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Abstract—Although quite a few 3D shape descriptors have
been proposed for more than a decade, 3D shape retrieval
has remained a still challenging research. No single 3D shape
descriptor has been known to outperform all the different types
of 3D shape geometries. In this paper, we propose a new 3D
shape descriptor that focuses on 3D mechanical parts having
holes and surface roughness by using Fourier spectra computed
from multiple projections of distinct images.

Our proposed method makes it possible to explore potential
real applications of 3D shape retrieval to manufacturing indus-
tries where the cost reduction of creating a new 3D shape from
scratch is greatly appreciated.

Our method explicitly attempts to extract holes and surface
roughness, as well as contours, lines, and circular edges as
our proposed features from multiple projections of a given 3D
shape model, and use them to retrieve 3D shape objects. We
demonstrate the effectiveness of our method by using several 3D
shape benchmarks, one of which is composed of many mechanical
parts, and compare our proposed method with several previously
known methods. The results are very encouraging and promising.

I. INTRODUCTION

3D shape retrieval has become popular for more than a
decade, ever since Osada et al [1] published their work on
shape distributions. More and more 3D data are available on
the Internet as well as inside allied companies for manufac-
turing, architectural planning, medical treatment, education,
entertainment, and many other miscellaneous purposes. Yet
no single 3D shape descriptor to date has excelled proposed
descriptors, given arbitrary collections of 3D shape models.

In this paper, we propose a 3D shape descriptor suited
to search 3D mechanical parts, having holes and surface
roughness. Holes are literally the holes often observed in small
mechanical parts. Surface roughness represents the convexities
and concavities of the surface that might account for sudden
intensity variations, when rendering, located inside the contour
of the projected shapes.

In what follows, we first describe related work in the
next section. We then introduce our new features focused
on holes and surface roughness. Specifically, we describe
five base feature images, including Contour, Hole, Surface
Roughness, Line, and Circle images, and how we generate
them, followed by when and how Fourier transform is applied
to compute our composite feature vector. Subsequently we
introduce the dissimilarity computation under the assumption
of our proposed features. Finally, we demonstrate our method

through experiments in Experiment and Evaluation section,
and summarize our results in the Conclusion.

II. RELATED WORK

Research on 3D shape retrieval has gained much popularity
these days, ever since Osada et al [1] published one of
the pioneering studies on 3D shape retrieval. Among their
proposed models, D2 (a shape descriptor based on the his-
togram of distances between random two points on the surface)
has served as a “Baseline” method for 3D shape retrieval.
Kazhdan et al [2] propose a method in which a 3D shape
is first transformed into a voxel representation, and then the
voxel data is transformed into a power spectrum by means of
spherical harmonics called a Spherical Harmonic Descriptor
(SHD). The above two methods are just examples of 3D shape
descriptors that have rotational invariance.

To achieve similar effects, there have been approaches to
define features by rendering a large collection of projected
images of each 3D shape viewed from almost all the imagin-
able directions [3][4]. Inspired by these early efforts, 3D shape
descriptors based on a composite of several features such as
DESIRE [5] and MFSD (Multi-Fourier Spectra Descriptor) [6]
have been proposed. Recently, local 3D shape features such as
Bag of Visual Words (BoVW) (a.k.a. Bag of Features (BoF))
have been proposed, along with supervised learning [7][8].

However, to our knowledge, most of the previous 3D shape
descriptors failed to behave very well for 3D mechanical
shapes such as Engineering Shape Benchmark (ESB) [9]. One
reason for being incapable of capturing the good shape features
of this type of mechanical part lies in the fact that minor
characteristics (such as holes and surface roughness) in the
original shape might have disappeared during the computation
of features.

With respect to holes, there has been no previous research,
to our knowledge, which explicitly employs holes as one
of the shape features. Meanwhile, there has been research
on detecting holes from 3D models. An example of such
research has been done by Wang et al [10]. They constructed
a connected graph of vertices, applied clustering of vertices to
form sub-graphs, and then used the relationship between the
planes enclosing holes and sub-graphs to detect holes.

A 3D shape descriptor using Hough transform was first
reported by Zaharia et al [11] in 2001. They defined a



Fig. 1. Illustration of surface roughness

shape feature intrinsically invariant with respect to topolog-
ical decriptions and geometric transforms. They define 48
dimensional feature vectors based on Hough transform, and
demonstrate the validity of their model using 3D Cafe data
set [12] and other miscellaneous data.

In this paper, we propose a new composite of features,
explicitly incorporating holes and surface roughness, as well
as features extracted from Hough transform.

III. NEW FEATURE FOCUSED ON HOLES AND SURFACE
ROUGHNESS

In this section, we introduce our proposed features, and how
we create them for an arbitrary 3D shape. The basic idea is
to extract the vector-based features frequently observed in 3D
CAD shapes of mechanical parts. Primary interests include
not only straight lines as vectors, but curved edges rendered
for holes and surface roughness. Surface roughness can be
represented by a set of pixels, usually a set of line segments,
where sharp intensity change occurs inside the contour of the
object as convexities and concavities, once the view projection
is determined. The idea of incorporating the surface roughness
into 3D shape features is to attempt to extract the region of
surface “bumpiness” as illustrated in Fig. 1.

In summary, we extract five edge-based images, namely,
Contour, Hole, Surface Roughness, Line, and Circle im-
ages, followed by transforming them into polar coordinates,
applying peripheral intensity enhancement [6], in order to
emphasize the shape perimeter and converting them to Fourier
spectra as our composite features.

In the following, we elaborate the process of obtaining our
proposed features.

A. Computing Five Base Feature Images

First of all, the ideal 3D features must capture inherent 3D
shapes, which are invariant to position, size, and orientation.
Making 3D shapes invariant to position, size, and orientation
requires the process called pose normalization. For this pur-
pose, we first employ our previously published pose normal-
ization methods called Point SVD and Normal SVD [13]. After

Fig. 2. Depth-buffer image generation from multiple viewpoints after pose
normalization of a given 3D shape

Fig. 3. Silhouette image generation by binarization from Depth-buffer image

pose normalization is carried out, we compute Depth-buffer
images from multiple viewpoints as shown in Fig. 2. Then,
Depth-buffer images are converted to Silhouette images by
binarization as shown in Fig. 3. The binary Silhouette images
are converted to ternary Flood Fill images using Flood Fill
algorithm (a.k.a.Seed Fill algorithm) [14] by changing the
background color from black to gray, as shown in Fig. 4.

Binary Contour images, as the first of our five base feature
images, are computed from ternary Flood Fill images by way
of Hole FF (Flood Fill) images. Specifically Hole FF images
are generated by removing holes, if any, from ternary Flood
Fill images. On the other hand, binary Contour images are
generated by applying a Canny edge detector [15], known
in edge detection in image recognition for computer vision.
This process for obtaining binary Contour images is illustrated
in Fig. 5. Binary Hole images as the second of our five
base feature images are computed from ternary Flood Fill
images by way of binary Background FF images, where a
binary Background FF image is generated by converting the
background color into white from gray. Binary Hole images

Fig. 4. Ternary Flood-Fill image computation by applying Flood Fill algorithm



Fig. 5. Generation of a binary Contour image from ternary Flood-Fill (FF)
image by removing holes (if any) in binary Hole FF images, followed by
applying Canny edge detector

Fig. 6. Generation of a binary Hole image from ternary Flood-Fill (FF) image
via removing background, followed by applying canny edge detector

are generated by applying the Canny edge detector to binary
Background FF image, similar to the generation of binary
Contour images. Incidentally, the generation of these two
images (Contour and Hole images) can be done independently.
It should be noted that binary Hole images might end up just
black images if there are no holes in the projection of the 3D
shape object concerned, but they are harmless in our proposed
base features.

Binary Surface Roughness images, as the third of our five
base feature images, are computed in two steps. In the first
step, we extract binary Edge images from Depth-buffer images
by applying the Canny edge detector. In the second step,
Edge images are subtracted by Contour and Hole images,
ending up binary Surface Roughness images. This process
is illustrated in Figs. 7 and 8. The reason for showing two
examples here is because the Surface Roughness image in the
first example results in a circular shape, which might give the
false impression that it might be the same as a Circle image to
be discussed later. Surface Roughness images are introduced
in order to represent boundaries where there are sharp intensity
variations in rendering with depth-buffering.

The remaining two base features are Line and Circle images
by applying theHough transform [15] to Edge images, which
are the intermediate products when computing Surface Rough-
ness images. This process is illustrated in Fig. 9. It should be
also noted that Circle images might be just black unless Edge
images have circular shapes.

B. Fourier Spectra computed from Five Base Feature Images

For the above five binary images composed of different
types of Edge-based images, we apply a dilation operator [15],
one of the well-known morphological operators. Then, we
convert dilated images into images in polar coordinates with

Fig. 7. Generation of a binary Surface Roughness image from Depth-buffer
images in two steps via Edge images subtracted by Contour and Hole images

Fig. 8. A different example of derivation of a Surface Roughness image

parameters r and θ, to be robust against rotation. This is
because in polar coordinate, a rotational difference is absorbed
in a translational difference, which is later absorbed by a
Fourier transform. After images are represented by polar
coordinates, we separately apply Fourier transform to convert
them into spectra, and construct our proposed features by
filtering out high frequency components. The final stage is
illustrated in Fig. 10.

IV. FEATURE ALIGNMENT BETWEEN A GIVEN QUERY AND
3D SHAPE MODELS

The 3D shape retrieval system with our proposed features
is depicted in Fig. 11. As pre-processing we perform feature
extraction for every 3D shape data in the database. In other
words, all the 3D shape data are converted to Fourier spectra
computed from polar coordinates of Contour, Hole, Surface
Roughness, Line, and Circle images.



Fig. 11. System Flow: 3D shape retrieval using new shape features based on different Fourier spectra from five different sets of images (Contour images
(Con.), Hole images, Surface roughness images (SR), Line images, and Circle images (Circ.))

Fig. 9. Generation of Line and Circle images from Edge images

A. Dissimilarity Computation

Given an arbitrary 3D query shape model, we compute the
Fourier spectra, and start feature alignment as dissimilarity
computation.

Dissimilarity computation is carried out such that we com-
pute Manhattan distance between features extracted from a

Fig. 10. Generation of Fourier spectra after converting each image to polar
coordinate

query and features of 3D shape data stored in our database.
We have tested a collection of a different number of views
and a different combination of polar coordinate discretization
parameters. Table I summarizes the result.

As is easily computed from Table I, the total number of
dimensions of our proposed features is 1,536. Assume that
we have n number of dimensions of a 3D feature vector
f1, f2, ..., fn, and assume that a given 3D query is converted
to a 3D feature vector q1, q2, ..., qn, the dissimilarity between
3D shape model M and a 3D query shape model Q is denoted



TABLE I
NUMBER OF VIEWS, POLAR COORDINATE PARAMETERS, AND

DIMENSIONS FOR EACH FEATURE

Feature θ r views dimensions
Contour 8 8 3 192

Hole 8 8 3 192
Surface Roughness 4 4 24 384

Line 8 2 24 384
Circle 8 2 24 384

by the following equation:

dissimilarity (Mk, Qk) =

n∑
i=1

|fk,i − qk,i|,

where k is either Point SVD or Normal SVD. Thus, the final
dissimilarity is given by the following equation:

dissimilarity (M,Q) = min(

dissimilarity (MPointSVD, QPointSVD),

dissimilarity (MNormalSVD, QNormalSVD))

V. EXPERIMENTS AND EVALUATIONS

In this section, we describe comparative experiments of our
proposed method with some of the selected previous methods
for 3D shape retrieval. To demonstrate the effectiveness of our
proposed methods, we employ Princeton Shape Benchmark
(PSB) [16], Architectural Shape Benchmark (ASB) [17], and
Engineering Shape Benchmark (ESB) [9] as 3D shape data.
The previous methods to compare are D2 [1], SHD [2],
LFD [3], DESIRE [5], and MFSD [6], partly because we
have access to these programs and partly because they are
all categorized as unsupervised learning methods without
relevance feedbacks, which do not require a training stage.

A. Evaluation Measures

The evaluation measures we selected include Recall, Pre-
cision, First Tier (1-Tier), Second Tier (2-Tier), and P@1
(Nearest Neighbor (NN)) [16], [18]. Let rel(x) be the number
of objects that are relevant among the top x rankings, let K
be the number of closest matches returned, and let C be the
number of objects in the category belonging to a query. Then,
the evaluation measures are given by the following formula:

Recall =
rel(K)

C

Precision =
rel(K)

K

First Tier =
rel(C − 1)

C − 1

Second Tier =
rel(2(C − 1))

C − 1

P@1 (Nearest Neighbor) = rel(1)

DCG(i) =

{
G(1) i = 1

DCG(i − 1) + G(i)
log2(i)

otherwise

Discounted Cumulative Gain (DCG) [19] represents how
well a retrieval system works at the top-k ranked lists. Gener-
ally speaking, if relevant results appear at the first top-k search
results, the DCG is larger. In the above equation, G(i) stands
for a gain vector, where the element of the vector represents
the degree of relevance.

There are two ways of computing the degree of relevance,
depending on how we compute the average of accuracy, given
ground truth data with different categories. Micro-averaged
values [20] are calculated by constructing a global contin-
gency table and then calculating evaluation measures using
these sums. We avoided macro-average, since macro-averaged
scores are calculated by first computing evaluation measures
for each category and then using their average. Some of the
categories in PSB have only a few shape models, which ends
up with the macro-average having a large variance across
different categories.

B. Result with Princeton Shape Benchmark

The Princeton Shape Benchmark (PSB) is designed for
general 3D shape objects, consisting of 907 training data with
90 classes, and another 907 testing data with 92 classes [16].
This benchmark is not particularly suited to our proposed
method, because no explicit mechanical parts having holes are
included. Nonetheless, our proposed method exhibits reason-
ably good search performance.

Fig. 12 shows averaged recall-precision graphs including the
proposed method and several previous methods by using PSB.
Our proposed method is almost equal to MFSD when “Recall”
is smaller, and slightly inferior to MFSD when “Recall” is
larger. Table IV summarizes the average behavior of other
evaluation measures, including 1-Tier, 2-Tier, P@1, and DCG.
It is noted that in terms of P@1, or the nearest neighbor, our
proposed method turns out to be the best.

TABLE II
COMPARISON OF OUR PROPOSED METHOD AND PREVIOUS METHODS IN

TERMS OF 1-TIER, 2-TIER, P@1, AND DCG FOR PSB

Method 1-Tier 2-Tier P@1 DCG
Proposed 44.0% 56.6% 72.5% 69.9%

MFSD 45.3% 56.6% 71.5% 70.3%
DESIRE 40.4% 52.2% 65.8% 66.3%

LFD 37.8% 49.2% 65.9% 64.4%
SHD 30.0% 42.0% 55.3% 58.4%
D2 18.7% 27.9% 35.7% 46.2%

C. Architectural Shape Benchmark (ASB)

The Architectural Shape benchmark (ASB) [17] is com-
posed of 3D shape objects related to architectural design,
including “arm chairs,” “book shelves” and “double bed”



Fig. 12. Average recall-precision graph of our proposed method and previous
methods for comparison using PSB

classes. ASB itself consists of two large classes; “form”
class and “funtion” class. The former class categorizes 3D
objects by shapes, while the latter class does so by functions.
Naturally, we chose the former class for shape retrieval, where
2,257 models are included with 95 classes. Fig. 13 shows the
averaged comparison result of our proposed method against
several previous methods. Table III summarizes the average
behavior of other evaluation measures, including 1-Tier, 2-
Tier, P@1, and DCG. It is noted that our proposed method
proves to be the best, except for the 2-Tier.

TABLE III
COMPARISON OF OUR PROPOSED METHOD AND PREVIOUS METHODS IN

TERMS OF 1-TIER, 2-TIER, P@1, AND DCG FOR ASB

Method 1-Tier 2-Tier P@1 DCG
Proposed 37.8% 47.6% 76.7% 70.2%
MFSD 35.9% 48.3% 74.3% 69.8%

DESIRE 34.6% 46.6% 75.5% 68.9%
LFD 35.9% 45.2% 75.6% 69.0%
SHD 31.3% 41.7% 71.4% 66.4%
D2 23.4% 34.5% 59.6% 59.9%

D. Engineering Shape Benchmark (ESB)

The Engineering Shape Benchmark (ESB) [9] is known for
its unique 3D data sets, and is a proven standard benchmark
for 3D CAD models. It consists of 801 models classified into
42 categories of similar parts such as “Discs,” “T-shaped parts”
and “Bracket-like parts.” Fig. 14 shows the averaged compar-
ison result of our proposed method against several previous
methods. It is obvious our proposed method outperforms other
methods over all “Recall” values. This can be a proof that our
proposed method is particularly suited to 3D mechanical parts
with holes and surface roughness.

In our comparative experiments in Fig. 14, MFSD [6] and
our proposed method are the two top methods in Recall-
Precision graph. To demonstrate the effectiveness of our

Fig. 13. Average recall-precision graph of our proposed method and previous
methods for comparison using ASB

Fig. 14. Average recall-precision graph of our proposed method and previous
methods for comparison using ESB

method, we take two example where holes and surface rough-
ness have played important roles. Fig. 15 illustrates an example
showing the top 10 search results with our proposed method
and MFSD, given a query belonging to gear-like class objects.
It should be noted that the proposed method has not omitted
the gear-like jagged perimeters for all the top 10 search results,
while MFSD has omitted the gear-like jagged perimeters
by 70%. Fig. 16 illustrates another example, given a query
belonging to slender-links class objects. In this query example,
small holes are observed in the query, and the proposed method
has not omitted objects with small holes for all the top 10
search results, while MFSD has omitted such objects by 50%.

Table IV summarizes the average behavior of other eval-
uation measures, including 1-Tier, 2-Tier, P@1, and DCG
(Discounted Cumulative Gain). It turns out that in every
evaluation measure, our method outperforms the previous
methods. In addition, Table V summarizes the result with
ESB, showing how each independent feature behaves in terms
of these evaluation measures. It appears that as far as DCG
is concerned, Contour, Surface Roughness, and Line images
contribute to the search efficiency. Although Hole and Circle



Fig. 15. Top 10 search results from MFSD and our proposed method, given
the same query in the gear-like objects of ESB. Blue circles indicates the
resulting object is relevant to the query, while a red cross indicates otherwise.

Fig. 16. Top 10 search results from MFSD and our proposed method, given
the same query in the slender-links objects of ESB.

images alone do not contribute to the search efficiency, they
play a major role whenever circular shapes including holes
are observed at a certain projection of a given 3D mechanical
part.

VI. CONCLUSIONS

We have proposed a new 3D shape feature focused on
holes and surface roughness, suited to 3D mechanical CAD
parts. We defined five base feature images including Contour,
Hole, Surface Roughness, Line, and Circle images. All five
are binary images. Then we applied peripheral intensity en-
hancement to change them into grayscale images. After pe-
ripheral intensity enhancement, we converted them into polar
coordinates, then applied Fourier transform to obtain Fourier

TABLE IV
COMPARISON OF OUR PROPOSED METHOD AND PREVIOUS METHODS IN

TERMS OF 1-TIER, 2-TIER, P@1, AND DCG FOR ESB

Method 1-Tier 2-Tier P@1 DCG
Proposed 52.8% 69.7% 90.2% 81.3%

MFSD 49.4% 65.7% 87.5% 78.8%
DESIRE 45.1% 59.9% 86.0% 77.1%

LFD 43.8% 58.8% 85.5% 75.6%
SHD 43.9% 58.4% 83.5% 75.5%
D2 34.4% 47.6% 79.7% 69.0%

TABLE V
EFFECTIVENESS OF PROPOSED FEATURES INDEPENDENTLY WHEN

APPLIED TO ESB

Feature 1-Tier 2-Tier P@1 DCG
Proposed(All) 52.8% 69.7% 90.2% 81.3%

Contour 46.0% 62.9% 85.1% 76.3%
Hole 42.7% 56.3% 86.1% 74.8%

Surface Roughness 44.3% 58.1% 85.2% 74.8%
Line 22.2% 31.2% 51.2% 56.5%

Circle 11.6% 21.2% 26.6% 46.5%

spectra. Through comparative experiments, we demonstrated
that our proposed method outperformed the previous methods
in ESB (Engineering Shape Benchmark), which consists of
3D mechanical parts. In the future, we plan to investigate
more about the optimal combination of features for 3D shape
retrieval suited to another particular collection of 3D shape
objects such as architectural and human data collections.

ACKNOWLEDGMENT

This research was partially supported by the Ministry of
Education, Science, Sports and Culture, Grant-In-Aid (C)
23500119, and was partially supported by the A-step FS-stage
program (AS242Z01713H), Japan Science and Technology
Agency (JST).

REFERENCES

[1] R. Osada, T. Funkhouser, B. Chazelle, and D. Dobkin, “Shape Distri-
butions,” ACM Transactions on Graphics, vol. 21, no. 4, pp. 807–832,
2002.

[2] M. Kazhdan, T. Funkhouser, and S. Rusinkiewicz, “Rotation Invari-
ant Spherical Harmonic Representation of 3D Shape Descriptors,” in
Proc. Eurographics/ACM SIGGRAPH Symp. on Geometric Processing,
pp. 156–164, 2003.

[3] D.-Y. Chen, Three-Dimensional Model Shape Description and Retrieval
Based on Lightfield Descriptors. PhD thesis, National Taiwan University,
June 2003.

[4] R. Ohbuchi, T. Nakazawa, and T. Takei, “Retrieving 3D Shape Based On
Their Appearance,” in Proc. 5th ACM SIGMM Workshop on Multimedia
Information Retrieval (MIR2003), pp. 1–8, 2003.

[5] D. V. Vranic, “DESIRE: a Composite 3D-Shape Descriptor,” in Multi-
media and Expo, IEEE International Conference on, p. 4, 2005.

[6] A. Tatsuma and M. Aono, “Multi-Fourier Spectra Descriptor and Aug-
mentation with Spectral Clustering for 3D Shape Retrieval,” Visual
Computer, vol. 25, pp. 785–804, June 2009.

[7] Z. Lian, A. Godil, and X. Sun, “Visual Similarity based 3D Shape
Retrieval Using Bag-of-Features,” in IEEE International Conference on
Shape Modeling and Applications (SMI2010), 2010.



[8] R. Ohbuchi and T. Furuya, “Distance Metric Learning and Feature
Combination for Shape-Based 3D Model Retrieval,” in Proceedings of
the ACM Workshop on 3D object retrieval 2010, 2010.

[9] S. Jayanti, Y. Kalyanaraman, N. Iyer, and K. Ramani, “Developing
an engineering shape benchmark for CAD models,” Computer-Aided
Design, vol. 38, no. 9, pp. 939–953, 2006.

[10] Y. Wang, R. Liu, F. Li, S. Endo, T. Baba, and Y. Uehara, “An Effective
Hole Detection Method for 3D Models,” in 20th European Signal
Processing Conference (EUSIPCO 2012), pp. 1940–1944, 2012.

[11] T. Zaharia and F. Preteux, “Hough Transform-based 3D Mesh Retrieval
,” in Proc. SPIE 4476, Vision Geometry X, 175, p. 11, 2001.

[12] 3DCafe. http://www.3dcafe.com/.
[13] M. Aono and H. Iwabuchi, “3D Shape Retrieval from a 2D Image as

Query,” in Signal & Information Processing Association Annual Summit
and Conference (APSIPA ASC 2012),, 2012.

[14] P. Heckbert, “A Seed Fill Algorithm,” in Graphics Gems, pp. 84–86,
1990.

[15] M. Nixon and A. S. Aquedo, Feature Extraction and Image Processing
for Computer Vision, Third Edition. Academic Press, 2012.

[16] P. Shilane, P. Min, M. Kazhdan, and T. Funkhouser, “The Princeton
Shape Benchmark,” in SMI ’04 Proceedings of the Shape Modeling
International, pp. 167–178, 2004.

[17] R. Wessel, I. Blümel, and R. Klein, “A 3D Shape Benchmark for
Retrieval and Automatic Classification of Architectural Data,” in Eu-
rographics 2009 Workshop on 3D Object Retrieval, pp. 53–56, Mar.
2009.

[18] S. Y. Tang, “An Evaluation of Local Shape Descriptors for 3D Shape
Retrieval,” 2012. http://www.nist.gov/customcf/get pdf.cfm?pub id=
909219.

[19] R. Baeza-Yates and B. Riberiro-Neto, Modern Information Retrieval,
Second Edition. Addison Wesley, 2011.

[20] P. Min, A 3D Model Search Engine. PhD thesis, Princeton University,
Jan. 2004.


