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Abstract—In this work, we propose a decentralized approach
for energy efficient data-gathering in a realistic scenario. We ad-
dress a major limitation of compressed sensing (CS) approaches
proposed to data for wireless sensor network (WSN), namely, that
they work only on a regular grid tightly coupled to the sparsity
basis. Instead, we assume that sensors are irregularly positioned
in the field and do not assume that sparsifying basis is known
a priori. Under the assumption that the sensor data is smooth
in space, we propose to use a graph-based transform (GBT)
to sparsify the sensor data measured at randomly positioned
sensors. We first represent the random topology as a graph
then construct the GBT as a sparsifying basis. With the GBT,
we propose a heuristic design of the data-gathering where
aggregations happen at the sensors with fewer neighbors in
the graph. In our simulations, our proposed approach shows
better performance in terms of total power consumption for a
given reconstruction MSE, as compared to other CS approaches
proposed for WSN.

I. INTRODUCTION

In wireless sensor networks (WSN), energy efficient data
manipulation and transmission is very important for data
gathering, due to significant power constraints on the sensors.
This constraint has motivated the study of joint routing and
compression for power-efficient data gathering of locally cor-
related sensor network data [1]. Recent work has shown how
practical compression schemes such as distributed wavelets
can be adapted to work efficiently with various routing strate-
gies [2], [3]. The existing transform-based techniques can
reduce the number of bits to be transmitted to the sink, thus
achieving overall power savings. These transform techniques
are essentially critically sampled approaches, so that their cost
of gathering scales up with the number of sensors, which could
be undesirable when large deployments are considered.

This motivated us to apply compressed sensing (CS) ap-
proaches to data-gathering in WSN. Traditional CS approaches
have been focused on reducing the number of measurements,
M , while achieving satisfactory reconstruction of the signal
with the dimension of N (M < N ). When the signal is
K-sparse in a given sparsifying basis, Ψ, and measurement
(sensing) basis, Φ, and Ψ are incoherent, the signal can
be successfully reconstructed with M = O(K logN) mea-
surements [4], [5]. Thus, compared to the critically sampled
approaches, the rate of increase of measurements is lower
than that for the critically sampled approaches because it is a
logarithmic function of N , M = O(K logN).

CS has been considered as a potential alternative in this
context, as the number of measurements required depends on
the characteristics (sparseness) and dimension of the signal [5].
Researchers have proposed various ways to apply CS to WSN
in order to reduce the gathering costs. In [6], it was shown
that CS could also operate using sparse random projections
(SRP) but this work does not consider transport cost to collect
measurements in a multi-hop network. In [7], the potential
benefits of CS for sensor network applications have been
recognized but significant obstacles remain for it to become
competitive with more established (e.g., transform-based) data
gathering and compression techniques. A primary reason is
that CS theoretical developments have focused on minimizing
the number of measurements (i.e., the number of samples
captured), rather than on minimizing the cost of each mea-
surement. To solve this problem, spatially-localized CS was
proposed by optimizing the choice of measurement basis for
a given sparsifying basis, taking into account both the distance
between sensors and a new metric measuring the maximum
energy overlap between measurement basis and sparsifying
basis [8], [9].

CS-based approaches proposed to date have two major
limitations in practice: (i) sensors are assumed to be uniformly
placed on a 2D grid and (ii) performance is evaluated based on
a discrete sparsifying basis, Ψ, defined on the discrete sensor
grid. The regular topology would be useful for monitoring
buildings, bridges, or power plants but is not appropriate
for many other applications such as monitoring of habitat,
wild fire, or battle field. This motivates us to study how the
CS-based approach can be extended to data-gathering with
irregularly positioned sensors. Further, we consider the input
data to be smooth or sparse in space (e.g., in a dense regular
grid), indenpendently of the irregular position of the sensors.
We investigate the use of graph-based transforms (GBT) to
provide a sparse representation of realistic sensor data. In this
paper, we propose a heuristic CS-based approach that exploits
a characteristic of GBT in order to achieve energy efficient
data-gathering among irregularly positioned sensors.

The rest of this paper is organized as follows. We briefly
introduce CS and formulate a practical data-gathering problem
in CS framework in Section II. Then we propose our approach
with graph-based transform (GBT) in Section III, and provide
simulation results to evaluate its performance in Section IV.



II. PROBLEM FORMULATION

A. Compressed Sensing (CS)

In CS the N -sample signal (x) can be recovered from M
measurements or projections (M < N ) onto a sensing (mea-
surement) basis, Φ, if Φ and Ψ are incoherent [4], [5]. More
formally, if a signal, x ∈ <N , is K-sparse in a given basis, Ψ
(i.e., the sparsity inducing basis), x = Ψa, |a|0 = K, where
K � N , then theoretically we can reconstruct the original
signal with M = O(K logN) measurements by finding the
sparsest solution to an under-determined, or ill-conditioned,
linear system of equations, y = Φx = ΦΨa = Ua,
where U is known as the holographic basis. Reconstruction
is possible by solving the convex unconstrained optimization
problem: mina

1
2‖y −Ua‖22 + γ‖a‖1.

B. Signal Model and Random Deployment of Sensors

In this work, we consider a realistic data model with
irregularly positioned sensors. We assume that x ∈ <N is
a vector containing measurements obtained by N sensors in
a 2D region at a given time. We assume that data is spatially
smooth in a regular fine grid but is sampled at N random
irregular locations to form x. This is illustrated by the example
in Fig. 1, where smooth data is generated in a 2D region using
an AR model operating in a 600× 600 grid, then 256 sensors
are randomly deployed, and x is the vector of measured
values at those irregularly placed sensors. Thus, unlike in prior
CS work in this context, it is possible to decouple smooth
data generation (on a regular grid) from (irregular) sensor
placement.
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Fig. 1. Smooth data is generated using an AR model on a fine grid 600×600.
Then, 256 sensors are assumed located in irregular positions. In order to
represent WSN as a graph, the communication range is set as the minimum
distance that results in a connected graph.

Under these realistic assumptions, we use graph-based trans-
forms (GBT) as a sparsifying basis because the transform can
be applied to various deployments of sensors if the topology is
represented by a graph. For the construction of GBT, we first
represent the WSN as a graph, G(V,E) with nodes (sensors)
and links (connections) between sensors as illustrated in Fig. 1.
Note that the links can exist only if the two sensors are

within a specific range. In this work, we set the range as the
minimum, Rmin such that the resulting graph is connected
(i.e., there are no disconnected subgraphs) as shown in Fig. 1.
Since the sensor data is likely to be highly correlated between
adjacent sensors, the links between distant sensors that are
farther apart can be disconnected for a sparser representation.
The construction and the performance of GBT for the irregular
sensor data will be presented in Section III.
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Fig. 2. Link between CS measurements and data aggregation in WSN.

With a given GBT as sparsifying basis, Ψ, any aggregation
scheme can be represented in CS terms by generating the
corresponding measurement matrix, Φ, and using it to recon-
struct the original signal. As shown in Fig. 2, each row of Φ
represents the aggregation corresponding to one measurement:
we place non-zero (e.g., random) coefficients in the positions
corresponding to sensors that provide their data for a specific
measurement, while the other positions are set to zero. Thus,
the sparsity of a particular measurement in Φ depends on the
number of active nodes participating in this aggregation. In
order to achieve low cost aggregation in WSN, we need to
minimize the number of measurements as well as the cost of
each measurement, which depends on both the sparsity of Φ
and the locations of non-zero entries in Φ. Thus, we propose
to aggregate data from a few sensors along shortest-path tree
(SPT), as will be discussed in the next section.

III. PROPOSED APPROACH

In order to achieve a sparse representation of sensor data,
we construct GBT from the graph representation of a WSN,
G(V,E), with nodes (sensors) and links (connections). From
the graph, the adjacency matrix A is formed. Here, A(i, j) =
A(j, i) = 1 ∀i 6= j if the distance between sensor i and j is
smaller than the minimum range, Rmin. Otherwise A(i, j) =
A(j, i) = 0. Then we define the degree matrix D, where
D(i, i) is the number of links connected to the ith sensor and
D(i, j) = 0, ∀i 6= j. Finally, the Laplacian matrix can be
defined as L = D −A.

After the eigenvalue decomposition of the Laplacian matrix,
L, we use the eigenvector matrix as a sparsifying basis, Ψ,
whose columns are the eigenvectors of L. Note that Ψ is
orthogonal because L is symmetric, leading to real eigenvalues
and a set of orthogonal eigenvectors (refer to [10] for more
details). Fig. 3 shows the performance of the GBT as a
sparsifying basis. Although the sensor data is not perfectly
sparse, the GBT shows a good compressibility, i.e., more
than 99% of energy is compacted in a few GBT coefficients.
Note that for a given underlying smooth data the level of
compressibility in the GBT will depend on the specific location



of the sensors. But seeking solutions that are sparse on the
GBT (instead of in the original regular grid) allows us to
accommodate realistic irregular sensor deployments.
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Fig. 3. (a) Compressible WSN data in the GBT and (b) its zoomed-in version.
The x-axis shows the indices of GBT coefficients and the y-axis shows the
cumulated sum of normalized energy of GBT basis functions. The data is
generated by a second order AR model described in Section IV.

For CS-based data-gathering, we consider two approaches:
SPT aggregation and GBT-aware aggregation. For the SPT
aggregation, we randomly choose a certain number of sen-
sors, and aggregate data of all the sensors on the SPT as
proposed in [7]. Then, the linear combinations of data with
Gaussian random coefficients are transmitted along the SPT.
Alternatively, we propose the GBT-aware aggregation that
selectively chooses the sensors along SPT. The choice is
made by considering the number of the links connected to
the sensors in the graph that is used for GBT construction as
in Fig. 1. From a certain number of randomly chosen sensors,
the aggregation happens along the SPT as in the first approach.
But, an aggregation takes place at a sensor if the number of
neighbors connected to the sensor is less than a threshold.
Otherwise, the sensor relays the received data to its parent
sensor along SPT.

The proposed approach is based on our previous work,
which showed that projections with less maximum energy
overlap, β, with the sparsifying basis (i.e., more evenly
distributed energy overlap between them) lead to better re-
construction [9]. Also, we observe that the energy of GBT
functions (i.e., columns of Ψ) is unevenly distributed over
sensors, and higher energy is compacted in the sensors that are
connected to more neighbors, as shown in Fig. 4. Therefore,
the aggregation over the sensors with fewer neighbors has
higher probability to achieve more evenly distributed energy
overlapped between the aggregation and the GBT functions,
which leads to higher reconstruction accuracy.

The threshold is empirically chosen in this work. Once the
threshold is determined, the threshold does not need to be
updated if the topology remains the same (i.e., if the graph
does not change). Thus, in our proposed approach the complete
GBT is only required at the sink to reconstruct the received
signal, so that sensors in the field do not need to know the
complete topology of the network in order to transmit data.
This indicates that the aggregation decision can be based on
local characteristics of the network, leading to a decentralized
operation.
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Fig. 4. The number of neighbors vs. average absolute energy with standard
deviations. For a given number of neighbors, NN , the energy metric is
computed by averaging absolute energy of the GBT functions (i.e., column
vectors of Ψ) on the nodes connected to NN neighbors in the graph used for
the GBT construction as shown in Fig. 1.
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Fig. 5. 256 sensors in irregular positions and the corresponding SPT.

IV. SIMULATION RESULTS

In this simulation, a second order AR model is used
to generate 50 realizations with high spatial data correla-
tion as shown in Fig. 5. More specifically, the AR filter
H(z) = 1

(1−ρejw0z−1)(1−ρe−jw0z−1)
, where ρ = 0.99 and

w0 = 359. For the simulation, 256 sensors are randomly
positioned in the 600×600 grid and the data measured at each
sensor is represented using 12 bits. Also, the measurements
(or down-sampled data) are transmitted along the SPT as
shown in Fig. 5. Note that the locations of the sensors do
not change throughout our simulations. Also, for measur-
ing energy consumption, we adopt a realistic cost model
proposed in [11]. Energy in the sensors is dissipated when
both transmitting, ET (k,D), and receiving data, ER(k). The
energy consumption in k bit transmission over a distance D is
ET (k,D) = Eeleck + εampkD

2 Joules and the consumption
in k bit reception is ER(k) = Eeleck.

In our simulation, we compare five different ap-
proaches: (i) SPT aggregation (CSSPT ) [7], (ii) GBT
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Fig. 6. Total energy consumption vs. MSE. The x-axis is the total energy
consumption in Joules and the y-axis is MSE. The curves are generated by
taking averages over 50 realizations of the sensor data.

interpolation(itplGBT ) [12], (iii) raw transmission without any
compression, (iv) wavelet-based data gathering (Haar-like) [2],
and (v) our proposed method (CSGBT ). For CSSPT , we
randomly choose M sensors, and aggregate data of all the
sensors on the SPT from those sensors to the sink. For each
aggregation, all the sensors on the SPT linearly combine
the received aggregate with their readings using Gaussian
random coefficients until the aggregates reach to the sink [7].
For itplGBT , we randomly choose M sensors and transmit
the sampled data to the sink along the SPT. Then, data is
reconstructed by the graph interpolation technique proposed
in [12]. For CSGBT , the aggregation happens along the SPT
as in CSSPT from M randomly chosen sensors. But, the
aggregation takes place at a sensor if the number of neighbors
connected to the sensor is less than a threshold. We empirically
choose the threshold as 5, thus the aggregation happens at the
nodes on SPT if the nodes have fewer than 5 neighbors in
the graph in Fig. 1. For abovementioned approaches, we fix
the quantization step size and change M to generate curves in
Fig. 6. For the raw data transmission, every sensor transmits
its reading (represented by 12 bits) to the sink along SPT.
The wavelet-based approach performs the Haar-like transform
in network and transmit the quantized transform coefficients
to the sink [2]. The curves for the raw data transmission
and wavelet approach are generated with different levels of
quantization.

The result in Fig. 6 shows that our proposed approach
outperforms the other methods in terms of the energy con-
sumption and the reconstruction accuracy except for the
wavelet-based approach. The GBT interpolation technique
shows worse performance because it assumes a bandlimited
graph signal supported only at frequencies [0, w], but the cutoff
frequency, w, in the graph of our simulation data is not small
enough with respect to the downsampling rate (i.e., the ratio
of the number of sensors providing samples with respect to
the total number of sensors), so that the reconstruction quality
is degraded.

The wavelet-based approach works better than CSSPT
and CSGBT because the sensor signal is compressible but
not exactly sparse as shown in Fig. 3 (b) and the CS-
based approaches reconstruct signal from the measurements
with quantization error caused by consecutive quantization
processes (i.e., the quantization error propagates as more
aggregations occur along SPT). Our proposed approach have
some limitations that could be overcome with further work
(e.g. quantization error and the transmission overhead to
signal to the sink what random coefficients were used by the
sensors). With respect to the wavelet-based approach, however,
our proposed approach has the advantage that aggregation is
simple and robust to the changes of sensor locations as long as
the graph remains unchanged, which leads to the same GBT.

V. CONCLUSION

In this paper, we investigate how to overcome major short-
comings of CS approaches applied to WSN by taking into
consideration practical scenario where sensors are irregularly
positioned in 2D smooth field. The sensor data generated
by the second order AR model is sparsely represented by
graph-based transform (GBT) and successfully reconstructed
by the proposed GBT-aware aggregation along SPT in energy
efficient way. This approach can be decentralized since GBT
is only required at the sink to reconstruct the received signal,
so that sensors in the field do not need to know the complete
topology of the network in order to transmit data. We plan
to investigate the effect of different topology and density of
sensors in our future work.
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