (NNs) to map the reverberant
feature in a log-melspectral domain to its corresponding anechoic
feature. The mapping is done by cascade NNs trained using
Cascade2 algorithm with an implementation of segment-based
normalization. We assumed that the dimensions of feature were
independent from each other and experimented on several
assumptions of the room transfer function for each dimension.
Speaker identification system was used to evaluate the method.
Using limited stereo data, we could improve the identification
rate for simulated and real datasets. On the simulated dataset,
we could show that the proposed method is effective for both
noiseless and noisy reverberant environments, with various noise
and reverberation characteristics. On the real dataset, we could
show that by using 6 independent NNs configuration for 24-
dimensional feature and only 1 pair of utterances we could
get 35% average error reduction relative to the baseline, which
employed cepstral mean normalization (CMN).

I. INTRODUCTION

The use of a distant-talking microphone for automatic
speech/speaker recognition (ASR) system can improve user
convenience. However, the use of reverberant signal captured
by the microphone may degrade the system performance.

Several feature enhancement approaches have been pro-
posed to deal with the reverberation problem; vector Taylor
series (VTS) [1], particle filter [2], Kalman filter [3], and
so on. Several methods assume that stereo fraining data can
be acquired. In the context of distant speaker identification,
stereo data are simultaneously recorded pairs of close-talking
and distant-talking utterances. In [4], 13 multilayer percep-
tron (MLP) NNs were trained using stereo data to map the
13-dimensional reverberant cepstral feature, where one NN
was used for one dimension of feature, to its corresponding
anechoic feature. The input of each NN was a sequence of
cepstral feature coefficients from 9 consecutive frames and
the output was a cepstral feature coefficient. For the noise
problem, SPLICE is a feature enhancement approach which
also needs stereo data [5]. It estimates the clean cepstral
feature from the noisy feature using a Gaussian Mixture Model
(GMM) of noisy feature.

Several algorithms for distant text-independent speaker
identification have been proposed, e.g. GMM, GMM-Universal
Background Model (GMM-UBM), Support Vector Machine
(SVM) [6]. Several more robust features also have been pro-
posed, e.g. modulation spectral features [7] and short segment
cepstral coefficient (SSCC) [8].

In [9], we introduced a single channel non-linear regression
based dereverberation method using a single NN for distant

speaker identification. The NN was trained on stereo data to
compensate the reverberation effect by mapping the reverber-
ant feature in a log-melspectral domain to its corresponding
anechoic feature. The log-melspectral domain was used be-
cause it gave us a compressed representation of mel-filterbank
output, which was beneficial for the NN. According to [10],
several feature enhancement approaches work better in the
log-spectral domain than in the power spectral domain. The
log-spectral domain has also a linear relation to the cepstral
domain, which is the final feature in many ASR system.

We use cascade NNs trained using Cascade2 algorithm,
which is a variation of Cascade-Correlation (CasCor) algo-
rithm [11]. Comparing to MLP, CasCor family does not have
the issue of deciding the number of layers and hidden neurons
to use in NN before the training. Cascade2 is used because it
uses error minimization instead of covariance maximization,
so it is suitable for our regression task.

In this paper, we extend the method to the use of multiple
NNs by modifying our assumptions about the room transfer
function for each dimension of log-melspectral feature. We
also show how the difference of assumptions affects the
performance of distant speaker identification system, which
used MFCC-based speaker-specific GMMs as the speaker
models [12], by using limited stereo data. We believe that
the use of CasCor and the possibility of using limited stereo
data increase the feasibility of our method.

II. REVERBERATION MODEL

The relation between anechoic and reverberant signal in
log-melspectral domain should be represented as a non-linear
model [3]. However, for simplicity, we defined it as
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where s;(t) and y;(t) represent the log-melspectral co-
efficients of anechoic and reverberant signal, respectively,
for feature dimension j and frame index t [13]. While,
00,051, -, N represent the room transfer function (RTF)
for feature dimension j.

Then, the estimated anechoic coefficient §;(¢) could be
expressed as
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Segment-based normalization

Fig. 1. The proposed method.

where 0, 08j,1,--.,0j,1 denotes the weights which are used
to compensate the RTF and L denotes the number of past
frames in the segment.

As can be interpreted from Eq. (2), we assumed that the
dimensions of feature are independent from each other and
certain dimension of reverberant coefficient is only affected
by the same dimension of past and current coefficients. We
also assumed that the RTFs for every dimension are different.
It is an extension of the model we used in [9], where we
assumed that the RTFs for all dimensions are the same.

III. DEREVERBERATION METHOD

_ In matrix form, Eq. (2) could be written as S = BY, where
S denotes the estimated anechoic feature vector, Y denotes
the supervector which consists of reverberant feature vectors,
and B denotes the transformation matrix which represents the
RTF compensation. Then, a regression using NN is done to
determine the function B such that argming|S — (B®Y)|?,
where ®@ denotes a non-linear transformation.

Fig. 1 shows the block diagram of our proposed method.
The inputs are y(t),y(t — 1),...,y(t — L), which are current
and past reverberant log-melspectral coefficient vectors. The
output is §(t), which is the estimated current anechoic log-
melspectral coefficient vector.

Segment-based normalization (Eq. (4)) is employed to deal
with the power difference between the anechoic speech signal
and the reverberant signal captured by a distant-talking mi-
crophone. In the NN training stage, it is done by normalizing
the current reverberant feature vector and the current anechoic
feature vector (which is the target of training) to the normal-
ization target. Besides, it is employed to preserve the power
envelope of NN input segment, by normalizing the past frames
relative to the current frame.
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git—k)=y;(t —k)+d(t), forj=1,2,...,D,

for k=0,1,...,L, “)
where d(t) is the normalization factor, ~ is the normalization
target, D is the number of feature dimensions, and ¥; (t) is the
normalized log-melspectral coefficient for feature dimension j
and frame index ¢.

The mean of NN output 5(¢) should be equal to the
normalization target, because we also normalize the target of
NN training. Therefore, we use un-normalization (Eq. (5)) to
return it to its original mean of power. We showed how the
un-normalization improved both non-speech and speech parts
of utterance in [9].

8;(t) = 5;(t) — d(t) (5)
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Fig. 2. The cascade NN architecture used in this work.

HIDDEN NETWORK
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In general, the scaling and de-scaling can be regarded as the
pre-processing and post-processing, respectively, of NN. The
scaling is done so that the NN input and output have value
range of (-1, 1). In contrast, the de-scaling is used to recover
the log-melspectral coefficient value from its scaled value.

Fig. 2 shows an illustration of NN we used in our works,
with N input neurons, M hidden neurons/layers, and 1 output
neuron. We use the implementation of Cascade2 algorithm
with RPROP weight update algorithm in FANN library' [14].
A linear activation function is used for the output neuron,
while the hidden neurons use a symmetric sigmoid (tanh)
function. We set the maximum number of hidden neurons to
be equal to twice of the input neurons (M < 2N). Therefore,
the NN is quite compact, e.g. for 8-frame frame selection, we
use 8 input, 16 hidden, and 1 output neurons.

Beside ’linear’ frame selection represented by Eq. (2), we
also defined ’skip1” selection by using y;(t — 2k) instead of
y;(t — k). The use of ’skipl’ frame selection can be regarded
as dimensionality reduction by minimizing the redundant parts
caused by the windowing. Therefore, we could get a represen-
tation of longer context using smaller number of frames, which
is beneficial for the NN training.

IV. EXPERIMENTS AND DISCUSSION

For evaluation, we implemented the proposed method into
a speaker identification system. The dereverberation was done
on a 24-dimensional log-melspectral feature domain. The dere-
verberation result was transformed to 12-dimensional melcep-
stral feature, normalized using CMN, and then used as the in-
put of identification system. The system used speaker-specific
GMMs as the speaker models, in which each speaker was
modelled using a 32-mixture GMM. Voice activity detection
(VAD) was also employed to remove the silence parts in the
beginning and ending of recordings. All duration information
written below excluded these silence parts. For the feature
extraction, 25 ms Hamming window with 10 ms shift is used.

Using the simulated data experiment results, we show the
effect of frame selection type and number of training data to
the system performance for reverberant and noisy reverberant
data. Using the real data experiment results, we show the effect
of RTF assumption, which is related to the number of NN.

Thttp://leenissen.dk/fann



A. Simulated Data

The speech data of 100 male speakers from JNAS database
[15] were used in the experiments. In average, each speaker
has 105 utterances. The room impulse response (RIR) and
noise data were taken from Aurora-52, while the simulation
program was SImulation of REal Acoustics (SIREAC)? [16].

The GMMs for the speaker identification system was trained
using randomly selected 500 clean utterances (100 speakers;
5 utterances for each speaker). The average duration of the
utterances was about 3 seconds. CMN and VAD was employed
as pre-processing of GMM training data.

A pool of training data was created for each type of
simulated (noisy) reverberant data. This pool of data consisted
of randomly selected 25 pairs of clean utterance and simulated
(noisy) reverberant utterance. The average duration of the ut-
terances was about 7 seconds. From this pool of training data,
1-utterance (”1u”), S-utterance (”5u”), 10-utterance (”10u”),
and 15-utterance (”15u”) NN training datasets were created.

A testing dataset was created also for each type of simulated
(noisy) reverberant data. Each dataset consisted of randomly
selected 1000 simulated (noisy) reverberant utterances (100
speakers; 10 utterances for each speaker). The average duration
of the utterances was about 5 seconds.

The baseline for each type of simulated (noisy) reverberant
data is shown in Table I. The identification rate for the clean
version of testing dataset was 98.0%. Note that we can regard
this baseline as the result of enhancement using CMN.

Table II and Table III are the result of experiments using
the model we proposed in this paper, where we used 1 NN
for each dimension of feature, in total 24 NNs. The italic text
in the table means that it is better than the baseline. The bold
text represent the best rate for certain RIR characteristic (type,
T60, noise) and amount of training data. Overall, by using our
proposed method, we could improve the speaker identification
rate for the reverberant and noisy reverberant data. For small
T60, we could get improvement using short context (4-frame
linear) and only 1 pair of utterances. For bigger T60, it is
necessary to use longer context and also use more training data
(pairs of utterancess). Therefore, we prefer using 8 frames as
the NN input so that the method is still feasible when there are
only limited stereo data available. The results show that skipl
frame selection tends to give better improvement than linear
frame selection, especially for the reverberant data. While for
the noisy reverberant, linear frame selection showed better
performance. The average error reduction rate (ERR) for 8-
frame skipl frame selection trained using 5 pairs of utterances
was 20.4%, while for 8-frame linear was 19.2%.

B. Real Data

All speech data used in the experiments were recorded in a
recording room whose dimensions were about 5 x 6.4 x 2.65
m. There was no material that was intentionally installed to
reduce reverberation or noise, except the materials of micro-
phone arrays that were used to place the microphones. The
reverberation time and background noise were approximately
330 ms and 35 dBA, respectively, measured from the middle of
the room. The recording process was done using a 32-channel

Zhttp://aurora.hsnr.de/aurora-5.html
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recording system with 16 kHz sampling rate. A more detailed
explanation about the room can be found in [13].

In the experiments, we used two different datasets which
were also used in [9]. Both datasets were recorded in the
recording room as described above. These datasets consisted
of close-talking utterances, which were recorded from the
distance of 25 cm, and distant-talking utterances, which ut-
tered from five different positions (PO1-PO5) and captured
by eight microphone arrays. However, in the experiments,
we only considered utterances from P01, P02, and P05, that
was captured by the first microphone of microphone array
A (hereafter, referred as Al). PO1, P02, P05, and Al were
in-line and the speakers’ utterances were directed to Al. The
distance between PO1-A1, PO2-A1 and PO5-A1 were about 4.1
m, 2.6 m and 1.6 m, respectively. Theoretically, the Direct-to-
Reverberant Ratios (DRRs) of these distant-talking recordings
were small because the distances were greater than the critical
distance for the room, which is around 0.9 m.

The first dataset was a stereo dataset, which contained
one session of three speakers’ recordings where each speaker
uttered 10 utterances from each position. Although they were
recorded from the distance of 25 cm, we regarded the close-
talking utterances as our clean speech signals and tried to map
the distant-talking utterances to close-talking utterances using
NN. The NN training datasets were created for each position
and consisted of the first 1 or 5 pairs of utterances from each
speaker. The average duration of the training utterances was
about 6.3 seconds. We defined three kinds of dataset, i.e. 1-
utterance ("1u”; 1 pair of utterances), 1-speaker (’1s”; 5 pairs),
and 3-speaker (”3s”; 15 pairs).

The second dataset was a non-stereo dataset, which con-
tained two sessions of 20 speakers’ recordings where each
speaker uttered 10 utterances from each position in each
session. The GMMs for the speaker identification system was
trained using 10 close-talking utterances for every speaker
(2 sessions; the first 5 utterances from each session). The
testing dataset consisted of 200 distant-talking utterances (20
speakers; the second 5 utterances from each session for each
speaker) for each position.

The baseline for the position PO1, P02, and P05 are 84.0%,
93.0%, and 91.5%, respectively. In addition, the identification
rate for the close-talking version of testing dataset was 99.5%.

Similar to the experiment results using the simulated data,
the multiple NNs showed better performance for the big
datasets (”3s”), but worse for the small datasets (’1s”, ”1u”).
Therefore, we tried to look for a good performance trade-off
for all datasets by using modified multiple NNs configuration,
where 1 NN is used for more than 1 dimension of feature.
In our experiments, the number of dimension in each NN
was divided evenly. For example, in 6 NNs configuration,
the 1st NN is for the dimension 1-4 of 24-dimensional log-
melspectral feature, 2nd NN is for 5-8, and so on. It means
that we assumed that the RTF for the dimension 1-4 is the
same, the RTF for the dimension 5-8 is the same, and so on.

Table IV shows our best experiment results among the
frame selection types. ”1 NN represents the single NN con-
figuration [9] and ”24 NNs” represents the original multiple
NNs configuration. We found that the 6 NNs configuration
gave us the best trade-off. Comparing to 1 NN, it improved
the performance of “1s” and “lu” datasets. Surprisingly,



TABLE I
The baseline for experiments using simulated data.

RIR Speaker Identification Rate (%)

Type T60 Reverb Noisy Reverberant
P (ms) " [ SNR=20dB | SNR=10dB

office 300 81.0 60.3 234

400 74.3 55.3 20.6

livineroom 400 70.9 N/A N/A

Eroom 1500 | 629 N/A N/A

TABLE II

The results of experiments using simulated reverberant data on multiple
neural networks configuration.

RIR Frame Selection | Spk. Identification Rate (%)
Type [ Num. lu [ 5u [ I0u [ I5u
4 831 | 852 | 84.9 | 86.2
g | linear 8 749 | 864 | 882 | 88.4
=) 16 440 | 77.1 | 84.0 | 86.5
& ) 4 86.0 | 368 | 865 | 87.0
I skipl

2 8 70.1 | 87.1 | 88.8 | 88.8
3 4 739 77.4 78.0 | 77.5
g linear 8 636 | 80.3 | 81.9 | 82.3
= 16 357 | 68.7 | 79.7 | 81.3
¥ skipl 4 78.0 | 80.0 | 79.7 | 80.2
8 636 | 81.6 | 82.8 | 84.3
4 644 | 71.1 | 70.8 | 71.5
g | linear 8 56.1 | 77.0 | 79.4 | 79.8
=) 16 276 | 613 | 73.2 | 76.7
g ? . 4 682 | 746 | 744 | 74.8
8 skipl 8 | 442 | 757 | 794 | 80.3

g . . . .
g 4 549 1 609 | 61.8 | 61.2
& g | linear 8 454 | 682 | 70.8 | 71.0
o 16 20.1 54.1 67.4 72.8
b ol Z 602 | 681 | 65.9 | 63.8
skip 8 355 | 703 | 73.4 | 74.9

comparing to 24 NNs, it also improved the performance of
”3s” dataset. The average ERR for ”3s”, ”1s”, and ”1u” were
50.9%, 45.6%, and 35.0%, respectively. In addition, we could
get better performance for ”3s” dataset by using 12 NN,
where its average ERR was 53.9%.

For limited number of stereo data, the 6 NNs and 12 NNs
configurations could perform better than 24 NNs because they
had more training data for each NN, e.g. the NNs in 24 NNs
were only trained using the data from one dimension, but
the NNs in 6 NNs were trained using the data from four
dimensions. It will not result the best RTF compensation for a
certain dimension, but it might prevent the overfitting problem
caused by the lack of training data. Therefore, if there are
enough stereo data available, 24 NNs is a very reasonable
choice because the RTFs, which are represented by the NN,
should be frequency-dependent. That is also why the use of 1
NN is not good enough.

V. CONCLUSIONS

We presented a feature enhancement method that used cas-
cade NNs to map the reverberant feature in the log-melspectral
domain to its corresponding anechoic feature. Although the
modelling aimed to suppress the reverberation effect, the
method was also effective to be used in a noisy reverberant
environment. By using only limited stereo training data, the
method could improve the speaker identification rate. Using
the real reverberant dataset, we could get 35% average ERR,
relative to the baseline (CMN)), for 20 speakers by using 6 NNs
configuration and only 1 pair of utterances. Our future work
will focus on omitting the need of stereo data and developing
an unsupervised approach.

TABLE III

The results of experiments using simulated ”office” noisy reverberant data

[1]

[2]

[6]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

on multiple neural networks.

Q| Frame Selection | Spk. Identification Rate (%)
& | & [ Type [ Num. Tu [ 5u [ 10u [ 15u
» | & | linear 8 483 | 668 | 69.4 | 70.0
E | g [ skipl 8 416 | 67.3 | 67.7 | 694
S [ & [ Tinear 8 174 | 362 | 40.7 | 415

S [ skipl 8 151 | 37.7 | 389 | 4.5
» | & | linear 8 468 | 61.9 | 642 | 65.7
E | g [ skipl 8 336 | 61.6 | 62.0 | 63.9
S [ G | Tinear 8 203 | 35.7 | 39.0 | 40.5

S [ skipl 8 161 | 331 | 37.8 | 39.0

TABLE IV

The speaker identification rate of experiments using real data.

NN Dataset Spk. Identification Rate (%)
Conf. PO1 [ P02 [ P05 [ Avg.
3s 90.0 | 953 | 935 92.9

1 NN Is 89.6 | 950 | 93.5 92.7
lu 89.1 944 | 933 92.3

3s 923 | 98.0 | 94.0 94.8

6 NNs Is 91.7 | 974 | 93.7 94.3
lu 90.5 | 96.1 | 932 93.3

3s 92.8 | 98.0 | 94.5 95.1

12 NNs Is 90.7 | 96.9 | 944 94.0
lu 89.3 | 954 | 934 92.7

3s 92.2 | 96.7 | 94.0 94.3

24 NNs 1s 88.8 | 952 | 934 92.5
Iu 86.9 | 936 | 924 91.0
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