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Abstract—In this paper, we propose a new lattice-based adap-
tive notch filtering algorithm which has faster convergence char-
acteristics than Regalia’s Simplified Lattice Algorithm (SLA).
Our algorithm makes use of the weighted sum of SLA and the
Lattice Gradient Algorithm. We prove that the mean update term
of our algorithm is larger than that of SLA when the input signal
consists of a single sinusoid and a background white noise. Fur-
thermore, our algorithm does not change the local convergence
characteristics near the sinusoidal frequency. Consequently, the
proposed algorithm achieves faster convergence than SLA. A
simulation result shows that the proposed algorithm finds the
sinusoidal frequency faster than SLA.

I. INTRODUCTION

Adaptive notch filters are useful when we want to find
an unknown frequency of a sinusoid immersed in broadband
noise. There are many applications of adaptive notch filters
such as communication systems, control systems and howling
suppression systems. Many algorithms and approaches for
adaptive notch filtering have been developed in the past. For
example, the algorithm based on constrained poles and zeros
is proposed in [1]. The use of allpass sections is introduced
in [2]. In [3] and [4], the normalized lattice structure is
applied to the allpass-based adaptive notch filtering. Moreover,
Ref. [5] developed a complex adaptive notch filter using the
normalized lattice structure. We focus on the Lattice Gradient
Algorithm (LGA) [4] and the Simplified Lattice Algorithm
(SLA) [3], because they are based on the allpass filter and
therefore have some attractive features. These algorithms can
achieve unbiased estimation of the frequency even if white
background noise is present. Furthermore, they can tune the
notch frequency and the notch bandwidth independently.

In order to find the unknown frequency of the sinusoid, LGA
tries to minimize the cost function using its gradient. However,
this causes the problem that the adaptation becomes very
slow when the notch frequency is distant from the sinusoidal
frequency. On the other hand, SLA does not use the cost
function and improves the convergence speed in this situation.
The performance of adaptive notch filtering is dominated
by the mean update term, which represents how much the
parameter is expected to change. In [4], it is claimed that the
mean update term of SLA is always larger than the one of
LGA when both have the same local convergence behavior.
Therefore, SLA achieves much faster convergence especially
in the notch frequencies which are distant from the sinusoidal
frequency.

In this paper, we propose a new lattice-based adaptive notch
filtering algorithm which has better mean update term than
SLA. Our algorithm extends SLA by using the weighted sum
of SLA and LGA. We also make a simulation and show
the proposed algorithm’s superiority over SLA in finding the
sinusoidal frequency.

II. ADAPTIVE NOTCH FILTERS BASED ON NORMALIZED
LATTICE STRUCTURE

Here we consider the situation where the input signal u(n)
consists of a single sinusoid s(n) and the additive noise w(n):

u(n) = s(n) + w(n)
= A sin(ωsn + φ) + w(n) (1)

where A is the amplitude, ωs is the unknown frequency and
φ is the initial phase of the sinusoid s(n). The initial phase
φ is a random variable uniformly distributed in [0, 2π). The
additive noise w(n) is the zero-mean white noise.

The notch filter used in LGA and SLA has the following
transfer function [3], [4]:

H(z) =
1 + sin θ2

2
1 + 2 sin θ1z

−1 + z−2

1 + sin θ1(1 + sin θ2)z−1 + sin θ2z−2

(2)

where θ1 is the notch frequency parameter and θ2 is the notch
bandwidth parameter. The notch frequency ω0 and the 3-dB
attenuation bandwidth Ω are respectively related to θ1 and θ2

as

ω0 = θ1 − π/2 (3)

Ω = 2 tan−1 1 − sin θ2

1 + sin θ2
. (4)

Equations (3) and (4) show that ω0 and Ω depend only on
θ1 and θ2, respectively. Hence the notch frequency and the
notch bandwidth can be independently tuned. This notch filter
is based on the normalized lattice structure. The block diagram
of this notch filter is shown in Fig. 1.

In order to find the unknown frequency ωs, LGA and SLA
update the parameter θ1 using the following algorithms [3],
[4], respectively:

θ1(n + 1) = θ1(n) − µ∆y(n)y(n) (LGA) (5)
θ1(n + 1) = θ1(n) − µx1(n)y(n) (SLA). (6)

The parameter µ is the adaptation step size. In (6), x1(n)
is a state variable of the notch filter and SLA uses this



to update the notch frequency. In (5), the signal ∆y(n) is
used in LGA and ∆y(n)y(n) is approximately propotional to
∂E[y2(n)]/∂θ1(n) which is the gradient of the cost function.
The signal ∆y(n) is obtained by filtering x1(n) using the
bandpass filter G(z) = 1 − H(z) which is shown in Fig. 2.

We next address the mean update term [4], [5] which rep-
resents how much the parameter is changed by the algorithms
in mean. The mean update term determines the convergence
behavior of an adaptive notch filtering algorithm. The mean
update terms of LGA and SLA are defined by

fLGA(ω0) ≡ −E[∆y(n)y(n)] (LGA) (7)
fSLA(ω0) ≡ −E[x1(n)y(n)] (SLA) (8)

respectively. By using Parseval’s theorem, the mean update
terms can be expressed as follows:

fLGA(ω0) = −E[∆y(n)y(n)]
= −〈F (z)G(z),H(z)〉S (9)

fSLA(ω0) = −E[x1(n)y(n)]
= −〈F (z), H(z)〉S (10)

where F (z) is the transfer function from the input u(n) to
x1(n):

F (z) =
cos θ1 cos θ2z

−1

1 + sin θ1(1 + sin θ2)z−1 + sin θ2z−2
. (11)

In addition, 〈H1(z),H2(z)〉S denotes the inner product of two
functions H1(z) and H2(z) induced by the input signal u(n)
[4] defined as

〈H1(z),H2(z)〉S ≡ 1
2π

∫ π

−π

H1(ejω)H∗
2 (ejω)S(ω)dω (12)

where S(ω) is the power spectral density function of the input
signal u(n):

S(ω) =
πA2

2
[δ(ω − ωs) + δ(ω + ωs)] + σ2. (13)

Here σ2 is the variance of the white noise. Figure 3 shows the
mean update terms of LGA and SLA. This figure shows that
SLA always has larger mean update term than LGA for the
same local convergence properties:

∂fLGA(ω0)
∂ω0

∣∣∣∣
ω0=ωs

=
∂fSLA(ω0)

∂ω0

∣∣∣∣
ω0=ωs

. (14)

Therefore, SLA has better convergence property than LGA.

III. PROPOSED METHOD

In this section, we propose a new adaptive notch filtering
algorithm which has better mean update term than SLA. The
block diagram of our algorithm is shown in Fig. 4 and the
adaptation algorithm is given by

θ1(n + 1) = θ1(n) − µψ(n)y(n) (15)

where µ is the adaptation step size and y(n) is the notch
output. We give the signal ψ(n) as follows:

ψ(n) = kx1(n) + (1 − k)∆y(n) (16)

Fig. 1. Block diagram of the notch filter H(z) based on the normalized lattice
structure.

Fig. 2. Block diagram of the bandpass filter G(z) which is used in LGA.

where k is a constant, x1(n) is the state variable used in SLA
and ∆y(n) is the signal used in LGA. Therefore the proposed
algorithm is a weighted sum of LGA and SLA. As special
cases, the proposed algorithm is equivalent to LGA and SLA if
k = 0 and k = 1, respectively. However, we set the parameter
k to be k > 1 in our proposed algorithm.

We next prove the facts that our algorithm has better
convergence property than SLA and the more improvement of
the convergence property is achieved when larger k is used. In
order to show these facts, we analyze the mean update term.
The mean update term of our proposed algorithm is defined
as follows:

fprop(ω0) ≡ −E[ψ(n)y(n)]. (17)

From (16) and (17), we obtain the following relationships:

fprop(ω0) = kfSLA(ω0) + (1 − k)fLGA(ω0)
= fSLA(ω0) + (k − 1)fdiff(ω0) (18)

where fdiff(ω0) ≡ fSLA(ω0) − fLGA(ω0). In the proposed
algorithm, the component fdiff(ω0) plays an important role to
improve the mean update term. For k > 1, the term fdiff(ω0)
is increased and this improves the mean update term without
effect on the local convergence property at ω0 = ωs. This is
because fdiff(ω0) has zero gradient at ω0 = ωs and fdiff(ω0)
has the same sign as fSLA(ω0). We will prove them in the



Fig. 3. Mean update terms of LGA and SLA with ωs = 0.4π, Ω = 0.1π
and A = 1.0.

following. fdiff(ω0) is calculated as below:

fdiff(ω0) = fSLA(ω0) − fLGA(ω0)
= 〈F (z)G(z),H(z)〉S − 〈F (z), H(z)〉S
= 〈F (z)[1 − H(z)],H(z)〉S − 〈F (z), H(z)〉S
= −〈F (z)H(z), H(z)〉S

= −A2

2
|H(ejωs)|2Re[F (ejωs)]. (19)

Here it follows that

−A2

2
Re[F (ejωs)] = fSLA(ω0) (20)

because

Re[F (ejωs)] = (1 + sin θ2) cos θ1 cos θ2
cos ωs + sin θ1

|D(ejωs)|2
(21)

fSLA(ω0) = −A2

2
(1 + sin θ2) cos θ1 cos θ2

cos ωs + sin θ1

|D(ejωs)|2
(22)

where D(z) is the denominator polynomial of H(z):

D(z) = 1 + sin θ1(1 + sin θ2)z−1 + sin θ2z
−2. (23)

Therefore, from (19) and (20), we obtain the simple expression
on fdiff(ω0):

fdiff(ω0) = |H(ejωs)|2fSLA(ω0) (24)

and its derivative at ω0 = ωs becomes

∂fdiff(ω0)
∂ω0

∣∣∣∣
ω0=ωs

=
∂|H(ejωs)|2

∂ω0
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ω0=ωs

fSLA(ωs)

+ |H(ejωs)|2 ∂fSLA(ω0)
∂ω0

∣∣∣∣
ω0=ωs

= 0 · 0 + 0 · ∂fSLA(ω0)
∂ω0

∣∣∣∣
ω0=ωs

= 0. (25)

This means that increasing the component fdiff(ω0) does not
change the local convergence behavior. Additionally, from the

Fig. 4. Block diagram of the proposed algorithm.

Fig. 5. Mean update terms of the proposed algorithm for ωs = 0.4π, Ω =
0.1π and A = 1.0.

fact that |H(ejωs)|2 ≥ 0 and (24), we can show that fdiff(ω0)
and fSLA(ω0) have the same sign:

fdiff(ω0)
fSLA(ω0)

≥ 0. (26)

This proves that the proposed algorithm has better mean
update term than SLA in all ω0 by setting k to be k > 1. Figure
5 shows the mean update term of the proposed algorithm.
From this figure, we see that the proposed algorithm has larger
mean update term than SLA for the same local convergence
property. In addition, the mean update term becomes larger as
k increases.

IV. SIMULATION EXAMPLE

Figure 6 shows the frequency estimate with the proposed
algorithm and SLA. In this simulation we used the sinusoid
with the amplitude A = 1.0 and the white Gaussian noise
of which variance is adjusted to have a signal-to-noise ratio
of 0 dB. The unknown frequency ω0 of the sinusoid changes
suddenly every 5000 samples. The bandwidth of the notch
filter is Ω = 0.1π and the step-size parameter is µ = 0.004.
The parameter k for the proposed algorithm is set to be
k = 2.0. From Fig. 6 we see that the proposed algorithm
finds the unknown frequency faster than SLA. As for the local
convergence property at ω0 = ωs, we see the same estimation
errors both in the proposed algorithm and SLA.



(a)

(b)

Fig. 6. Frequency estimates for the two adaptive notch filtering algorithms:
(a) the proposed algorithm and (b) SLA.

It should be noted that, for too large k, the mean update
term becomes too large and it causes a problem: in such a
case, we experimentally confirmed that the local convergence
property of our proposed algorithm is different form that of
SLA. Thus the analysis for the upper bound of k that keeps
the local convergence property is one of our future tasks.
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V. CONCLUSIONS

We developed a new lattice-based adaptive notch filtering
algorithm which has better mean update term than SLA. In
the proposed algorithm, we improved the mean update term
by using the weighted sum of LGA and SLA. The simulation
result showed that the proposed algorithm finds the unknown
frequency faster than SLA. Moreover, the convergence speed
of the notch frequency is increased when the parameter k is
set to be large.
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