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Abstract—In this paper, we propose a speech decoder, called
SPeech light decoDER (SPIDER), for extracting the best decod-
ing hypothesis from a search space constructed using weighted
finite-state transducers. Despite existence of many speech de-
coders, these decoders are quite complicated as they take into
consideration many design goals, such as extraction of N-best
decoding hypotheses and generation of lattices. This makes it
difficult to learn these decoders and test new ideas in speech
recognition that often require decoder modification. Therefore,
we propose in this paper a simple decoder supporting the primi-
tive functions required for achieving real-time speech recognition
with state-of-the-art recognition performance. This decoder can
be viewed as a seed for further improvements and addition of new
functionalities. Experimental results show that the performance
of the proposed decoder is quite promising when compared with
two other speech decoders, namely HDecode and Sphinx3.

I. INTRODUCTION

Currently existing speech decoders are quite large and
complex, and often require some libraries to be defined
as a prerequisite to be able to perform speech recognition
experiments [1], [2], [3]. Also, it is usually required to
modify the speech decoder to test new ideas or to add new
functionalities. However, this task takes a large amount of time
to understand where to modify. One possible solution to this
problem is presented in this chapter through the development
of a simple baseline speech decoder supporting the primitive
functions necessary for speech recognition. By developing
such a decoder, new additions and modifications can be built
on top of these primitive functions.

In [4], [5], the authors presented another solution based
on functional programming. In that research, the low level
procedures are simplified using higher level functions that can
be simply called to perform speech decoding. Despite the
simplicity of that approach, the real-time factor is still high
and a huge memory storage is required. Also, that approach
presents speech recognition functionalities as black boxes,
which might become a barrier for extending that approach to
include more functionalities without the need to do low level
modifications.

Speech decoders are usually classified into two broad
classes [6]. Speech decoders of the first class are based on
static recognition network in which speech knowledge sources,
namely lexical models (in the form of a pronunciation dictio-
nary), acoustic models (in the form of hidden Markov models
(HMMs)) and language models (in the form of statistical n-
gram models), are integrated together in one search space. This
integration is commonly performed using weighted finite state
transducers (WFSTs) before starting speech decoding [7], [8],

[9]. The advantage of this class of decoders is the fast decoding
speed and the simple realization. Whereas, speech decoders of
the second class are based on a dynamically expanded search
space, in which speech knowledge sources are integrated
during speech decoding. In other words, lexical and acoustic
models are statically integrated and language models are
handled explicitly during the search process. The advantage
of this latter class of decoders is the requirement of a small
amount of decoding memory. However, the decoders in this
class are sophisticated and there are no general optimization
techniques. Nevertheless, a common characteristic between
these two classes of decoders is the search strategy which can
take the form of either time synchronous or time asynchronous
strategy. In both strategies, only the most promising paths are
kept active, resulting in a so called beam search. The most
common method for implementing this strategy is the token
passing mechanism [10]. In this thesis, we adopted the static
construction of the search space using WFST along with time
synchronous beam search strategy in the design of SPIDER.
There are several reasons for selecting this approach, such as
it’s conceptual simplicity and the possibility to address several
advanced problems, such as early language model pruning and
utilization of cross-word tri-phone contexts.

In [1], authors provided great efforts in the development
of a useful toolkit supporting several speech processing func-
tions, such as feature extraction, parameter learning, speech
decoding, and more. Also, this toolkit supports language
models in the form of regular grammar and n-gram models.
However, the decoding process is based on dynamic expansion
approach which might negatively affect the overall recognition
performance. In [2], a similar speech decoding engine is
presented. That engine is also based on dynamic expansion of
the search space. Despite the improvement achieved by this
engine in the recognition performance, it still quite complex
to modify or add new functionalities to this engine due
to handling speech knowledge sources at runtime. Another
speech decoding engine is presented in [3] which has a small
footprint when compared to the previous decoding engines.
However, this engine is more suitable for small tasks. Also,
this engine does not support WFST which recently becomes a
standard approach in building speech decoders. On the other
hand, authors in [11] presented a WFST-based speech decoder.
However, to the best of our knowledge, this decoder does not
support Windows operating system, as it is designed mainly
for Unix machines. Nevertheless, it requires a set of helping
toolkits, such as Torch and Tracter, which makes it a non-
trivial task to get it works. Also, this decoder does not support
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Fig. 1. Overview of SPIDER.

live speech decoding. In addition, for some advances functions,
such as discriminative training on WFST decoding graphs, it is
necessary to get HMM state level forced alignments. However,
this level of forced alignment is not supported by this decoder.

Although the design of SPIDER is similar to that of the
above decoders, the data structure and decoding mechanism of
SPIDER are provided in a simple and compact form. There-
fore, SPIDER can be viewed as a seed for future improvements
and addition of new functionalities.

The organization of this paper comes as follows. An
overview of the developed speech decoder along with the
currently supported functions are described in Section II. The
internal structure of SPIDER is presented and discussed in
Section III. Experimental conditions are then described in
Section IV. Finally, the conclusions and future work are given
in Section V.

II. OVERVIEW

An overview of SPIDER system is depicted in Fig. 1.
Given a WFST-based decoding graph and a set of acoustic
models, SPIDER functions as a speech recognition system of
the given task. SPIDER supports processing of both audio
files and a live audio stream. For the file input, SPIDER
assumes one sentence utterance per input file. The output from
SPIDER can be either written to a file or transmitted to an
application. The WFST-based decoding graph supported by
SPIDER incorporates lexical (pronunciation) models, context-
dependent labels and language models. Whereas, acoustic
models are treated separately in the decoding process.

A. Summary of Features

SPIDER is fully implemented in C++ using multi-threads
to handle live speech capturing as well as speech decoding.

The current version supports the following features.
Functions:

o Live audio input recognition via microphone.

e Output 1-best decoding hypothesis.

o Forced alignment in word, phone or HMM-state level.
Supported models:

e WEST decoding graph generated using OpenFST [12].

o Tri-phone HMM with tied-mixtures in HTK format [1].

o Mel-frequency cepstral coefficients in HTK format [1].
Performance:

« Real time recognition when tested on the Resource Man-
agement (RM1) command and control corpus.

o A footprint of 356MB for WFST-based search space
(using 20k words and tri-gram language models [13])
and 85.4MB for tri-phone acoustic models represented
by HMMs (8000 states, 16 mixtures/state [13]).

o No hard-coded or machine-specific optimization.

III. INSIDE SPIDER

Speech decoding is the process of searching for the best
word sequence, W = wW1Ws...W,,, that has the maximum
posterior probability, P(W|O), for an input acoustic observa-
tion sequence, O = 01, O3, ..., Op. This process is described
based on Bayes’ theorem as follows.

W = arg maz P(O|W)P(W)EMSEyy 1 pNW) (1)
YWeEL

where P(O|W) and P(W) are the acoustic and language

model probabilities, respectively. The language model scaling

factor (LMSF) is an arbitrary constant used to compensate the

scale difference between language and acoustic probabilities.

Word insertion penalty (WIP) is another arbitrary constant
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Fig. 2. Data structure incorporated in the implementation of SPIDER.

used to avoid preferring short words over longer words. The
value of WIP is usually controlled by the number of words,
N (W), of the decoding hypothesis, W. And, L refers to the
search space within the limits of a beam width. To find the
best word sequence, W, one obvious way is to search all
possible word sequences, and select the one with best posterior
probability. However, this way is practically infeasible, espe-
cially when the vocabulary contains large number of words.
An alternative way is to reduce the search space to make
this process more feasible. There are several powerful design
principles can be used to reduce the search space such beam
pruning [6]. These methods enable speech decoding to be
performed with even larger vocabularies and slower machines
at near real-time performance. Usually, speeding up the search
process does not come without a cost, the decoding accuracy
has to be well considered. With a good design, both speed and
decoding accuracy can be well combined.

A. Data structure

Speech decoders rely mainly on three types of knowledge
sources, namely lexical, acoustic and language models. In
SPIDER, only lexical and language models along with context-
dependent labels are integrated together using a sequence

of WFST operations [14], [15], [16]. However, the acoustic
models are not included in the integration of knowledge
sources to reduce the size of the resulting WFST-based search
space. Before running the speech decoder, both search space
and acoustic models are loaded in memory. The transitions
of the search space are loaded using instances from a class
called Transition. Whereas, the acoustic models are loaded
using instances from the HMM class. The main data structure
incorporated in SPIDER is depicted in Fig. 2. The main
component of this data structure is called Graph Instance,
which is responsible of full tracking of the decoding process.
Each instance is linked with other instances from the WFST
transition and the HMM classes along with an array to hold
the tokens passing over the HMM states. The decoding path
is preserved using a class called Path. Each instance of this
class contains total score, acoustic model score, language
model score, the decoded label, frame/time and a link to the
previously decoded labels. In addition, the Hook class is used
for HMM state level forced alignments.

B. Decoding algorithm

The decoding strategy in current state-of-the-art automatic
speech recognition (ASR) systems is based on dynamic pro-



gramming concept [17], [18] in searching for the most likely
word sequence given acoustic, language models constraints,
and an input signal. The control structure required to perform
this search is conceptually simple, but extremely hard to
implement efficiently in software. It involves extensive data
structure manipulations, particularly in the case of tri-gram
language models and cross-word context-dependent phone
models. Consequently, handling the speech decoding process
is considered as the most time-consuming part in the design
of speech recognition systems. Fortunately, using WFST-based
search space, this process can be simply and efficiently real-
ized using Viterbi beam search algorithm [6]. In the following,
the Viterbi algorithm and its implementation using token
passing mechanism are discussed.

Algorithm 1: Speech decoding algorithm of SPIDER.
Input: A set feature vectors (Features) of length T.

Output: 1-best decoding hypothesis.
1: begin
2 Ql — Qwords_start_state
3 tokeng 1 < nullToken for all states ¢
4:
5: for each o,—1.7 € Features do
6: for each q € Qt do
7: Maz_score < max(score(tokeng ))
8: Cache(q) + null
9: end for
10: Qi1 < {}
11:
12: for each ¢ € Qt do
13: score(tokeng ;) <
score(tokeng ) — Max_score
14: if score(tokeng ) > Prun_thr then
15: if (Log_emis_prob < Cache(q)) = null
then
16: Log_emis_prob +
Calculate_emission_prob(og, q)
17: Cache(q) + Log_emis_prob
18: end if
19: S « redirectToken(log_emis_prob, q,t)
20: Q11 < Q1 US
21: end if
22: end for
23: end for
24: P QT+1 N Qwords_end_state
25: best_hypothesis < argmax(score(tokeng r41))
q€p
26: end

Fig. 3. Speech decoding steps employed in SPIDER.

1) Viterbi beam search: Viterbi search is inherited from a
broader class of search techniques referred as breadth-first. In
the Viterbi search algorithm, all hypotheses are processed in
parallel and pruned gradually to find out the correct hypothesis

Algorithm 2: redirectToken(Log_emis_prob, q,t)

Input: Log-emission probability, Log_emis_prob, an
HMM state, ¢, and frame index, ¢.
Output: A set, S, containing the succeeding HMM

states.
1: begin
2: S« {}
3: for each g_suc succeeds ¢ do
4: new_score < score(tokeng ;) +

Log_emis_prob + trans_weight(q, q_suc)

5 if new_score > score(tokeng suct+1) then
6 score(tokeny suci+1) < new_score

7: path(tokeng suei+1) < path(tokeng)
8 S < SU{q_suc}

9 end if

10: end for

11: return S

12: end

Fig. 4. Token passing mechanism used in SPIDER.

with maximum score. Therefore, the speech decoding process
can be viewed as a recursive process over the transitions of
a decoding graph. At any stage of the search process, all the
generated partial hypotheses terminate at the same point in
time, and thus this search technique is described as a time-
synchronous search. All partial hypotheses can be compared
to each other as they correspond to the same fragment of
the input speech utterance. Practically, the complete Viterbi
search is impossible, since the search space becomes very large
even in moderate-sized tasks. The beam pruning approach
is usually used to reduce the search space, in this case, the
algorithm is called Viterbi beam search. In the latter approach,
all hypotheses falling outside the beam are punned away, and
only the hypotheses whose likelihood falls within the beam
are kept for further growth [19], [20], [21]. The estimation of
the beam width is usually determined empirically.

As this approach is implemented by the token passing
method, a data structure is called foken is defined to hold
log-probability of best path as well as a reference to the path
history. This token is passed over each HMM state of the
search space as shown in Fig 5. Initially, the token is assigned
to the first state of all candidate HMMs. Then, at each time
instant, the token is copied along all the possible transitions,
and the probability is updated for each transition. At each state,
all the received copies of the token are sorted, and only the best
token is stored. Also, the information about the states through
which the tokens have been passed are stored at each token.
While propagating the tokens through the decoding graph, the
likelihood of a token is compared to the beam width, and only
the tokens with probabilities within the beam width are kept
alive, otherwise, the token is pruned away.

a) Description of algorithm: The general outlines of the
speech decoding process are presented in the algorithm shown
in Fig. 3. The input to the decoding process is a sequence
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Fig. 5. Procedure of token passing with sample acoustic (AM Score) and language (LM Score) likelihoods. Total Score refers to the accumulated sum of the
acoustic and language scores. Path* refers to a backpointer to the previous tokens generated in the decoding process. Dotted arrows refer to backpointer links.

of feature vectors in the form of MFCCs, and the output is
the best decoding hypothesis. Initially, the start states of all
candidate HMMs, Line 2, are assigned a copy of a null token,
Line 3, where all scores are reset. The set of states of the
candidate HMMs is denoted by Q. ord—start- Then, a loop is
iterated over all the feature vectors, Line 5, to decode each
vector. At each iteration of this loop, the maximum score is
retrieved from all active tokens, Line 7, to be used to normalize
the scores of the active tokens, and the cache, which holds
the emission probabilities, is reset, Line 8. Another loop is
iterated over all the active tokens at time t, Line 12, to calculate
the acoustic and language model probabilities. Inside this
loop, the scores of the active tokens are normalized, Line 13.
Afterwards, the normalized score is compared with a pruning
threshold, Line 14. The value of this threshold is determined
empirically, and in our implementation it takes a value in the
range from -100 to -300. If the score of the active token
is greater than the pruning threshold, Line 14, the emission
probability is calculated if it is not stored in the cache, Lines
15-18. Then, the token is redirected to the next state in the
search space using a function called redirectToken, Line 19.
This function returns the new reached states to be processed
in the next iteration, Line 20. After processing all the acoustic
features, the best decoding hypothesis is retrieved from the
last survived token as the token with best total score, Lines
24-25.

Figure 4 illustrates the token passing mechanism. In this
figure, for each HMM state, ¢, an iterative loop is performed
on all its succeeding states, Lines 4-11. A new_score is
calculated for each succeeding state, Line 5. The calculation of
this score is performed in terms of transition weight, which can
be either a WEST transition weight for cross-HMM transitions,
or an HMM probability, for within-HMM transitions. Using
this new_score, the score at state ¢_suc will be updated only
if the new_score is greater than the score of the succeeding
state, q_suc, Line 7. Also, the path at state, ¢, is assigned to
the path of the token at the succeeding state, g_suc, Line 8.

b) Emission probability calculation: In current state-of-
the-art ASR systems, the emission probability distribution
is represented by Gaussian mixture models (GMMs). The
function used in calculating the emission probability at an
HMM state, j, is defined in terms of a set of Gaussian mixtures
as follows.

M M
Z Z ch Ot’:uj’n’ha—jm)
m=1 m=1
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S ®
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where o; is an acoustic observation vector, bj.,(0;) is the
observation distribution function of the m*" Gaussian mixture
which is weighted by ¢;,,, and M is the number of mixtures
per HMM state. Also, (i, and o, refer to the mean and
variance vectors of the Gaussian mixture, respectively. As the
coefficients of the acoustic features are assumed independent,
the matrix, 0j,,, is assumed diagonal. Also, as the multipli-
cation of probabilities becomes addition in the logarithmic
domain, it will be more convenient to express bj;,(0;) and
bj(o¢) in their logarithmic forms. Thus, the logarithm of a
weighted mixture is defined as follows.

D
2
loge bim(00) = Cim + gim + 3 (ot = i) ol @3
d=1

(d)

where pi;,, is the d'™ dimension of the mean vector, fi;,,,. The
constants Clj,, gﬁrz and vﬁ,ﬂ are defined as follow.
Cim = loge Cjm 4

D
o= (Dt S (2))

d=1

-1
vﬁ»fi = W (6)

2
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where (O‘jm
matrix. Using recursively procedure, the natural log of obser-
vation distribution probability, log. b;(0¢), can be estimated
follows.

loge bj (o) = (((loge bj1(0r) @ loge bja(or))

7
@ loge bjz(01)) @ ... B loge bjn (o)) 7

where & refers to the log-add operator which is defined as
follows.

x®y=loge (e” +¢eY) (8)

C. Design for fast decoding

From the HRI perspective, fast speech decoding is an
essential requirement to make the interaction with robots
as natural as possible. In addition, fast speech decoding is
required in parameter learning especially when a large training
corpus is employed. Therefore, we developed two techniques
for performing this task. The first technique is the use of
caching for fast likelihood access, whereas the second is
the implementation of histogram beam pruning along with
conventional state-level beam pruning. These techniques are
discussed in the following sections.

1) Likelihood access and caching: To speed up the speech
decoding process, we have developed a method which reduces
the time required for recalculating the acoustic likelihoods,
especially when the Gaussian mixtures are shared among
several HMMs. In this method, we used a global cache to store
the acoustic probabilities to be used by decoding hypotheses.
At each point of the decoding process, the likelihood is
calculated only once by the first decoding hypothesis uses the
Gaussian mixture, then the other decoding hypotheses sharing
the same Gaussian mixture can access the calculated likelihood
from the cache. This process is depicted in Fig. 6.

2) Beam pruning: The decoding mechanism incorporated
in the developed decoder is based on the token passing
algorithm [10]. As discussed earlier in this chapter, the token
passing algorithm is based on a key object called token. This
object is viewed as an information holder carrying the acoustic,
language and accumulated scores, as well as a reference to the
previous tokens along the path created while decoding a speech
utterance. To make the search more efficient, at each point in
the search process, only the most promising tokens are kept
alive for further navigation of the search space. This process
is usually realized by the means of pruning techniques. Two
popular pruning techniques are described in the following.

e Global beam pruning: In which, the tokens carrying
an accumulated score above a certain pruning threshold
are kept alive, while other tokens are eliminated. This
technique is based on a pruning threshold that should
be estimated carefully to reach a high decoding accuracy
with a small real-time factor.

o Histogram pruning: In this technique, only a certain
number of tokens are kept alive at each frame, while
other tokens are eliminated. This technique is based
on a number of tokens threshold which also should be
determined carefully from the training corpus.

30 |-
20 -

10 -

Number of active tokens

\ \ \ \ \ \ \ \
—446 —400 —354 —308 —262 —216 —170 —124

Log-likelihood

Fig. 7. Histogram of active tokens after processing a speech frame. The red
line points to the log-likelihood at which the active tokens are compared to
determine the tokens that will be kept alive. Tokens carrying log-likelihoods
on the right-hand-side of the red line are kept alive, whereas tokens carrying
log-likelihoods on the left-hand-side of the red line are eliminated.

In our implementation, we employed both beam and his-
togram pruning to achieve a fast speech decoding through
using beam pruning when the number of active tokens is
less than the maximum number of tokens threshold and using
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histogram pruning otherwise. An example on the histogram
of active tokens after processing a speech frame is shown in
Fig. 7. In this figure, the number of active tokens carrying
an accumulated log-likelihood is plotted for a range of log-
likelihoods from —446 to —113. When taking the value of
the maximum number of active tokens as 2000, we can this
number is reached at the log-likelihood of —274, at which
the red line is plotted. Consequently, the tokens carrying log-
likelihoods above —274 (the right-hand-side of the red line)
will be kept alive for further navigation of the search space,
whereas, the tokens carrying log-likelihoods below —274 (the
left-hand-side of the red line) will be eliminated. Speech
decoding using SPIDER keeps only the 2K tokens at each time
frame in case of having more than 2K active tokens. However,
if the number of active tokens is less than 2K tokens, a global
beam is used where its value is taken in the range from -100
to -250.

D. The full picture

The full picture of the speech decoding process is depicted
in Fig. 8. In this figure, two structures are loaded into
memory, 1) search space which is represented by an integrated
WEST-based decoding graph, and 2) context-dependent mod-
els represented by HMMs. After loading these data structures,
speech decoding process starts decoding the incoming acoustic
features. The token passing mechanism starts navigating the
search space looking for the best word sequence. As it is
surfing the search space, if it passes through a transition

carrying context-dependent label, the corresponding acoustic
model is retrieved from memory to calculate the probability of
the acoustic feature with respect to that acoustic model if this
probability does not exist in the cache. Whereas, if it passes
through a transition carrying a language model probability,
this probability will be added to the accumulated score of the
token at this point of the search process.

IV. EXPERIMENTS

For comparison purposes, two speech decoders were in-
cluded in the conducted experiments. The first decoder is
HDecode, which is developed by Cambridge University [1].
The other decoder is Sphinx3, which is developed by Carnegie
Mellon University [2]. These decoders were tested in terms
of a full decoding graph. In all experiments, the LMSF and
WIP were set 13 and 0, respectively. All the experiments were
conducted on a machine having a CPU running at 2160 MHz
with 2GB of memory. The current supporting operating system
is WindowsXP.

A. Speech corpus

The speech database incorporated in this research is the
resource management (RM1) command and control speech
corpus [22]. The test set of this corpus consists of 1200 com-
mands based on 1000 words vocabulary. The speech utterances
are recorded by 80 speakers. All the spoken commands are
sampled at 16kHz and 16 bits quantization. The MFCC feature
vectors extracted from each spoken command consist of 39
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Fig. 8. The full picture of speech decoding using SPIDER. Dotted arrow refers to accessing corresponding acoustic model.

dimensions (12 static, 1 energy, 13 delta and 13 acceleration)
for each vector.

B. Acoustic and language models

The experiments conducted in this research were based on
the freely available acoustic and language models provided in
[13]. The acoustic models are represented by a set of HMMs
based on 8000 states and 32 Gaussian mixtures per state. Also,
the language models are based on tri-gram models consisting
of 19998 uni-grams, 492269 bi-gram and 247647 tri-grams.

C. System accuracy

The three speech decoders were tested on the RM1 com-
mand and control corpus. The recognition accuracy is shown in

Fig. 9. In this figure, the recognition accuracy of the developed
decoder outperforms that of HDecode and Sphinx3. This can
be interpreted as the proposed system is based on WFST where
the transition weights are distributed in a way that better guides
the token passing mechanism to the best decoding hypothesis.
The recognition results shown in Fig. 9 are recorded in terms
of different beam widths for all the speech decoders. The
system accuracy is defined as follows.

n—s—d-—

Word accuracy rate = ! x 100% )]

where n is the total number of words. s is the number of word
substitutions (incorrectly recognized words). d and ¢ are the
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Fig. 9. Decoding performance of three speech decoders (HDecode, Sphinx3,
and SPIDER) in terms the RM1 evaluation set.

numbers of word deletions and word insertions, respectively.

D. Timing profile

A set of experiments were conducted to examine the timing
performance using the RM1 command and control corpus.
In these experiments, the entire test set of the RM1 corpus
was tested using the three speech decoders. The real-time
factor of each speech utterance was recorded. The left-hand-
side figures of Fig. 10 show the timing profile of the three
decoders. From this figure, it can be seen that the real-time
factor of most of the speech utterances is below 1 when using
Sphinx3 and SPIDER, that indicates the similar response time
of the developed system with the well-known speech decoder,
Sphinx3. Also, the response time of the developed system
outperforms that of HDecode system. The average real-time
factor of SPIDER reached is 0.88, whereas it reached 0.92 and
1.4 when using Sphinx3 and HDecode, respectively. Another
criterion used to further analyse the experimental results is
called time delay. The criteria used to measure real-time factor
and time delay are defined as follows.

Decoding time

Real — time factor = (10)

Speech duration

Time delay = Decoding time — Speech duration

Y

When the value of this time-delay criterion is positive,
it means that the decoding time is longer than the speech
duration. This values gives us an indication about the amount
of time needed the used needs to wait until the system
recognizes the spoken utterance. Practically, this value of the
time delay should be closer to or less than zero to make
a fast a natural interaction speed with the decoding engine.
However, the negative value of this criterion indicates that the
decoding time is shorter than the speech duration, which is
highly appreciated in developing real-time speech recognition
systems, as it suggests that the spoken command can be

recognized instantly after the speech is uttered. This criterion
was measured for all the three speech decoders and the results
are shown in the right-hand-side figures of Fig. 10. In this
figure, we can notice that both Sphinx3 and SPIDER have a
negative time delay, which means that both of them can be
used in practical and real-time large scale applications.

V. CONCLUSION

In this paper, we presented a simple speech decoder, called
SPIDER. This decoder is fully implemented in C++ and
supports the primitive functions necessary for achieving state-
of-the-art recognition performance, which can be further ex-
tended to include more complex functionalities. Experimental
results show that the proposed decoder achieves state-of-the-
art recognition performance when compared with two common
speech decoder, namely HDecode and Sphinx3. Future plan
includes improving the computational efficiency and extending
the system to incorporate model training and adaptation.
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