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Abstract—A depth map is inherently double-faced, one single
depth map can provide two closely related 3D-vision parameters
(i.e. the disparity s and the distance z). Most existing depth map
compression techniques considered only one of them at a time,
rather than addressing the effect of compression for the two
parameters simultaneously. In order to remedy this shortage, a
new distortion function is proposed and integrated into HEVC 3D
compression framework to examine the effectiveness with respect
to s and z at the same time. Experimental results show that, with
the aid of the proposed distortion function, the rate-distortion
performance of the distance quality will be significantly enhanced
(from 0.5 dB to 8 dB), while keeping the corresponding quality of
disparity almost the same. In addition to the coding performance
improvements, we also discovered some interesting phenomenons
that never occurred in traditional compression framework. We
expect this work can inspire more interesting research works on
depth map compression.

I. INTRODUCTION

The booming of low-cost depth cameras (e.g. Kinect) en-
abled numerous novel vision-based applications and made
great impact on the computer vision research area. On the
other hand, the advances of 3D display technologies and the
great success of 3D movies inspired the developments of new
3D video data formats (e.g. multi-view plus depth [1]) and
the HEVC-based 3D video compression standard. For a given
depth map, we can utilize the physical distance, z, between
an object and the depth camera for developing various vision-
based applications. We can also incorporate the same depth
map to compute the binocular disparity, s, for providing 3D
content viewing. That is, one single depth map possesses two
related but different physical quantities, s and z, which can be
applied to different application domains.

The depth map compression is one of the core research
topics in 3D video compression. The depth map has been
applied to image based rendering process for virtual view
synthesis [2], [3]. The analyses of rendering processing with
depth information were conducted in [4], [5]. The research
works [6]–[10] took the rendering results into account during
the depth map compression.

The studies [11]–[13] of joint color/depth compression
showed there is certain coding gain by utilizing the relations
between the color image and the depth map. The depth map
can also reflect the motion activities which was utilized for fast
mode selection [14]. A depth map has more smooth regions

Fig. 1. The inversely proportional relation between the disparity s and the
distance z of a depth map.

than that of the corresponding color image, where [15] defined
them as the plate-based bases for conducting the depth map
compression. The study [16] proposed a reconstruction filter
for depth map coding by using an up/down sampling approach.
The view scalable issue is a new dimension for scalability
which was addressed in [17].

The existing compression techniques only addressed one
aspect (e.g. disparity) of a depth map. However, there are
two meaningful physical parameters in a depth map, s and
z, which are inversely proportional to each other (i.e. s ∝ 1

z ).
Figure 1 shows the relation between the disparity s and the
distance z, where smax and smin correspond to zmin and zmax,
respectively.

Due to the above mentioned double-faced characteristic, the
compression of a depth map needs a new view point on the
integrity of a data with multiple physical meanings. In order to
address the qualities of disparity and distance simultaneously,
we have to take both of them into consideration during the
rate-distortion optimization procedure for conducting the depth
map compression.

The rest of this paper is organized as follows. Section II
introduces the computation of the disparity s and the distance
z in a double-faced depth map. Section III describes the
proposed method for depth map compression. Section IV
presents the experimental results and Section V concludes this
work and discusses the future works.
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II. THE DOUBLE-FACED DEPTH MAP

The distance z and the disparity s refer to the same current
visible objects. The relation between the disparity s and the
distance z is

s =
f ·∆
z

, (1)

where f denotes the focal length and ∆ stands for the inter-eye
distance.

From Eq. (1), the disparity s and the distance z are inversely
proportional to each other. This relation brings challenges for
double-faced depth map compression, i.e., compressing one
expanding another.

For a given depth map Id, the definition of the intensity
values will depend on the application domain. For the newly
developed 3D format [1], the disparity s is proportional to the
intensity values of Id:

s(p) = f ·∆ · 1

255
(

1

zmin
− 1

zmax
) · Id(p) +

1

zmax

= k · Id(p) + c, (2)

where p is the position for a given pixel, k and c are the
constants that are defined by the maximum distance zmax, the
minimum distance zmin, and the camera parameters (e.g. the
focal length f ).

In order to address the qualities of s and z, independently
of the camera parameters, we define the normalized disparity
map Is and the normalized distance map Iz , where the
corresponding values of s and z are normalized into the range
from 0 to 255.

A. The Normalized Disparity Map
The normalized disparity map Is is defined as

Is(p)
def
= Id(p) ∈ [0, · · · , 255]. (3)

The PSNR of the disparity s, obtained from the depth map,
is denoted as S-PSNR and is computed as

S-PSNR(Id, I
′
d) = 10 log2(

2552

MSE(Is, I ′s)
), (4)

where I ′d is the distorted depth map and I ′s is the corresponding
normalized disparity map of I ′d, MSE(Is, I

′
s) computes the

mean squared error between Is and I ′s.

B. The Normalized Distance Map
Eqs. (1) and (2) show the value of distance z is inversely

proportional to the intensity of depth map Id. Therefore, we
define the normalized distance map Iz as

Iz(p)
def
=

⌊
255

Id(p) + 1

⌋
∈ [0, · · · , 255], (5)

where b·c denotes the floor rounding operation.
Let Z-PSNR represent the PSNR of the distance z, obtained

from the depth map, which is computed as

Z-PSNR(Id, I
′
d) = 10 log2(

2552

MSE(Iz, I ′z)
), (6)

where I ′z is the corresponding normalized distance map of the
distorted depth map I ′d.

(a) News, 1024× 768 pixels (b) Kendo, 1024× 768 pixels

(c) Dancer, 1920× 1088 pixels (d) Street, 1920× 1088 pixels

Fig. 2. The left-eye depth maps of the test data. The 2 view configurations
[left-view-cam, right-view-cam] for the test sequences are (a) News [3,5], (b)
Kendo [3,5], (c) Dancer [2,5], and (d) Street [4,3].

III. PROPOSED METHOD

In order to address S-PSNR and Z-PSNR simultaneously,
a new distortion function is proposed and integrated into the
HEVC 3D compression framework.

A. The Proposed Distortion Function

The newly proposed distortion function is defined as a linear
combination of the distortions of the normalized disparity map
and the normalized distance map, that is

D(Id, I
′
d) = w · SSE(Iz, I

′
z) + (1− w) · SSE(Is, I

′
s), (7)

where D(Id, I
′
d) converges to the traditional distortion func-

tion when w = 0, SSE(·, ·) computes the sum of squared error
between the original image and the distorted image.

B. Rate-Distortion Optimization in HEVC

The rate-distortion optimization is addressed by introducing
the Lagrange multiplier method which combines the distortion
function D(Id, I

′
d) and the target bit rate R(I ′d) of the distorted

depth map I ′d as

E = D(Id, I
′
d) + λR(I ′d), (8)

where λ is the Lagrange multiplier.
The rate-distortion optimization in HEVC compression will

minimize the cost E, defined in Eq. (8), to find the optimal
solutions in terms of distortion and bit rate considerations.

IV. EXPERIMENTAL RESULTS

We integrate the proposed method in HEVC 3D compres-
sion reference software HTM 6.0. The settings of tested QP
values are [25, 30, 35, 40, 45] for color image, and the corre-
sponding QP values for the depth map are [34, 39, 42, 45, 48],
as defined in the Common Test Conditions (CTC) of HEVC
3D compression experiments [18].

The 2-view configurations (i.e. left-eye, right-eye and the
corresponding depth maps) are adopted in the experiments.

2



(a) S-PSNR of News (b) S-PSNR of Kendo

(c) S-PSNR of Dancer (d) S-PSNR of Street

Fig. 3. The S-PSNR results of all test sequences, where w = 0 corresponds to the traditional approach in HEVC 3D compression.

Since the depth map coding tools in HTM only address the
quality of disparity value s, the depth map coding tools of
HTM (e.g. wedgelets, simplified depth coding tree) are all
disabled for evaluating the proposed distortion function during
the experiments. We evaluate the performance of the proposed
distortion function by setting the weights w in Eq. (7) to
be

{
0, 14 ,

2
4 ,

3
4 , 1

}
, where w = 0 corresponds to the case of

traditional distortion function.

A. Test Data
Figure 2 demonstrates the test data used in our experiments.

The resolutions are ranged from 1024 × 768 to 1920 × 1088
pixels. The 1-st frame of each video in each sequence (4 videos
in a sequence for a 2 view configuration) are selected for
experiments.

B. RD Performance of Disparity (S-PSNR)
Figure 3 shows the S-PSNR for each one of the test

sequence, where S-PSNR’s of the proposed distortion function
are almost the same with the traditional one (i.e. w = 0)
when the weight w ∈

{
1
4 ,

2
4 ,

3
4

}
. The setting of w = 1 will

decrease the S-PSNR since the distortion function in Eq. (7)
only optimizes the quality of the distance z regardless of the
quality of disparity s.

C. RD Performance of Distance (Z-PSNR)
Figure 4 demonstrates the significant improvements on Z-

PSNR (from 0.5 dB to 8 dB PSNR improvement, or from 10%
to 62% bit rate saving) by incorporating the proposed distor-
tion function into consideration. There are some interesting
phenomenons occurred in the experimental results, which are
addressed as follows.

• Non-monotonic RD Curve Behavior
The traditional distortion function (i.e. w = 0) will
introduce non-monotonic RD curve of Z-PSNR. This
non-monotonic behavior can be explained by Eq. (5) that
the normalized distance map Iz is inversely proportional
to the intensity values of the depth map Id. For example,
for a given noise ∆n, the sign (i.e. positive or negative) of
the noise ∆n will not affect the results of the traditional
distortion function (i.e. w = 0), that is

SSE(Id, Id + ∆n) = SSE(Id, Id −∆n). (9)

However, the sign of the noise ∆n will have obvious
impact on the results of the MSE(Iz, I

′
z) in Eq. (6).

Therefore, the proposed distortion function can reduce
the non-monotonic behaviors as shown in Figure 4.

• The Effect of w = 1
The setting of w = 1 may not always improve the result
of Z-PSNR. The test sequence Kendo has large intensity
values in Id as compared with other test sequences,
which leads to small SSE(Iz, I

′
z) in Eq. (8). Therefore,

HEVC compression will reduce the bit rate size instead
of maintaining the quality of Z-PSNR.

V. CONCLUSIONS

Different to the color image, depth map is a special infor-
mation which possesses 2 different meanings. This double-
faced characteristic of a depth map provides a new view point
for developing the depth map compression. The importance
of each meaning (i.e. the distance and the disparity) will
depend on the application domains. The S-PSNR is important
for viewing applications and the Z-PSNR is important in the

3



(a) Z-PSNR of News (b) Z-PSNR of Kendo

(c) Z-PSNR of Dancer (d) Z-PSNR of Street

Fig. 4. The Z-PSNR results of all test sequences, where w = 0 corresponds to the traditional approach in HEVC 3D compression.

computer vision related applications (e.g. action recognition).
A new distortion function is proposed to address the qualities
of the disparity s and the distance z simultaneously, in
which S-PSNR remains almost the same as the traditional
approach while the corresponding quality of Z-PSNR will be
significantly improved (from 0.5 dB to 8 dB). Due to the
inversely proportional relation between the disparity s and the
distance z, there are some interesting discoveries (e.g. non-
monotonic behavior in RD performance) of the double-faced
depth map compression.
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