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Abstract—In this paper, a robust visual tracking method is
proposed by casting tracking as an estimation problem of the
joint space of non-rigid appearance model and state. Conven-
tional trackers which use templates as the appearance model
do not handle ambiguous samples effectively. On the other
hand, trackers that use non-rigid appearance models have low
discriminative power and lack methods for restoring methods
from inaccurately labeled data. To address this problem, multiple
non-rigid appearance models are proposed. The probabilities
from these models are effectively marginalized by using the
particle Markov chain Monte Carlo framework which provides
an exact and efficient approximation of the joint density through
marginalization and the theoretical evidences of convergence. An
appearance model combines multiple classification results with
different features and multiple models can infer an accurate
solution despite the failure of several models. The proposed
method exhibits high accuracy compared with nine other state-of-
the-art trackers in various sequences and the result was analyzed
both analyzed both qualitatively and quantitatively.

I. INTRODUCTION

Visual tracking is one of the most important application in

the field of computer vision and a few recent trackers have

shown promising results [1], [2], [3]. Most existing track-

ers use templates or patches as appearance models through

bounding-box representation for its simplicity and regularity.

However, these models cannot effectively distinguish between

the target and its background, particularly for deformable

objects. These models may also learn ambiguous templates

which misalign the target.

Several non-rigid appearance models have been employed

to address this problem [4], [5], [6], [7], [8]. Appearance

models that use elements with non-regular shapes, such as

pixels or superpixels, can separate the target precisely from its

background. However, these models have low discriminative

power and are prone to misclassifying elements.

In [4], the authors trained a random forest to force each

pixel to vote for a center position of the target. The center

position is then estimated from the votes. The pixels voted to

the estimated center are regarded as pixels with positive labels.

This method can sometimes work well with highly deformed

objects, but it often works poorly. Failure occurs when several

pixels in the background vote for the estimated center or when

several pixels in the target vote for the wrong position by

mistake or because of ambiguity. Once wrongly labeled pixels

are included in the positive pixels, the results worsen because

of the lack of a reintegration step.

Another approach was introduced in [5], where elements are

clustered by color and their confidence scores of being target

elements are computed. Although this approach is a simple

and effective means of classifying elements, it still exhibits

several problems. First, spatial information is not considered

effectively. All cluster index assignments are computed in the

feature space and not in the spatial domain. For example, a

red color may be the discriminative feature in several parts of

the target but not in other parts. Therefore, simply clustering

features without spatial information will be hazardous. Second,

the approach is highly sensitive to color information. If a

target has colors similar to the background, then several

clusters may have differently labeled superpixels and may

cause an inaccurate estimation of confidence. In this case,

other information should be employed to distinguish the target

from the background.

To alleviate these problems, we propose a visual tracking

method that uses multiple non-rigid appearance models to

handle ambiguities near the boundaries of the target object

and to combine multiple features effectively. The method casts

the tracking problem as an inference problem in the joint

space of non-rigid appearance model and state (JISAT). An

appearance model linearly combines locally trained classifiers

with different features and works as a particle in sequential

Monte Carlo (SMC). The proposed method uses the particle

Markov chain Monte Carlo (PMCMC) to draw particles and

candidate states from the joint space, thus allowing us to

obtain the appearance models and a state simultaneously.

This method with the multiple feature combination from the

multiple appearance models allows us to handle the ambiguity

in classification. A number of models fail to classify several

elements, but the remaining models with higher weights can

correctly classify those elements, thus allowing an accurate

estimation of the state possible.

II. PARTICLE MARKOV CHAIN MONTE CARLO

The Markov chain Monte Carlo (MCMC) is a sampling

method that accepts samples with a probability of acceptance

ratio. In the Metropolis-Hastings (MH) method, the acceptance

ratio is designed as follows:

A(x, x∗) = 1 ∧ p(x∗)q(x|x∗)
p(x)q(x∗|x) , (1)

where ∧ is a minimum function, and q(·|·) is a proposal

distribution. The main problem of the MCMC is that the



performance is sensitive to the selection of the proposal

distribution. The MCMC also exhibits degeneracy of quality

from the joint distribution. To overcome these problems,

reference [9] proposed the particle marginal MH (PMMH)

sampler to update a static variable, θ, and the hidden states,

x0:t, simultaneously. The key concept of [9] is using an

approximate distribution pθ(x0:t|y0:t) with SMC as a proposal

density q(·|·). In each iteration, a static variable θ∗ is drawn

from q(·|θ), and an SMC draws the samples x∗
0:t from an

estimated distribution p̂θ∗(·|y0:t). The marginal likelihood es-

timate p̂θ∗(y0:t) and acceptance ratio are then computed as

follows:

1 ∧ p̂θ∗(y0:t)p(θ
∗)

p̂θ(y0:t)p(θ)

q(θ|θ∗)
q(θ∗|θ) . (2)

The marginal density instead of the joint density, is notably

involved in the expression. Therefore, we only design q(θ∗|θ)
and convergence is guaranteed under a mild assumption, as

detailed in [9].

III. TRACKING VIA SAMPLING APPEARANCE

MODELS-STATE SPACE

The details of the proposed method are presented in this

section.

A. Non-rigid Appearance Model

The proposed method employs boosted decision trees as

classifiers and superpixels [10] as elements for representation.

An image is divided into a grid of overlapped patches, P i,

to use the spatial information. For each local region, a set of

superpixels,
{
Si

}
, is constructed, and F classifiers, Ci,f , are

allocated where each classifier uses a different feature. The N
appearance models, M i,j = (

{
wi,j,f

}
, θi,j), are also allocated

to a region. A model or a particle combines the classification

results using weights,
{
wi,j,f

}
, and then thresholds using a

certain value, θi,j . Each particle represents a different combi-

nation and confidence of the classification results. The particles

generate a binary patch and color histogram for evaluation

according to the probability that

p(M i,j
t ) = p(θi,j)

∏
f

p(wi,j,f ), (3)

where θi,j ∼ N (0.5, σth), wi,j,f ∼ N (wi,j,f
0 , σw), and

wi,j,f
0 is an initial weight. These values are also propagated

along the SMC steps through N (0, σw) and N (0, σth). The

role of a single particle is illustrated in Fig. 1.

B. Sampling Joint Variables

1) Appearance Model Construction: In this method, a

tracking problem is casted as an estimation of the maximum a

posteriori (MAP) solution of the joint space of the appearance

models and a state through PMMH. First, the appearance

models are drawn to provide a simple proposal distribution.

Second, the states are sampled using approximated marginal

distributions as computed earlier. Most of the procedures in

SMC, the first step, have been described except for the particle
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Fig. 1. A single particle representing an appearance model combined with
the responses of the local classifiers. The weights of the responses and a
thresholding value generate a binary classification response. A color histogram
is then extracted from the mask.

evaluation and marginalization of binary patches. Particle

evaluation is conducted by comparing the histograms of the

particles and a model. We assume that the particles with

high weights represent the target efficiently. We then define a

model with K particles with the highest weights. We evaluate

the particles by comparing the histograms with the model

and computing the overlapped regions. The binary masks and

histograms can be compared with a particle because the model

consists of particles. The weight of the j-th particle from the

m-th model component is computed by

wi,j,m = exp

(
λ× |ri,j ∩Ri,m|

|ri,j ∪Ri,m| × S(hi,j , Hi,m)

)
, (4)

where ri,j and Ri,m are the regions of the particle and the

model, respectively; and hi,j and Hi,m are their respective

histograms. The final weight of the particle is then determined

by

wi,j =
∑
m

W i,mwi,j,m. (5)

The marginal probability of a superpixel can be computed

from the particles by

p(Sk) =
∑
i,j

wi,j li,jk , (6)

where Sk denotes the k-th superpixel and li,jk denotes

the label of the k-th superpixel determined by M i,j . The

superpixel index is notably unrelated to the local region index

i because the superpixel can lie on multiple regions. The

marginalization of the local responses is illustrated in Fig. 2.

2) Sampling States: When the appearance models are

drawn, the MH method is used to draw the state candidates.

A state candidate, X∗, is simply drawn from the multivariate

Gaussian distribution with a fixed σ and X(i) as a mean.

The sample is accepted with the probability of the acceptance
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Fig. 2. Marginalized local responses. A local patch has N particles, which
indicate multiple binary segmentations and color histograms. The responses
must be marginalized to compute the acceptance ratio in the MH step. The
first row shows the computation of the particle weights using histograms and
masks. The second row shows the marginalization using binary segmentation
masks and the weights computed earlier. K particles with the largest weights
are chosen to construct the model.

ratio after sampling. To compute the acceptance ratio, pX∗(Y ),
which is a marginal probability given a candidate X∗, must

be computed by

p̂X∗(Y ) =
∑

(x,y)∈R∗
p(x, y) =

∑
(x,y)∈R∗

∑
k

ISk
(x, y) ∗ p(Sk),

(7)

where (x, y) is the pixel position in the image, R∗ is the

region of X∗, and ISk
(·, ·) is an indicator that returns 1 if

the position is within the region of a superpixel Sk. The

acceptance ratio is computed by

A(X(i), X∗) = 1 ∧ p̂X∗(Y )

p̂X(i)(Y )

q(X(i)|X∗)
q(X∗|X(i))

. (8)

3) Model Update: The PMMH jointly draws samples as

described in Eqs. (3-8) for each frame t in the sequence

and stores a joint variable (X
(i)
t ,

{
M i,j

t

}
) with the highest

probability. X
(i)
t then becomes the estimated state in t, and{

M i,j
t

}
are used as the initial particles for the next frame.

Drawing all particles in each iteration is impractical. There-

fore, the particles are drawn once in each frame and are then

reused, which does not harm the convergence of PMMH as

stated in [9]. To update the model, the best K particles among

the stored particles are collected as the model for each N t

frame. Similarly, the local classifiers are also retained using the

collected superpixels with labels. The labels of the superpixels

are generated by thresholding the local classifier responses

with 0.5.

IV. EXPERIMENTAL RESULTS

For the experiments, seven video sequences were tested,

namely, basketball, diving, fx, gymnastics, faceocc, twinings

Fig. 3. The tracking results of JISAT (with fixed size) in the basketball
sequence. The frame numbers of the figures in the first row are 5, 25, 45, 65,
and 85. The numbers in the second row are 105, 125, 145, 165, and 185.

Fig. 4. Marginalized probabilities of the superpixels of JISAT (with fixed size)
in the basketball sequence. The frame numbers of the figures in the first row
are 5, 25, 45, 65, and 85. The numbers in the second row are 105, 125, 145,
165, and 185.

and lazysong. The proposed methods (JISAT-f, -sc, -sz+a, -

sc+a) were compared with nine state-of-the-art tracking meth-

ods, namely, BHT [11], HT [4], LGT [6], IVT [2], MIL

[1], BHMC [7], VTD [3], MTT [12], SPT [5]. The proposed

method is implemented using C++, and OpenCV, and tested on

a PC with a 3.30 GHz CPU. The superpixel segmentation was

obtained by [10] and [13], and the optical flow was computed

by [14]. Three kinds of features are used: FREAK [15], optical

flow, and color.

A. Qualitative Analysis

The tracking results and marginal masks of JISAT in a

basketball sequence are respectively shown in Figs. 3 and

4. The proposed method successfully tracked the target in

the basketball sequence. In this test sequence, the basketball

player moves abruptly and deforms severely even with motion

blur and illumination changes. Tracking the target using color

information appears easy because the target wears a white

uniform. However, the reflections and shadows on the uniform

of the player make the color feature unreliable. The uniform

also lacks features because of the homogeneity in color.

Another challenge in the sequence is the appearance of the

other player wearing a uniform with a similar color in #147

to #190. JISAT tracked the target successfully despite these

challenges. SPT, which has a structure similar to that of our

method, failed to track the target in #125 to #130, as shown in

Fig. 5, but recovered the correct target state at #247 because

of its false detection of occlusion. HT, another tracker based



Fig. 5. Failure case of SPT in basketball sequence. Frame numbers of figures
are 125-130. Due to abrupt motion and static background, the tracker failed
to track the target.

Fig. 6. Tracking results of HT in basketball sequence. Frame numbers of
figures are 4, 5, and 6. Many trackers based on a non-rigid appearance model
suffer from the drift problem.

on the non-rigid appearance model, also failed to track the

target as illustrated in Fig. 6. Most of the trackers based on

rigid appearance models failed to track the target. The error

of the best one tracker, MIL, was approximately three times

larger than that of JISAT.

V. QUANTITATIVE ANALYSIS

The average center position errors of the trackers for the

seven test sequences are summarized in Table I. The errors

colored red and blue represent the smallest and second smallest

errors for each test sequence, respectively. Four different state

constraints were used for JISAT: fixed-size (f), scale (sc), size

(sz) and angle (a). When the tracker samples candidates, the

position, and one or two constraints varies. One of the JISAT

results ranks first or second place among the trackers, except

for the faceocc sequence. However, the performance of JISAT

with state constraints heavily relies on the characteristics of

the sequences. LGT did not work on the basketball sequence.

VTD tracked the basketball sequence for a longer period so

it is marked. JISAT is similar to SPT because of the use

of the superpixel as a basic component of the appearance

model and of the color histogram as a feature. However, JISAT

outperforms SPT in all sequences, thus indicating that the

fusion of multiple features and models can effectively increase

the accuracy of the estimation.

VI. CONCLUSIONS

In this paper, an efficient tracker using multiple non-rigid

appearance models was proposed for tracking deformable

objects. The design of the appearance model was conducted

by drawing particles from the density of the appearance model

in a particle filter framework. The tracking procedure was

alleviated by the sampling state candidates and particles in the

PMMH framework. In the experiments, the proposed method,

TABLE I
AVERAGE CENTER POSITION ERRORS OF THE TRACKERS: FIXED-SIZE (F),

SCALE (SC), SIZE (SZ), AND ANGLE (A) ARE THE STATE CONSTRAINTS

seq. [11] [4] [6] [2] [1] [7] [3] [12] [5]
JISAT

F SC SZ+A SC+A

bask. 158 183 N/A 270 90 123 161* 279 43 29 34 37 37

div. 74 76 15 68 76 35 85 96 110 37 32 145 75

fx 69 67 70 37 43 30 31 145 N/A 18 24 45 54

gym. N/A 108 99 62 42 29 22 41 186 25 82 16 11

face. 29 35 19 16 32 27 8 16 161 N/A 75 43 32

twin. 34 31 22 20 10 29 7 11 16 26 7 7 6

lazy. 115 165 70 57 87 72 22 83 46 N/A 42 51 33

JISAT, performed well in real-world scenarios because of its

adaptability to local appearance changes and its robustness to

segmentation failure.
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