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Abstract

Kinematic articulatory data are important for researches of
speech production, articulatory speech synthesis, robust
speech recognition, and speech inversion. Electromagnetic
Articulograph (EMA) is a widely used instrument for
collecting kinematic articulatory data. However, in EMA
experiment, one or more coils attached to articulators are
possible to be mistracked due to various reasons. To make
full use of the EMA data, we attempt to reconstruct the
location of mistracked coils with the methods based on
Gaussian Mixture Model (GMM). These methods
approximate the probability density function of the
positions for the concerned coil given the positions of the
other coils, then elaborating regression functions by using
Minimum Mean Square Error (MMSE) and Maximum
Likelihood (ML) methods. The results indicate that: i.) The
positions of mistracked coils could be reconstructed from
the positions of correctly tracked coils with the RMSE
between 1mm and 1.5mm; ii.) The performance can be
further improved by incorporating the velocity
information in most cases.

Index Terms: EMA, mistracking, GMM, MMSE, ML

1. Introduction

The articulatory data is important for exploring the
mechanism of speech production[1], analyzing the
behavior of speech therapy, improving the performance of
speech recognition[2] and synthesis system[3], and

estimating vocal tract configuration from speech signals[4].

Various techniques such as X-ray movie, X-ray microbeam,
EMA, ultrasound, and magnetic resonance imaging have
been widely applied for these purposes. Compared with
other techniques, EMA has high temporal resolution, and
does no harm to subjects. This makes EMA the most
popular technique for collecting large-scale articulatory
database.

However, it always takes great efforts to collecting EMA
data. During EMA experiment, coils are glued to the
concerned articulators. It makes subjects very
uncomfortable, and some of the coil may fall over the
articulators in the recording process. Because of these, for
the moment, only a British English database (MOCHA) is
available publicly. Recently, we plan to construct a
phonetically balanced Chinese EMA database for
articulatory-based speech synthesis, and speech inversion.
In EMA experiments, coils are possible to be mistracked
due to various reasons[4]. Since it is not easy to get

kinematic articulatory data, it is better to make full use of
the collected data. Thus, the question comes to whether we
can reconstruct the positions of the mistracked coil from
those of the others. If the answer is yes, then we can apply
machine-learning techniques to estimate the positions of
mistracked coils quite accurately. As we know, some of the
articulators (such as tongue and jaw, lower lip and jaw) are
physiologically connected, and some of the articulators
(such as tongue and lips) are functionally associated to
fulfill speech tasks. Therefore, it is possible to exploit the
correlations between different articulators to estimate the
positions of one articulator based on those of the other
articulators. Several work have been conducted towards
this direction based on an X-Ray microbeam corpus. For
example, Roweis[5] proposed a method which learned a
low-dimensional manifold to represent the data and
intersected the manifold with the constraints provided by
the measured values. Qin[6] applied the GMM-based
MMSE method to estimated missing data sequence of
articulation recorded by using X-ray microbeam. Both of
these two methods obtained good results.

In the present study, we extend Qin’s [6] method in the
following two aspects: i) making use of additional
information of the Gaussian mixtures; ii.) introducing more
articulatory information into the input feature.

The remainder of paper is organized as follows. In
section 2, we will give a brief introduction of our EMA
corpus and analyze three types of mistracking. In section 3,
the methods for estimating the positions of mistracked
coils will be described. In section 4, the experiment results
based on ground truth data will be illustrated. In section 5,
we will give a short summary about current work.

2. Material

Currently, we are constructing a Chinese kinematic
articulatory database for articulatory-based speech
synthesis, speech-to-articulatory inversion, and other
applications. 400 phonetically balanced Chinese sentences
are selected to serve as the recording scripts. In the EMA
experiment, coils are attached to Tongue Rear (TR),
Tongue Blade (TB), Tongue Tip (TT), Lower Incisor (LI),
Lower Lip (LL) and Upper Lip (UL), respectively. Another 3
coils (attached to RE, LE, and NOSE) serve as the
references (shown in Fig. 1). Two subjects (1 male and 1
female) are recruited in the EMA experiments.
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Fig 1. Position of coils in EMA experiment.

Three types of mistracking are discovered in the
collected EMA data (as shown in Fig 2 and Fig 3):i.) abrupt
jump of coil position at the beginning and in the middle of
utterances; ii.) continuous shifting of coil position at the
end of utterances; iii.) coil position beyond the region of
vocal tract.
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Fig. 2 The 1st (the red curve at the beginning of a utterance in the
upper panel) and 2 (the green curves at the end of an utterance
in both lower and upper panels) type of coil mistracking in EMA
data.
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Fig. 3 The 3t type of coil mistracking. The clouds with different
colors stand for TR, TB, TT, LI, LL, and UL, respectively. The coil
for TR (denoted by red spots) is beyond the vocal tract.

To extract the correctly tracked EMA data, we estimate
the mean and covariance matrix for each coil based on the
whole data set. Then, outliers are detected by using 4 times
standard deviation (std.). The samples within 4 times std.
are classified as correctly tracked coils, while the others
are classified as mistracked coils. Finally, coil mistracking

is detected in 68 utterances, which are 16% of the total
utterance. Mistracking occurs most often on one coil at a
time and very rarely on multiple articulators. If we discard
the whole utterance when mistracking is detected, a
number of data could not be used for further studies. This
will make us fail to collect a phonetically balanced
database for various applications. Nevertheless, the
movements of articulators are either physiologically or
functionally correlated. Therefore, it is possible to exploit
this property and apply machine-learning techniques to
reconstruct the positions of mistracked coils from those of
the correctly tracked coils.

3. Methods

In this part, we will introduce the methods to estimate the
position of the mistracked coil. Let y: be the target vector
that stands for the position of the concerned coil at instant
t, and xtbe the source vector that stands for the positions
of the other coils at instant t. In our case, the collected EMA
data could be divided into 3 sets: A={xt, y: |both xt and y:
are correct}; B={x:, yt|yt is problematic, while x: is correct};
C={xt, yt|both xt and y: are problematic}. Thus, a mapping
function, y=f(x), could be trained and evaluated on set A,
and the target vector j of mistracked coil in set B could be

reconstructed by using the trained mapping function. In
this study, GMM is applied to approximate the conditional
probability density function p(y|x). Then the mapping
function is elaborated by applying MMSE and ML method
based on p(y|x).

3.1. Conditional probability density function

Suppose x and y are the source and target vectors,
respectively. The joint probability density function p(x, y)
could be approximated by GMM (shown in Eq.1~3).
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where JT is the weighting coefficient of the k-th mixture,

Ek=

y,f and ‘u,f are the mean of source and target vectors of
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the k-th mixture, respectively. Y* and Y are the

covariance matrices of the k-th mixture for source and

target vectors, respectively. Ezy and Eix are the cross-

covariance matrices of the k-th mixture between source
and target vectors, respectively. Then, the probability
density function of y given x could be expressed by Eq.4~7
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3.2. MMSE method

In conventional applications, people usually using MMSE
criterion to estimate target vector.

y =argminE[(y-§) (y- )] (8)
y
By taking derivative on j , the target vector could be
estimated by using Eq.9.
y' = [yp(y|x)dx = Ewkuy"‘ )

It means that the estlmated target vector is a weighted sum
of the mixtures’ mean vectors, and the weighting
coefficient of a specific mean vector is the corresponding
weighting coefficient in p(y|x).

3.3. Maximum Likelihood method

It is obvious that Eq.9 only makes use of the weighting

Ax

coefficients wk and mean vectors W, of the Gaussian

mixtures. Introducing more information may further
improve the performance of estimation. ML method, which
takes both means and covariance matrices of Gaussian
components into account, would be a feasible candidate.

LetY =[y17‘,y§‘,...,y,7\;]r , X=[x,7',x§,...,x,7\;]r be the target

and source vector sequence of an utterance, respectively.
The equation for ML is as follows.

Y" = argmaxIn p(Y | X) (10)
Y

The optimal value of ¥ could be obtained by using E-M
algorithm, where the auxiliary function is formulated as in
Eq.11.
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D=diag(D,,D,....Dy).D, = Yy, (3" (13)
k=1
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M=[M] . M],...M]|,M, = Yy, (5w (14)
k=1

Thus, Y could be estimated iteratively by using Eq.15.
Y=D'M (15)
Namely, the position of target vector at each instant could
be iteratively estimated by using Eq.16.

(En (S ) En S (16)

If E/{‘ =E, which means all the Gaussian components

share the same covariance matrix, then the mapping
function of ML degrade to a similar result of MMSE.

3.4. Incorporating Dynamic feature

The above ML method tries to improve the performance
from the algorithm point of view. In this part, we will make
some efforts from the perspective of input feature. As we
know, the articulatory data sequence itself contains not
only static position information but also dynamic
information, e.g. velocity. Therefore, the position vector
augmented with velocity information will provide more
information of articulatory movements, and may helps to
further improve the performance.

T T
Let X, =[x/.Ax ] ¥,
target vectors that contain both position and velocity at

instant ¢, respectively. Consequently, the corresponding
source and target vector trajectories for an utterance are

formulated as x _[x7 x7,...x;] and v =[v/ vy (],

=[le,Ay,T] be the source and

respectively. If the position vector is y=[y1T,y2T,...,y,f,]T'

then the relation between Y and y, would be:

Y=Wy (18)

where W is the same as the matrix that Tokuda used in

parameter trajectory generation for HMM-based speech

synthesis[7]. Finally, based on the ML method, the

trajectory of the mistracked coils could be reconstructed

by using Eq.19.

~ T LT
=(W'DwW) WM (19)

4. Experiment results

300 sentences in set B serve as the training set to train the
GMM and derive the mapping function, and the other 32
sentences in set B serve as the testing set. To evaluate the

performance of above methods, we black out the trajectory
of one coil over the entire utterance, and estimate their
positions given the positions of the remaining coils. Then, the
estimated positions are compared with the corresponding
ground truth.

4.1. Experiments based on MMSE

The influences of mixture number and coils/articulators
identity are investigated by using the MMSE method. The
results are shown in Fig 4. The mixture number varies
form 8 to 1024. It indicates that the RMSE of all the coils
decreases when the number of mixtures increases from 8
to 256, while the RMSE increases when the number of
mixtures increases from 256 to 1024. The RMSE of the coil
for upper-lip is lowest (about 0.88mm), while the RMSE of



the coil for TT is highest (about 1.34mm). The RMSEs of
other coils are in between. For the coils on tongue (TR, TB,
and TT), the position of TR is easiest to estimate, while the
position of TT is the most difficult to estimate. This is
comparable with the result reported by Qin on X-ray
microbeam data set [6].
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Fig 4. The influences of mixture number and articulator identity
on the performance of MMSE.

4.2. Experiments based on ML and ML-dyn

In this part, we test whether the accuracy of the
reconstructed positions can be improved by incorporating
additional information (covariance matrix/dynamic
feature). The GMMs with 256 mixtures are trained to
approximate the joint probability density functions for ML
and ML-dyn methods. For ML method, only the position
vectors of coils are taken as the input feature. While for
ML-dyn method, both position and velocity vectors are
taken as input feature.
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Fig 5. Comparison of the performance of the MMSE, ML, and ML
with dynamic information.

For experiment based on ML and ML-dyn methods, where
full covariance matrices are used, and the results of MMSE
are taken as initial values.

For the results obtained by ML method, the RMSE of TR,
TB, TT and UL is about 0.1mm larger than that obtained by
MMSE. The RMSE of LI is almost the same as that obtained
by MMSE. However, the RMSE obtained by ML is about
0.4mm less than that obtained by MMSE. This indicates
that the performance of ML method does not outperform
that of MMSE method in the current experiment.

For the results obtained by ML-dyn method, the RMSEs of
TR, TB, TT, and LI are less than that obtained by both
MMSE and ML methods. The RMSE of LL is larger than that
obtained by ML, but still less than that obtained by MMSE
method. The RMSE of UL is less than that obtained by ML
method, but larger than that obtained by MMSE method. It

indicates that the velocity information helps improve the
performance of estimation.

5. Conclusion

In this study, we attempt to reconstruct the positions of
mistracked coils by using GMM-based mapping functions.
To this end, we exam three methods (MMSE, ML, and ML-
dyn) and compared the performance of the three methods.
It indicates that the performance of ML-dyn is better than
that of MMSE and ML in most cases. The RMSEs of the
reconstruct coils are about 1.2mm on test set. This result is
comparable with the measurement error of EMA machine
and the result of Qin [6] on X-ray microbeam dataset. This
suggests that the positions of mistracked coils can be
reconstructed from the positions of correctly tracked coils.
However, the performance of ML is a little bit worse than
that of MMSE. This is not as we have expected from
theoretical analysis. This may be caused by either
insufficient data for estimating the full covariance matrices
of Gaussian mixtures or misclassification of correctly
tracked data in EMA data.
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