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Abstract—We propose a robust voice activity detection (VAD)
based on density ratio estimation. In highly noisy environments,
the likelihood ratio test (LRT) is effective. Conventional LRT
estimates both speech and noise models, calculates the likelihood
of each model, and uses ratios of such likelihood to detect
speech. However, in LRT, the likelihood ratio of speech and noise
models is required, whereas likelihood of individual models is not
necessarily required. The framework of the density ratio estima-
tion models likelihood ratio functions by a kernel and directly
generates a likelihood ratio. Applying density ratio estimation
to VAD requires that feature selection and noise adaptation
must be considered. This is because the density ratio estimation
constrains the shape of the likelihood ratio functions and speech
is dynamic. This paper addresses these problems. To improve
accuracy, the proposed method is combined with conventional
LRT. Experimental results using CENSREC-1-C show that the
proposed method is more effective than conventional methods,
especially in non-stationary noisy environments.

I. INTRODUCTION

Voice activity detection (VAD) is an essential pre-process
in speech processing. Determining the speech area effectively
reduces error recognition and the adjustment of the strength
of noise suppression in noisy environments. The most basic
VAD, which assumes that the power of speech is usually
greater than that of noise [1], is ineffective in highly noisy
environments where speech is masked by noise. The use of the
characteristics of speech, e.g., the periodic structure of speech
[2], is susceptible to noise [3]. The use of decoder output is
effective but computational costs are high [4].

A simple and effective model-based method called the
likelihood ratio test (LRT) is effective in highly noisy en-
vironments. Even if the power of speech is lower than that
of noise, the likelihood of the speech model is greater than
that of noise model because the characteristics of speech are
available. Sohn et al. proposed using the likelihood ratio of
speech and noise models after estimating both models from
observation to detect speech [5].

Among methods [3], [6], [7] that improve Sohn’s method,
Fujimoto et al. proposed constructing speech models by syn-
thesizing a priori clean speech and observed noise at each
frame and constructs a noise model by using observed noise
to calculate the likelihood ratio of these models [3]. This
outperforms Sohn’s method, especially in noisy environments,
mainly by on-line estimation of models. However, Sohn’s
method remains an important benchmark of LRT-based VAD
and, currently, many comparisons have been made with Sohn’s
method.

The common point of the above methods is calculating
the likelihoods of speech and noise models, respectively, and
using the ratio of likelihood to determine whether individual
frames are speech or noise. The noise model is estimated from
observation and the speech model is estimated by maximum
likelihood [5] or by clean speech in advance [3]. In LRT,
however, if the likelihood ratio of speech and noise model
is estimated directly, the likelihood of individual models is
not required.

In the field of machine learning, Sugiyama et al. have
recently proposed estimating the probability density ratio of
two probability distributions directly without estimating their
probability densities [8]. This directly models the density ratio
function by using a kernel and estimating its parameters from
training data, and calculates the likelihood ratio directly, which
is effective in change-point detection tasks [9].

There are two problems in applying density ratio estimation
to VAD: feature selection and noise adaptation. This is because
density ratio estimation puts constraints on feasible features
due to the shape of the kernel and speech is dynamic. This
paper addresses these problems and proposes a method that
directly estimates the likelihood ratio for VAD. To use the
advantages of conventional LRT and the proposed method,
the systems of different features and models are combined.
Conventional LRT is introduced in Section II and density ratio
estimation in Section III. The proposed method is described
in Section IV.

II. CONVENTIONAL LRT (SOHN’S METHOD)

One of the simplest and most effective conventional LRT
methods [5] is described here. The KX -dimensional short-
time Fourier transform coefficients of observation is X =
{Xk}KX

k=1. The likelihood of the power spectrum |Xk|2 con-
ditioned on the speech model λS and the noise model λN are
assumed to be represented as independent Gaussian distribu-
tions, as in Eq. (1):
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1
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where vSk and vNk are the variance of speech and noise
spectrum, respectively. The log likelihood ratio of speech and



noise at the kth dimension is represented as

Λk(Xk|λS , λN ) = ln
p(Xk|λS)

p(Xk|λN )
. (2)

The geometric mean of the likelihood ratio is used to deter-
mine whether individual frames are speech or noise as

Λ(X|λS , λN ) =
1

KX

KX∑
k=1

Λk(Xk|λS , λN )
HS

≷
HN

η, (3)

where if Λ(X|λS , λN ) is greater than the threshold η, this
frame is considered to be HS ((noisy) speech state), and
otherwise HN (noise state). The noise model is estimated in
advance by observed noise, and the speech model is estimated
by maximum likelihood estimation, i.e., ∂Λk(Xk)/∂λ

S
k = 0,

which results in relationship vSk = |Xk|2 − vNk . This shows
that speech model λS

k is estimated assuming that speech and
noise power are additive.

III. DENSITY RATIO ESTIMATION (KLIEP)

Probability density ratio q for sequential data y is defined
as

q(y|λn, λd) =
p(y|λn)

p(y|λd)
, (4)

where p is the probability density function of y conditioned on
numerator model λn and denominator model λd, respectively.
Here, we assume that training data are labeled as yn =
{yn(i)}Ii=1 and yd = {yd(j)}Jj=1 for models λn and λd,
respectively. It is known that simple kernel density estimation,
which estimates the density ratio function using statistics of
yn and yd separately1, results in low estimation accuracy [9].

The Kullback-Leibler Importance Estimation Procedure
(KLIEP) [8], in contrast, directly models density ratio model
λr instead of λn and λd. This improves the robustness of
density ratio calculation. The density ratio is modeled as linear
model q̂(y) which consists of M mixture kernels φm, as in
Eq. (5):

q̂(y|λr) =
p̂(y|λr, λd)

p(y|λd)
=

M∑
m=1

αmφm(y) =

M∑
m=1

αme−
|y−µr

m|2

2vr ,

(5)
where αm is a non-negative mixture weight and φm is a
Gaussian kernel whose parameters are µr

m and vr, which are
the center and width of a kernel, respectively. A Gaussian
kernel requires that the density ratio function takes larger
values at the point where many samples from yn converge,
but otherwise takes smaller values close to zero.

Here, µr
m, vr, and αm are unknown variables that are

estimated in the following four steps:
1) Some kernel widths vr are set arbitrarily.
2) M samples from yn are picked as {µr

m}Mm=1.
3) Mixture weight αm is obtained by solving the optimiza-

tion problem shown below.

1For example, after assuming two Gaussian kernels and estimating these
parameters from each sample yn and yd, the ratio of these density functions
is calculated [10].

4) The appropriate value of vr is determined by n-fold
cross validation.

In KLIEP, αm is determined as the KL divergence of a
sample y from p(y|λn) to p̂(y|λr, λd) is minimized, where
p̂(y|λr, λd) is the numerator estimated density represented by
q̂(y|λr)p(y|λd). KL divergence L is represented as

L
(
p(y|λn); p̂(y|λr, λd)

)
=

∫
D
p(y|λn) ln

p(y|λn)

p(y|λd)
dy

−
∫
D
p(y|λn) ln q̂(y|λr)dy,

(6)

where D is a data domain. Since p̂(y|λr, λd) is a probability
density function, constraint must be satisfied as∫

D
p̂(yn|λr, λd)dyn =

∫
D
q̂(yd|λr)p(yd|λd)dyd = 1. (7)

To minimize KL divergence, the second term of Eq. (6) is
minimized under the constraint in Eq. (7) because the first
term on the right side of Eq. (6) is constant for αm. The
optimization problem in Eq. (8) is obtained by substituting
a sample mean for an expectation of the second terms of
Eq. (6) and Eq. (7). Solving the optimization problem requires
only labeled features yn and yd and thus does not require
information on λn and λd. This problem is a convex optimiza-
tion problem because αm is non-negative and reaches global
optimization by gradient descent and constraint satisfaction.
Optimized solutions tend to be sparse, that is, some αm values
are zero. This property is effective in reducing computational
costs.

arg min
{αm}M
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[
−

I∑
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)]
,
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M∑
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αm

 1

J

J∑
j=1

φm(yd(j))

 = 1.

(8)

IV. APPLICATION OF DENSITY RATIO ESTIMATION
(KLIEP) FOR VAD

The density ratio estimation is applied to the VAD problem
by substituting variables into Eq. (5) as

y ← Yk, q̂ ← Λ̂k, (9)

where Yk is a component of the KY -dimensional feature
vector Y = {Yk}KY

k=1 and Λ̂k is a likelihood ratio conditioned
on density ratio model λr obtained by the above procedure2.
Speech is detected as

Λ̂(Y |λr) =
1

KY

KY∑
k=1

Λ̂k(Yk|λr)
HS

≷
HN

η. (10)

There are two problems in applying the above KLIEP to
VAD: the feature selection and the noise adaptation. This is
because density ratio estimation puts constraints on feasible
features due to the shape of the kernel and speech is dynamic.
First, we consider feature selection. Features are assumed to

2We refer to a Matlab R⃝ code [11] when implementing model learning.



be independent at each dimension. Features are certainly cor-
related across feature dimensions, but use of a full covariance
matrix requires extremely large computational costs. Thus, the
density ratio function is estimated at each dimension. Training
data need to be labeled as speech and noise. The estimation
performance of KLIEP is high when the variance of the de-
nominator distribution vd is greater than that of the numerator
distribution vn, because the value of the density ratio function
is unstable when the denominator value is small and the
numerator value is large. If, for example, denominator and
numerator distributions are represented as Gaussians kernels
(exp(−|y−µd|2/2vd) and exp(−|y−µn|2/2vn)), the density
ratio function is represented as exp(−|y − µr|2/2vr) where

µr =
vdµn − vnµd

vd − vn
, vr =

vnvd

vd − vn
.

In this case, estimation is only stable when vd is greater
than vn. Otherwise, vr is negative. Power often satisfies this
requirement because the dynamics of noise is greater than that
of speech in the long term whereas the MFCC feature, which
is normally used for ASR, does not necessarily satisfy this
requirement. In fact, in the case of MFCC, the estimation
accuracy of the density ratio function is low as shown in
Section V-B. We propose to use a log power spectrum as
Y = ln |X|2 for the feature because the range of a ‘raw’
power spectrum is too large to be represented by a linear
model.

Second, we consider the adaptation of a model. There is a
mismatch between training and evaluation environments due
to noise diversity. Adaptation of a model is effective because
speech and noise are dynamic [12]. For both Sohn’s method
and the proposed method, it is necessary to adjust the mean
of features because these methods assume a relative power
difference between speech and noise. It is clearly shown that,
even for the same speech, the boundary of speech and noise
shifts if microphone gain changes. Sohn’s method avoids this
mean shift effect by using variance as a model. The proposed
method equates the mean and variance of noise during first
NN frames with those of training noise to adapt noise. The
on-line adaptation of a model, e.g., [3], [13], is a future work.

As [3] mentioned, combining different features and models
is effective. Here, the proposed method is combined with
Sohn’s method to exploit the advantages of both. Two like-
lihood ratios are combined as

Λ′′ = γΛ′(X|λS , λN ) + (1− γ)Λ̂′(Y |λr), (11)

where Λ′ and Λ̂′ are likelihood ratios normalized by the max-
imum value of Λ and Λ̂ during utterance and γ is the constant
weight of the two systems, which weighs the importance on
either system (γ = 0: Sohn’s method and γ = 1: proposed
method). VAD is performed using the obtained likelihood ratio
Λ′′

V. EXPERIMENTS

A. Experimental setup

The proposed method was evaluated using the CENSREC-
1-C database [14], [15], which is commonly used for eval-
uating VAD in noisy environments. Evaluation data were
recorded in two real environments: ‘RESTAURANT’ (speech
and foot noise: non-stationary) and ‘STREET’ (traffic noise:
stationary), with two different SNRs (‘HIGH’ and ‘LOW’).
Each file consisted of 8-10 utterances, which were 1-12
digit numbers. The sampling frequency was 8 kHz and the
dimension, the window length and the frame shift of short-
time Fourier transform were 256, 25 ms and 10 ms, respec-
tively. Feature dimensions KX and KY were 129, considering
symmetry. Performance was evaluated in terms of the correct
and accuracy rate [%].

We compared results for the proposed method to those of
two conventional methods: a power-based method attached
to CENSREC-1-C as a baseline (similar to [1]) and Sohn’s
method in Section II. Some methods that use on-line adap-
tation for noise certainly outperform Sohn’s method because,
for this database, noise adaptation is effective due to the long
files which contain multiple utterances with changing noise.
However, Sohn’s method is still an LRT based benchmark
among methods without on-line adaptation and the proposed
method does not use on-line adaptation.

The first 10 (= NN ) frames were used to construct a
noise model for Sohn’s method and to adapt the mean and
the variance of a background noise for the proposed method.
Thresholds η were optimized among some candidates. The
density ratio model was trained using CENSREC-4 database
[15], including eight types of reverberation and noise with
SNRs {5, 10, 20, 25, 30} [dB], which were totally different
from CENSREC-1-C. They were down-sampled to 8 kHz from
16 kHz. The number of training data was 16000 (160 seconds)
for speech and noise data, respectively. The number of kernels
was 20 (= M). The width vr was determined by 5-fold
cross-validation. The weight γ for system combination was
0.3 (turned on the preliminary experiments).

B. Results and discussions

Fig. 1 (a) shows the distributions of the 15th dimension
(which approximately equals to 500 Hz and includes rich
information of speech) of the log power of speech and noise
and a density ratio function obtained by KLIEP, where there
are 13 non-zero αm. This shows that KLIEP estimated a
density ratio function for VAD. On the other hand, Fig. 1 (b)
shows the distributions and a density ratio function of the 1st

dimension of MFCC. Here, because vd is apparently much
smaller than vn, the density ratio function does not satisfy
KLIEP requirements. The estimated function shape is flat and
cannot discriminate between speech and noise.

Table I shows that the proposed method improves the aver-
age correct rate by 28.6% from the CENSREC baseline and
6.0% from Sohn’s method, and improves the average accuracy
rate by 74.8% and 8.5%, respectively. The proposed method
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Fig. 1. Histogram of (a) the log power (15th dimension) and (b) MFCC (1st
dimension) of speech and noise and probability density ratio (dratio).

TABLE I
CORRECT AND ACCURACY RATES[%] OF THE PROPOSED METHOD (PROP)

AND SYSTEM COMBINATION (COMB) COMPARED TO THOSE OF THE
CENSREC-1-C BASELINE (BASE) AND SOHN’S METHOD (SOHN) IN

TERMS OF ENVIRONMENTS (RESTAURANT AND STREET) AND SNR
(HIGH (H) AND LOW (L)).

Correct Accuracy
base Sohn prop comb base Sohn prop comb

RESTRANT H 74.2 73.0 89.0 81.2 21.5 41.5 67.0 57.1
L 56.5 59.4 63.5 57.4 -43.5 13.9 15.9 24.6

STREET H 39.4 94.2 91.0 95.7 -15.7 86.1 82.6 92.5
L 41.5 75.4 82.6 86.1 -33.9 52.2 62.0 74.8

Average 52.9 75.5 81.5 80.1 -17.9 48.4 56.9 62.3

outperforms the conventional methods for ‘RESTAURANT’,
which is non-stationary noise. This shows that the density
ratio model is more robust in mis-estimating the model than
Sohn’s model. The system combination, moreover, improves
the accuracy rate by 13.9% from Sohn’s method. Sohn’s
method is effective in stationary noise, therefore the system
combination exploits the advantages of both Sohn’s method
and the proposed method.

Fig. 2 (a) and (b) show the likelihood ratio calculated by
Sohn’s method and the proposed method, respectively, under
the condition of RESTAURANT(HIGH). The likelihood ratio
of the proposed method remains stable at low during the non-
speech area. Because noise is non-stationary, Sohn’s noise
model obtained by using the first 10 frames mismatches actual
noise and generates high likelihood ratios that lead to a false
detection. The proposed method is more robust than Sohn’s
method for mis-estimation by using a density ratio model.

VI. CONCLUSIONS AND FUTURE WORK

We proposed a voice activity detection method based on the
density ratio estimation. Experiments show that the proposed
method is more effective than conventional methods, espe-
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Fig. 2. Likelihood ratio of (a) Sohn’s method and (b) the proposed method
(RESTAURANT(HIGH)).

cially under non-stationary noisy environments. Future work
lies in finding new features that are effective in density ratio
estimation and on-line adaptation of a model.
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