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Abstract—This paper proposes a simple approach to subword-
based spoken term detection (STD) which uses improved acoustic
dissimilarity measures based on a distance-vector representation
at the state-level. Our approach assumes that both the query
term and spoken documents are represented by subword units
and then converted to the sequence of HMM states. A set of
all distributions in subword-based HMMs is used for generating
distance-vector representation of each state of all subword units.
The element of a distance-vector corresponds to the distance
between distributions of two different states, and thus a vector
represents a structural feature at the state-level. The exper-
imental result showed that the proposed method significantly
outperforms the baseline method, which employs a conventional
acoustic dissimilarity measure based on subword unit, with very
little increase in the required search time.

I. INTRODUCTION

Spoken term detection (STD) is a task which locates a
given search term in a large set of spoken documents. To
deal with out-of-vocabulary (OOV) problems and recognition
errors, many approaches using a subword-unit based speech
recognition system have been proposed [1]–[4]. The keyword
spotting methods for subword sequences based on dynamic
time warping(DTW)-based matching or n-gram indexing ap-
proaches have shown the robustness for recognition errors and
OOV problems. Also, hybrid approaches with multiple speech
recognition systems of word-based LVCSR and subword-unit
based speech recognizer have shown the further performance
improvement for both IV and OOV query terms [5]–[7].

In this paper, we introduce a keyword verifier which utilizes
new acoustic dissimilarity measures based on different types of
local distance metrics derived from a common set of subword-
unit acoustic models for improved STD. In general, the STD
approaches based on subword sequences assumes a predefined
local distance measure between subword units and some cost
parameters. However, the performance is degraded if the
automatic transcripts have many recognition errors including
insertions and deletions as in the recordings of spontaneous
speech. To address the lack of acoustic information in subword
sequences which are derived from LVCSR or subword-unit
based speech recognition results, we extend the local distance
measure to account for state-level acoustic dissimilarity based
on the subword-unit HMMs which are commonly used for
speech recognition systems. We also introduce a keyword
verifier which aims at the detailed matching between query

term and subword sequences based on the proposed state-level
acoustic dissimilarity measures.

Related works using the acoustic similarity for STD task are
roughly divided into two types: STD systems for text query
input (e.g. [8]) and those for spoken query input or unsuper-
vised spoken keyword spotting (e.g. [9]–[11]). Typically, the
former systems use certain information about confusability
between subwords. In [6], a syllable-level distance measure
based on the Bhattacharyya distance derived from syllable-
unit HMMs is used. Though our proposed acoustic measures
is also based on subword-unit HMMs, the state-level local
distance instead of subword-level one is used for evaluating
the match between query and subword sequences. Also, the
new feature vector representation for each state in subword-
unit HMMs is constructed based on the distances of all
possible pairs of distributions in a set of subword-unit HMMs.
This feature representation is related to the idea of using an
invariant structural feature for removing acoustic variations
caused by non-linguistic factors [12], [13] and it is expected
that the proposed feature is effective for erroneous transcripts.
Recently, similar idea of using structural feature for acoustic
dissimilarity estimation is effectively applied to the systems
of latter type. In [10], a speech segment is represented as the
posteriorgram sequence of GMM or HMM states, and evaluate
the similarity between query term and speech segments by
using a self similarity matrix. The result showed the robustness
to the various language conditions that are different from the
training data.

In this study, the experiments were conducted on a NTCIR-
9 SpokenDoc STD subtask [8] which targets a document
collection of the Corpus of Spontaneous Japanese(CSJ). The
experimental results show that the proposed method signifi-
cantly outperforms the baseline methods, which employ either
a edit distance or conventional acoustic dissimilarity measure
based on subword unit, with very little increase in the required
search time. It should be noted that our approach is different
from the hierarchical approach which uses frame-level acoustic
match [4] which consumes time and is solely based on the
subword-based (N-best) transcripts. Thus, it’s easy to extend
our method by hybrid speech recognition approaches and fast
indexing with table lookup methods.



II. BASELINE SPOKEN TERM DETECTION SYSTEM

A. Baseline system overview

The baseline system adopts a DTW-based spotting method
which performs matching between subword sequences of
query term and spoken documents and outputs matched seg-
ments. In NTCIR-9 SpokenDoc STD baseline system [8],
a similar system with the local distance measure based on
phoneme-unit edit distance is used. In our system, the local
distance measure is defined by a syllable-unit acoustic dis-
similarity as described in Section II-B, and a look-up table is
precalculated from an acoustic model.

At the preprocessing stage, N-best recognition results for
a spoken document archive are obtained by word-based and
syllable-based speech recognition systems with N-gram lan-
guage models of corresponding unit. Then, the word-based
recognition results are converted into subword sequences.

At the stage of STD for query input, the query term is
converted into a syllable sequence, and the DTW-based word
spotting with an asymmetric path constraint is performed. If
the term consists of In-Vocabulary (IV) words, word-based
recognition results (converted into syllable sequence) are used.
If the term consists of Out-Of-Vocabulary (OOV) words,
syllable-based recognition results are used. Finally, a set of
segments with a spotting score (dissimilarity) less than a
threshold is obtained as the retrieval result.

B. Acoustic dissimilarity based on subword-unit HMM

In [6], the local distance measure is based on the Bhat-
tacharyya distance between two distributions and derived from
the acoustic model parameters of syllable-unit HMMs. We
define the between-state distance between two GMMs P and
Q as

DBD(P,Q) = min
u,v

BD(P {u}, Q{v}) (1)

where BD(P {u}, Q{v}) denotes the Bhattacharyya distance
between the u-th Gaussian component of P and the v-th
Gaussian component of Q.

Then, we calculate the between-subword distance
Dsub(x, y) by the DTW-based matching of two subword
HMMs with the local distance defined in (1) and a symmetric
DTW path constraint.

III. PROPOSED SPOKEN TERM DETECTION METHOD

A. Proposed system overview

Overview of our proposed STD system is shown in Fig. 1.
The system adopts two-pass strategy for both efficient process-
ing and improved STD performance against recognition errors.
The first pass performs the DTW-based keyword spotting as
described in Section II. The second pass is a keyword verifier
which performs two kinds of detailed scoring (rescoring) for
each candidate segment found in the first pass. The detailed
procedure for STD is as follows.

1) Perform the 1st-pass keyword spotting and obtain a set
of candidate segments (same as the baseline system
described in Section II).

Spoken DocumentArchive Acoustic Model(subword unit HMMs)Word / SubwordLattices
Speech Recognition

Keyword Spotter(1st pass)FinalResults
Candidate listQuery

User
Keyword Verifier(2nd pass)

Pre calculation of acoustic similaritya subword levellocal distance metric state-levellocal distancemetrics

Fig. 1. Overview of proposed STD system

2) Perform the DTW-based matching for the HMM state
sequences between query and candidate segments with
the state-level local distance measure defined in (1)
and obtain the dissimilarity score ScoreBD for each
candidate segment.

3) Calculate the acoustic dissimilarity score ScoreDDV us-
ing a distance-vector representation as feature (described
in Section III-B and III-C).

4) Combined score is calculated for each candidate segment
and the score is compared with a threshold for a final
decision.

Scorefusion = α · ScoreBD + (1− α) · τ · ScoreDDV

where α(0 ≤ α ≤ 1) is a weight coefficient and τ is a
constant for adjusting the score range.

To reduce the computational cost, the local distance values
required in Step 1-3 are prepared beforehand by using a set
of subword-unit HMM parameters.

B. Distance vector representation

The distance DBD(P,Q) in (1) only depends on the param-
eters of two distributions which correspond to a pair of aligned
states in DTW-based matching of HMM state sequences.
Like a structural feature representation proposed in [12] and
a self similarity matrix in [10], we can consider a feature
representation for each HMM state based on the distances
between a target state and all states in a set of subword-unit
HMMs. It is expected that such structural feature can estimate
more robust acoustic dissimilarity measure for comparing the
subword sequences including recognition errors.

Let the Ps be a distribution corresponding to a state in a
subword-unit HMM, and the P = {Ps}(s = 1, 2, · · · , S) be
a set of all distributions in subword-unit HMMs. We define a
distance vector for the HMM state s as

ϕ(s) = (DBD(Ps, P1),DBD(Ps, P2), · · · ,DBD(Ps, PS))
T

(2)
We refer to this vector representation as distribution-distance
vector (DDV).

C. Keyword verifier based on distance vector sequences

We can replace the local distance measure used by the
DTW-based matching in Step 2 with a new dissimilarity
measure based on the DDV representation in (2). To simplify



the calculation of dissimilarity score using the DDV represen-
tation, we utilize the alignment between two state sequences
obtained by the DTW process in Step 2.

Let the F = c1, c2, · · · , ck, · · · , cK be the state-level
alignment obtained in Step 2 and the ck = (ai, bj) represents
the correspondence between the i-th state in HMM state
sequence A = a1, a2, · · · , aI and the j-th state in HMM state
sequence B = b1, b2, · · · , bJ . In our proposed system, two
state sequences correspond to a query and candidate segment
respectively, which are identical to the input for the DTW-
based matching in Step 2. We investigate the following three
types of definitions as the dissimilarity score for a candidate
segment.

ScoreDDV L1 =

∑K
k=1

∑S
s=1 |ψs(ck)|
K · S

(3)

ScoreDDV L2 =
1

K

K∑
k=1

{
1

S

S∑
s=1

|ψs(ck)|2
}1/2

(4)

ScoreDDV L1Max =
max1≤k≤K

∑S
s=1 |ψs(ck)|

K · S
(5)

where ψs(ck) is the s-th element of the vector ϕ(ai)− ϕ(bj).
We use these definitions as a dissimilarity score because these
scores take a value closer to zero as two state sequences A
and B become acoustically similar. ScoreDDV L1 represents a
normalized score of accumulated L1 norms between two DDV
sequences, while ScoreDDV L2 represents a normalized score
of accumulated L2 (Euclidean) norms (although not strictly
L2 norm since a normalization term 1/S is included). On the
other hand, ScoreDDV L1Max uses the maximum value of all
L1 norms in a DDV sequence and thus it emphasizes the most
dissimilar part in a subword sequence.

IV. EXPERIMENTS

A. Experimental setup

Our target document collection is CORE lectures (177 lec-
tures, about 44 hours) of the Corpus of Spontaneous Japanese
(CSJ). As with NTCIR-9 SpokenDoc STD evaluation [8], the
Inter-Pausal Units (IPU) are used as the basic unit to be
searched and a retrieval result of an IPU is regarded as correct
if it includes the query term. The term set is composed of 50
queries (IV:19, OOV:31) which were used for the formal-run
(CSJ-CORE set) in the NTCIR-9 SpokenDoc STD subtask.

We used both of word-based and syllable-based reference
automatic transcriptions distributed at NTCIR-9 SpokenDoc
evaluation. These reference automatic transcriptions include
N-best results (N=10) using a triphone acoustic model and
word/syllable n-gram language models.

As for the acoustic model which used at the calculation
of the acoustic dissimilarity, an independent set of syllable
(mora)-unit HMMs (133 units in total) is used. The models
are trained in the same way as the NTCIR-9 reference models
are trained. Although a common set of subword HMMs can
be used both for performing speech recognition and estimating
acoustic dissimilarity, we adopt the syllable-unit model to

TABLE I
SPEECH RECOGNITION PERFORMANCE[%].

“Syl.Corr.” and “Syl.Acc.” denotes the syllable-based correct rate and
accuracy, respectively.

Word-based LM Syllable-based LM
AM Syl.Corr. Syl.Acc. Syl.Corr. Syl.Acc.

triphone
(RECOG) 86.5 83.0 81.8 77.4

syllable
(DIST) 82.5 78.2 75.1 72.1

make the size of a distance table more compact and to make
the 2nd-pass search more efficient. Also, we prepared the
local distance tables, which are used in our baseline and
proposed systems as described in Section II-B and III. Thus,
the experiments were performed under open conditions for
the spoken documents used in the evaluation. Table I shows
the speech recognition performance of two acoustic mod-
els: the reference (triphone) acoustic model (RECOG-AM)
for providing automatic transcriptions and the syllable-unit
acoustic model for providing the distance tables of acoustic
dissimilarity (DIST-AM).

As measures of search performance, we use Recall, Pre-
cision, F-measure(max), and MAP. F-measure(max) is the
maximum value of F-measure when the threshold is adjusted.

B. Effect of the proposed method and DDV-based scores

Fig. 2 shows Recall-Precision curves of baseline method
and proposed methods with three types of DDV-based score
definitions. All proposed methods are based on the STD using
the combined score described in Section III-A. The parameters
of the 1st-pass threshold and a weight coefficient for the
combined score are adjusted for each set of IV and OOV
queries.

These results show that our proposed method outperforms
the baseline system which uses the 1st pass only. This seems
that new acoustic dissimilarity measure based on the DDV rep-
resentation could reject many unreliable candidates including
recognition errors than using a conventional measure. As for
the proposed methods, the parameter of the 1st-pass threshold
was adjusted to attain the best F-measure value for the final
output in the second pass. In case of the two-pass method with
a ScoreDDV L1Max , the precision performance as well as the
other evaluation measures were significantly improved, while
the recall and precision were about 81% and 3%, respectively,
at the 1st-pass output. It seems that the dissimilarity is well
represented by focusing on those parts which are most far in
a candidate segment when used with the DDV-based feature
representation.

So far, typical speeding-up strategies such as indexing have
not been applied in our STD system. However, our two-
pass approach can take advantage of the progressive search
with an efficient scoring with distance look-up tables. In case
of parallel processing with two CPU cores (Xeon X5560
2.80GHz), it took about 0.7 seconds per query for the STD of
CORE lectures (177 lectures, about 44 hours). The breakdown
of this processing time was 0.68 seconds for the 1st pass and
0.02 seconds for the 2nd pass.
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Fig. 2. Recall-Precision curves of different STD systems for NTCIR-9
SpokenDoc STD subtask

C. Effect of the weight of combined score

In the previous section, all the STD performance measures
were presented with the adjusted parameters which maximize
the performance in terms of F-measure value. The parameters
include the 1st-pass threshold θ1, the weight coefficient α,
and the 2nd-pass threshold θ2. Therefore, we analyze the
performance when changing the score binding weight α which
significantly affect the scoring with distribution distance vec-
tor. Fig. 3 shows the F-measure values of the STD system with
ScoreDDV L1Max changing the weight parameter α between
0 and 1. As described before, word-based transcriptions are
used for the IV queries and syllable-based transcriptions are
used for the OOV queries. If α equals to one, only ScoreBD

is used as the score at the second pass. On other hand, if α
equals to zero, only ScoreDDV is used.

The result shows that the influence of the weight parameter
is small for IV queries. But for OOV queries, the best
performance is achieved by combining the two types of scores.
Also, the result shows that the performance is superior to
the baseline even at the point of α = 1 or α = 0. It
suggests that the state-level matching across the subword unit
is effective rather than using a subword-unit local distance for
the STD task, even when the acoustic dissimilarity between
distributions are identically estimated.

V. CONCLUSIONS

In this paper, we introduced new acoustic dissimilarity
measure for subword-unit HMM and proposed a two-pass
spoken term detection method in which the state-level acous-
tic dissimilarity is effectively incorporated into the scoring
process. The new acoustic dissimilarity measure is based on
a distance vector representation and the elements consist of
the distance between a distribution and other all distributions
which correspond to a set of states in subword-unit HMMs.
The experimental results with NTCIR-9 SpokenDoc STD
subtask showed that our proposed method was significantly
improved compared with baseline methods which use only
subword-level local acoustic dissimilarity measure.
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F -measur
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Score binding weight α

Baseline(1st pass only)IVOOVIV+OOV
Fig. 3. Effect of the score weight parameter α (STD system with
ScoreDDV L1Max ). The curve “IV” and “OOV” show the breakdown of
STD performance for in-vocabulary queries and out-of-vocabulary queries,
respectively.

Since our method is a simple extension of the conventional
DTW-based method, it is straightforward to combine with
indexing techniques (e.g. [6]) for speeding up our STD system.
Also, an automatic estimation of optimal parameters, such as
a score threshold and weight, or score normalization methods
[15] are necessary to achieve the further improvement and the
robustness for the spoken documents in the real world.
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