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Abstract—A lattice vector quantization encoding method is
developed based on ℓ1-norm-based enumeration and bit-plane
coding. The algorithm is implemented for the cubic lattice, can
handle arbitrary vector dimension, and is suitable for transform,
subband, or wavelet coding applications. Moreover, the algorithm
can possibly extend to other binary lattices.

I. INTRODUCTION

Lattice-based vector quantization (LVQ) is a form of struc-

tured vector quantization [1] with codevectors selected as a

scaled or translated subset of a regular lattice. LVQ does not

require storage of codevectors, may allow simple encoding

and decoding implementations, and can offer up to 1.53 dB

granular gain over scalar quantization (SQ) [2],[3]. In LVQ

encoding, a source vector, x, is first mapped to the minimum

distortion lattice codevector, y, and then the codevector is

losslessly encoded as a binary string for transmission or

storage. Lattice codevectors can be enumerated based on their

ℓ2 norm using the lattice theta function [4], or based on their ℓ1
norm, using the lattice nu function [5]. Spheres and pyramids

are convenient shaping regions that can be used to truncate

the infinite lattice to a fixed-size codebook in fixed-length

coding applications e.g., [6], [7], or used to partition lattice

codevectors into spherical or pyramidal sets for enumeration

coding in variable-length coding applications. We refer to

the combination of lattice vector quantization and ℓ2-norm-

based lossless coding as lattice spherical vector quantization

(LSVQ), and the combination of LVQ and ℓ1-norm-based

lossless coding as lattice pyramidal VQ (LPVQ).

Spherical and pyramidal LVQ have been used in a variety of

studies and applications. For example, the AMR-WB+ audio

coding standard [8] uses the RE8 lattice VQ [9] to encode

transform audio data. In [5] the lattice nu-function is used to

encode codevectors formed from wavelet image data. In this

work, we focus on LPVQ and the integer (cubic) lattice, Zn.

The approach can be extended to any of the binary lattices

[10] using the bit-plane coding approach in [11].

Let y ∈ Z
n be a codevector in the n-dimensional integer

lattice and denote N(n,m) as the number of lattice vectors of

ℓ1-norm m =
∑

i |yi| = ‖y‖1. N(n,m) satisfies the recursion

[12]

N(n,m) = N(n− 1,m) +N(n− 1,m− 1) +N(n,m− 1)

with N(n, 1) = 2n for n ≥ 1, and N(1,m) = 2 for m ≥ 1.

An enumeration encoding algorithm is developed in [12] for

mapping y with ‖y‖1 = m into an integer index in the range

{0, . . . , N(n,m)− 1}. This algorithm has been implemented

for vector dimension as large as 100 [13], however, large tables

are used for fast implementations and the size of N(n,m)
grows quickly with n and m (for example, N(64, 1000) ≈
9.5 × 10120), so extended-length binary representations of

integers are required for implementation.

The present paper develops a bit-plane approach to the

coding, rather than the more complex enumeration coding

in [12], [13]. The new approach has much less complexity,

can handle arbitrary vector dimension, and can be straightfor-

wardly extended to handle ℓ1-norm-based coding of codevec-

tors in any of the binary lattices [10]. The bit-plane coding is

most efficiently implemented using adaptive arithmetic codes

with probability models derived for the bit-plane weight. An

interesting consequence of the approach is that all bit-planes of

the same weight are encoded using the same codeword length,

even though the encoding is done using an arithmetic code.

This can be useful in data compression applications requiring

rate control.

II. MOTIVATION

An integer vector y = (y1, y2, . . . , yn)
T ∈ Z

n can be

expressed using bit-plane (sign-magnitude) representation as
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where the kth column of the matrix is the binary representation

of component yk of y, bs is the vector of sign bits and bk

is the vector of magnitude bits for the kth bit-plane. Define

the number of ones in bk as the weight of the kth bit-plane,

wk = wt(bk). Then, ‖y‖1 =
∑K

k=1 wk2
k−1, where K = 1+

⌊log2 ‖y‖1⌋ is the highest level magnitude bit-plane necessary

to represent y.

Assume that random vector Y has probability mass function

p(y), with entropy

H(Y) = −
∑

y

p(y) log2 p(y).



Let M = ‖Y‖1 and let Bk denote the kth bit-plane of Y.

Since there is a one-to-one correspondence between Y and

(Bs,BK , . . . ,B1), and since M is a function of Y, it follows

from the properties of conditional entropy [14] that

H(Y) = H(M,Bs,BK , . . . ,B1)

= H(M) +H(BK |M) +H(BK−1|M,BK)

+ . . .+H(B1|M,BK , . . . ,B2)

+H(Bs|M,BK , . . . ,B2,B1). (2)

Hence, compared with encoding Y directly, nothing is lost, in

principle, by successively encoding the ℓ1 norm, M , followed

by the bit-planes, provided that the proper conditioning is used

to specify the context for the encoding.

Next, let the vector of magnitude bit-plane weights be

denoted w = (w1, . . . , wK)T , with W the weight vector for

random lattice vector, Y. Since the bit-planes weights are a

deterministic function of the respective bit-planes, it follows

that

H(Y) = H(M,W,Bs,BK , . . . ,B1)

= H(M) +H(W|M)

+H(BK |M,W) +H(BK−1|M,W,BK) + . . .

. . .+H(B1|M,W,BK , . . . ,B2)

+H(Bs|M,W,BK , . . . ,B1). (3)

We use (3) to motivate an ℓ1-norm-based bit-plane coding

algorithm that is summarized in the following steps.

Encoding Algorithm

1) Encode M = ‖Y‖1 using a (generally, variable-length)

code, CM , with codeword cM (m).

2) Encode W = (W1, . . . ,WK)T , using a code, say CW ,

conditioned on M . Since

H(W|M) = H(WK |M) +H(WK−1|M,WK)+

· · ·+H(W1|M,WK , · · · ,W2),

the coefficients of W can be efficiently encoded sequen-

tially, provided the proper context is used.

3) Encode the magnitude bit-planes from k = K down to

k = 1, conditioned on M and Wk. A coefficient sign-bit

is encoded immediately after the first binary one is

encoded in the “bit stack” representing a coefficient

magnitude.

Encoding using steps 1) − 3) can produce a bitstream that

supports progressive decoding, since the magnitude bit-plane

decoding can be truncated at any bit-plane, bk,K ≥ k ≥ 1,

and a reduced fidelity decoded vector, ŷ, generated.

III. ℓ1-NORM-BASED CODING ENGINE

Encoding using steps 1)− 3) requires specification of four

codes: A code for encoding the ℓ1-norm, M = ‖Y‖1; a code

for encoding the weight vector, W conditioned on M ; a code

for encoding bit-plane bk, conditioned on M and the bit-plane

weight, Wk; and a code for encoding sign-bits. Suitable codes

are described as follows.

A. ℓ1-norm Encoding

To encode the ℓ1-norm, m = ‖y‖1, the non-negative integer

m is mapped to the pair (i, r), where i = ⌊log2(m+ 1)⌋ and

r = m − (2i − 1) ∈ {0, . . . , 2i − 1}, for i = 0, 1, . . . , I ,

where I is non-negative integer. Based on the mapping, all

possible values of m are partitioned into the disjoint non-

negative integer sets Si = {2i − 1, . . . , 2i+1 − 2}, and the

“overload” set SI+1 = {2I+1 − 1, . . .}, for i = 0, 1, . . . , I .

Then, for m < 2I+1 − 1, m is represented by the pair

(i, r), where i is encoded using a variable-length code such as

Golumb-type code [15], say CI with codeword cI(i), and r is

encoded using a fixed-length i-bit codeword, say c(r|i). For

m ≥ 2I+1 − 1, m is represented by a pair (I +1,m1), where

the index i = I + 1 and the value r = m1 = m − (2I − 1).
A fixed-length L1-bit code is used to encode the value of m1,

where L1 = 1+ ⌊log2 m1⌋. The value of L1 is determined by

the application, but L1 = 4 or 8 should be adequate for most

cases.

To obtain a better coding efficiency, the variable-length code

CI and c(r|i) might be further encoded using a context-based

code such as an adaptive arithmetic code. Since the value of

m reflects the (ℓ1) energy in y, an adaptive arithmetic code

is well suited to varying block energy, such as in a wavelet

image [5] or transform audio coding application [8].

B. Weight Vector Encoding

Consider next the encoding of the weight vector w =
(w1, . . . , wK), where 0 ≤ wk ≤ n and

K
∑

k=1

wk2
k−1 = m = ‖y‖1 (4)

Following the development in [12], given value m, the num-

ber of possible weight vectors can be enumerated and the

enumeration can be used to develop an encoding algorithm.

Typically not all weight vectors are equally probable, so better

coding efficiency is achieved by using an arithmetic code with

adaptive context selected for each bit-plane level. For bit-

plane k, using knowledge of m and the the weights of higher

bit-planes wK , wK−1, . . . , wk+1, without requirement of any

additional encoding bits it can be seen easily that wk must lie

between the upper and lower bounds 0 ≤ L(k) ≤ wk ≤ U(k),
where

U(k) = min{n, ⌊
m−

∑K

i=k+1 wi2
i−1

2k−1
⌋}, (5)

L(k) = max{0, ⌊
m−

∑K

i=k+1 wi2
i−1 − n

∑k−1
i=1 2i−1

2k−1
⌋}.

(6)

Hence, there are three possible cases: 1) if U(k) = 0, clearly

wk = 0; 2) if U(k) = L(k), then wk is explicitly known;

and 3) L(k) ≤ wk ≤ U(k) with L(k) < U(k). Only for the

last case does wk need to be encoded. Bit plane weight w1

never needs to be encoded, since, from (4), it can be computed

from m and w2, · · · , wK . Our implementation uses a binary

arithmetic code to encode a binary representation of wk, with

context dependent on m, U(k), L(k), and k.



C. Enumeration Bit-plane Coding

Based on the encoding algorithm 1) – 3) presented above,

consider the enumeration encoding of magnitude bit-plane bk,

conditioned on the bit-plane weight, wk. There are exactly
(

n
wk

)

possible bit-plane vectors, and enumeration encoding

simply uses a fixed-length code with at most
⌈

log2
(

n
wk

)⌉

bits to encode bk. Clearly, if wk = 0 or wk = n, no bits

are required to encode bk. So, assume that 1 ≤ wk < n
and consider a binary arithmetic code to be used to encode

bk,i, for i = 1, . . . , n. Without any conditions other than

wk , the probability model used to encode the first bit is

p(bk,1 = 1) = wk/n. As each successive bit is encoded, the

probability model is updated to correspond to the encoded bits.

Define bi
k = (bk,1, . . . , bk,i) for i = 1, . . . , n, with b0

k empty.

The probability model used to encode the ith bit in bk is

p(bk,i|wk,b
i−1
k ) =

{

wk−wt(bi−1

k
)

n+1−i
, if bk,i = 1;

n+1−i−[wk−wt(bi−1

k
)]

n+1−i
, if bk,i = 0;

(7)

with resulting probability of the bit-plane given by

p(bk|wk) =

n
∏

i=1

p(bk,i|wk,b
i−1
k ) =

1
(

n
wk

) . (8)

As the bits are successively encoded, eventually the encoding

reaches a termination condition where either i) all remaining

bits in bk are zero (p(bk,i = 1|bi−1
k ) = 0) or all remaining bits

in bk are one (p(bk,i = 1|bi−1
k = 1)). This must occur before

the final bit, bk,n, is encoded, since bk,n = wk − wt(bn−1
k ).

The probability model (7)-(8) implies that every binary n-

tuple of weight wk = w has the same probability. Since

an arithmetic code encodes a string of probability p using

− log2 p bits, then every bit-plane of the same weight is

adaptive arithmetically encoded using a codeword of the same

length, namely, log2
(

n
wk

)

bits.

IV. SIMULATION RESULTS

The encoding method described in Section III is imple-

mented using adaptive binary arithmetic codes (using software

adapted from [16]) to encode the cubic lattice codevector ℓ1
norm, the bit-plane weights, and the bit-planes. The sign bits

are encoded as “raw,” that is, uncoded, bits. The bit-stream

produced is embedded, and so supports progressive decoding

(although that feature is not used in the results to follow). In

the remainder of the paper this encoding method is referred

to L1-based coding or one-norm coding.

To evaluate the performance of the one-norm encoding al-

gorithm, several sources were encoded, and the rate vs. signal-

to-noise ratio (SNR) performance determined. For simplicity,

as a reference, we select the entropy vs. SNR performance

of a uniform scalar quantizer (USQ), where the entropy is

computed as the zeroeth-order entropy of the quantization

levels. We refer to this as the USQ performance. The USQ

step size is matched to the step size of the cubic lattice

VQ used in the one-norm coder, so in the simulation results

the SNRs of the two encoding methods are identical. The

USQ performance uses empirically computed entropy as the

encoding rate, whereas the one-norm encoding results are

based on actual encoded file sizes.

Fig. 1 compares USQ to the L1-based encoder for vector

dimensions 4, 16, 64, and 256, and a memoryless Laplacian

source. At low encoding rates the curves coalesce, but at high

encoding rate there is a small gap between the ideal USQ rate

and the one-norm encoder rate, with the gap larger for smaller

dimensions. This gap is due to slight coding inefficiencies

in the L1-based encoding of the vector norm, and bit-plane

weights.

Fig. 2 compares USQ entropy vs. SNR to one-norm encoder

performance for a 4-class Gaussian mixture model. The vector

dimension is 8 and the 4 classes are selected to model the vec-

tor energy distribution of audio transform coefficients, as con-

structed in [17]. Each class consists of independent and iden-

tically distributed Gaussian random variables with zero mean

and, respectively, mixture class probabilities 0.4894, 0.2927,

0.0462, and 0.1717, and variances 1.1203, 0.2327, 109.38, and

7.7510. This 4-class model was found to well-model the block

energy dependence observed in the 8-dimensional vectors of

transform coefficients encoded (using the RE8 lattice VQ [9])

in the AMR-WB+ audio coding standard [8]. Note that the

one-norm coder provides a consistent gain of about 1 dB over

the USQ entropy vs. SNR performance. Note also that the

performance is lower-bounded by the Shannon lower bound to

the rate-distortion function, and further that the gap between

the L1-coder performance and the lower bound is 1.53 dB at

large encoding rate, which reflects the granular gain limitation

of cubic lattice quantization.

Fig. 3 compares the one-norm encoder performance for

vector dimension 8 to the USQ entropy vs. SNR curve, for

transform audio data derived from about one minute of music

extracted from four difference audio segments (with sampling

rate 48 kHz). The SNR is computed in the spectrally weighted

transform domain (as in [17], and corresponds to the use of

the RE8 lattice VQ in the AMR-WB+ coder). The results

consider the three different discrete Fourier transform block

lengths used in [8] (namely, N =288, 576, and 1152 samples).

The L1-coder results show a consistent improvement.

Fig. 4 is similar to Figure 3, but considers transform domain

encoding of speech. In AMR-WB+ applications, the transform

excitation mode is observed to be selected to encode roughly

40% of the speech segments [18]. As for the music source,

the L1-coder provides consistent SNR improvment.

V. CONCLUSION

The one-norm-based encoding method described in the

paper can handle arbitrary vector dimension and uses adaptive

binary arithmetic codes for coding efficiency. The method is

especially suitable for encoding transform, subband, or wavelet

data that has little correlation, but displays significant block

energy dependence, as is common in image or audio sources.

Using the approach in [11], the proposed algorithm can also

possibly be applied to other binary lattices.
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Fig. 1. Encoding of memoryless Laplacian source.
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