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Abstract—We extend our previous work on particle filter
compensation (PFC) to large vocabulary continuous speech
recognition (LVCSR) and conduct the experiments on Aurora-
4 database. Obtaining an accurately aligned state and mixture
sequence of hidden Markov models (HMMs) that describe the
underlying clean speech features being estimated in noise is a
challenging task for sub-word based LVCSR because the total
number of triphone models involved can be very large. In
this paper, we show that by using separate sets of HMMs for
recognition and compensation, we can simplify the models used
for PFC to a great extent and thus facilitate the estimation of
the side information offered in the state and mixture sequences.
When the missing side information for PFC is available, a large
word error reduction of 28.46% from multi-condition training
is observed. In the actual scenarios, an error reduction of only
5.3% is obtained. We are anticipating improved results that will
narrow the gap between the system today and what’s achievable
if the side information could be exactly specified.

Index Terms: speech feature compensation, particle filter,

robustness, clustering

I. INTRODUCTION

State-of-the-art automatic speech recognition (ASR) sys-

tems perform well when there is a good match between

training and testing conditions. The accuracy degrades in

adverse conditions as the acoustic mismatch increases. One

way to alleviate this problem is to adapt the models according

to the specific environment of interest. Maximum a posteriori

(MAP) [1], maximum linear likelihood regression (MLLR) [2]

and parallel model combination (PMC) [3] are instances of

this approach. Another way is to compensate the features by

removing the distortion effects corrupting clean speech. The

aim, in this case, is to map them to the feature space used in

the training phase. Vector Taylor series (VTS) is an instance

of this approach [4], and has also been adopted for model

adaptation [5]. Cepstral mean subtraction (CMS) [6], cepstral

mean variance normalization (CVN) [7] and ETSI advanced

front-end (AFE) [8] are other notable examples of feature

compensation.

Particle filters were initially used to track noise information

in noisy signals to subsequently obtain compensated clean

features [9][10][11]. Here, the noise was treated as a state

variable while speech was considered as the signal corrupting

the observation noise, and a Taylor Series approximation was

used to approximate the clean speech signal by applying a

minimum mean square error (MMSE). Being a Monte Carlo

method, particle filters are versatile and can handle a broad

category of dynamical systems not constrained by linearity

and Gaussianity requirements that inhibit Kalman Filter [12]

and extended Kalman Filter [13]. Particle filter compensation

(PFC) [14][15] algorithms compensate noisy speech features

by directly tracking the clean speech features in the spectral

domain. The recognition is performed on mel-frequency cep-

stral coefficient (MFCC) features extracted from the newly

estimated filter bank features.

Despite the versatility of particle filters, a state transition

model that adequately captures the dynamic properties of the

speech signal is still required. Due to the nature of speech,

it is extremely difficult to find such a model. PFC alleviates

the problem by introducing information from HMMs trained

with clean speech to propagate the particles. Typical HMMs

have many states that hold the statistical information of all

variations in the speech corpus of interest. It is a challenging

task to select the proper state from the complete HMM set

to plug in the PFC algorithm. The difficulty is increased for

the large vocabulary systems because the number of triphone

HMMs used to model these systems can be very large and

exceed 10, 000.
To overcome this problem, we exploit the feature of PFC

where the HMM set used at the front end for compensation

and the HMM set used for recognition at the back-end can be

separate. Consequently, the HMM set that is integrated within

the particle filter framework can be much simpler and consist

of a small number of states. Starting from approximately

1600 tied-states (or physical states), the number of statistical

information units is reduced to less than 10 by first stripping

the triphone models to mono-phonemodels and then clustering

them to shrink the number of states to the desired level.

The PFC algorithm is tested on the Aurora-4 large vocab-

ulary continuous speech recognition task. It is shown that a

large error reduction of 28.46% is achieved with 120 clusters

if the side information is accurately known. Similarly good

performance is maintained (error reduction of 20.66% and

19.97% respectively) even when fewer number of states such

as 10 clusters and 5 clusters are used. However, in actual



scenarios, the best error reduction achieved is only 5.3% and

that is with 3 clusters. As the number of clusters is increased,

errors made in cluster selection increase and the performance

degrades. We are exploring algorithms that will improve

the cluster selection process and bring the real environment

performance closer to the known cluster case.

II. BACKGROUND

HMMs are widely used for estimating the likelihood of an

observed feature vector. In this study, we will now look at an

HMM as a generator of some feature vectors. In other words, is

it possible to generate feature vector samples from an HMM?

Fig. 1 shows the example of the digit two, sampled using an

HMM that was trained with 45 handwritten twos [16]. The top
row shows some of the actual handwritten digits used to train

the HMM, while the bottom row shows the digits generated

using the HMM. It can be noted that all the curves traced by

the human hand to write a two have been captured by the

HMM and subsequently reproduced in the artificial two. The

models potential for sample generation is apparent. HMM as

a sample generator can also be justified based on the fact that,

when modeling a signal with an HMM, it is an underlying

assumption that the signal is generated from such a model.

Fig. 1. An example of on-line handwritten digit

The sampling process will comprise of two steps. First, a

state will be picked based on the state transition probabilities.

Once an appropriate state has been selected, samples will

be generated from its observation probability. If an HMM

is intended to be used for sample generation, its observation

distributions should preferably be easy to sample from. Any

appropriate sampling scheme can be used to sample from the

HMMs observation distribution.

HMMs differ in nature from the standard tracking algo-

rithms and by themselves, have limited capability for tracking

a continuously varying signal. Both HMMs and PF have

states, but these states different in nature. The state of a PF

is a real quantity. On the contrary, the states of an HMM

may be used only as a modeling strategy. The observation

distribution of an HMM, however, is not only a real quantity,

but also a valid source for sample generation. Consequently,

there is a possibility of utilizing the observation distribution to

generate the samples in the PF algorithm. In such a setup, the

observation distribution of the HMM will correspond to the

state of the PF. The structure can be viewed as a three layer

scheme as shown in Fig. 2.

The red line is the observed signal, the blue line is the

state of the signal being estimated and S1, S2 and S3 in the

circle are the HMM states, whose observation distribution is

used to generate the samples representing the state. Instead

of obtaining the samples from the state space model as is

done in a conventional PF algorithm, the samples are generated

from the observation model of a particular state of an HMM.

The weights of the samples can then be computed using the

observed signal. The diameter of the sample in the figure

indicates its weight. The idea will be actualized for tracking

of speech signals contaminated by noise in the next chapter.

Fig. 2. HMM for sample generation

III. OVERVIEW OF PFC

A. Distortion Model

As in [5], if the clean speech, x, is corrupted by an additive

noise, n, and a distortion channel, h, then we can represent

the noise corrupted speech, y, as in Fig. 3. Assuming known

statistics of the noise parameters,

y = x+ h+ log(1 + en−x−h), (1)

where y = log(Sy(mp)), x = log(Sx(mp)) and h =
log(|H(mp)|2) and S(mp) denotes the pth mel spectrum.

Sy(mp) = Sx(mp)|H(mp)|
2 + SN (mp). (2)

We utilize the distortion model to evaluate weights of clean

feature samples in PFC algorithm and will be presented later.

B. The Compensation Scheme

The compensation scheme is illustrated in Fig. 4. The com-

pensation process requires background information together

with additional side information which can be provided by a
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Fig. 3. Distortion model

decoder. The background information include clean acoustic

model (or clean HMMs) and noise model. The side informa-

tion is a set of nuisance parameters, Φ. Similar to stochastic

matching [17], we can iteratively find Φ followed by decoding

as

Φ′ = argmax
Φ

p(Y ′|Φ,Λ), (3)

where Y ′ is the noisy or compensated utterance.
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Fig. 4. Compensation scheme based on Stochastic Matching

The parameters Φ in Equation (3) in our particle filter

compensation (PFC) scheme, correspond to the correspond-

ing correct HMM state sequence and mixture component

sequence. These sequences provide critical information for

density approximation of clean features in PFC. The PFC is

briefly summarized in next subsection.

C. A Brief Summary of PFC

Speech tracking using PFC is summarized as follows [14]:

1) Posterior density of speech, based on the current obser-

vation, is represented by a finite number, Ns, of support

points,

p(xt|y0 : t) =
Ns
∑

i=1

wi
tδ(xt − xi

t) (4)

where xi
t for i = 1, ..., Ns are the support points of PF

and δ() denotes the Dirac delta function.

2) The weight vector, wi
t, associated with the support

points, approximates the posterior density and are de-

termined based on the concept of importance sampling

[18] with:

wt
i = wi

t−1

p(yt|xi
t)p(x

i
t|x

i
t−1)

q(xi
t|x

i
t−1, yt)

(5)

3) PFC is done in the spectral domain. Given additive noise

statistics with no channel effects [5], we can obtain

p(y|x) using the distortion model (1) as

p(y|x) = F ′(u)

= p(u)
ey−x

ey−x − 1
(6)

where F (u) and p(u) are the Gaussian cumulative

function and Gaussian function with noise mean, µn,

and noise variance, σ2
n, and

u = log(ey−x − 1) + x (7)

4) The density q(xi
t|x

i
t−1, yt) plays a crucial role in particle

filtering. Known as the importance sampling density, it

is used to generate the particle samples. The distribution

is obtained by clustering HMMs as described in next

section[15]. The sampling density then becomes

q(xi
t|x

i
t−1, yt) =

K
∑

k=1

mk,Ct
N (xi

t;µk,Ct
,Σk,Ct

) (8)

where mk,Ct
, µk,Ct

and Σk,Ct
are the weight, mean and

variance of the mixture k in cluster Ct.

5) Finally, the compensated features are estimated as [14]:

xt =

Ns
∑

i=1

wi
tx

i
t (9)

IV. A CLUSTERING APPROACH TO OBTAINING CORRECT

HMM INFORMATION

Placing the samples at the right locations plays a critical role

in the performance of the particle filter. In PFC, these locations

are derived from the statistical information contained in the

HMM states. If the HMM state chosen for this placement is

the correct one, the subsequent estimation of the underlying

clean speech density will be accurate. Otherwise, the density

estimate will be erroneous. The selection of the correct state

is difficult when there is a large number of states to chose

from. To overcome this problem, we merge the states into

clusters. The total number of clusters can be much less than

the number of states, therefore, the problem of choosing the

correct information block for sample generation is simplified.

A tree structure to group the Gaussian mixtures from clean

speech HMMs into clusters can be built with the following



distance measure [19]:

d(m, l) =

∫

gm(x) log
gm(x)

gl(x)
dx+

∫

gl(x) log
gl(x)

gm(x)
dx

=
∑

i

[
σ2
m(i)− σ2

l (i) + (µl(i)− µm(i))

σ2
l (i)

+
σ2
l (i)− σ2

m(i) + (µl(i)− µm(i))

σ2
m(i)

],

(10)

where µm(i) is the i− th element of the mean vector µm, and

σ2
m(i) is the i-th diagonal element of the covariance matrix

Σm. The parameters of the single Gaussian representing the

cluster, gk(X) = N (X ;µk, σ
2
k), is computed as follows:

µk(i) =
1

Mk

Mk
∑

m=1

E(x(k)
m (i)) =

1

Mk

Mk
∑

m=1

µ(k)
m (i)

σ2
k(i) =

1

Mk

Mk
∑

m=1

E(x(k)
m (i)− µk(i))

2

=
1

Mk

(

Mk
∑

m=1

σ2(k)
m (i) +

Mk
∑

m=1

µ2(k)
m (i)−Mkµ

2
k(i)

)

(11)

Alternatively, we can group the components at the state level

using the following distance measure [20]:

d(m, l) = −
1

P

P
∑

p=1

(log[bm(µlp)] + log[bl(µmp)]) (12)

where P is the number of mixtures per state and b(.) is the

observation probability. The clustering algorithm proceeds as

follows:

1) Create one cluster for each mixture up to k clusters.

2) While k > Mk, find m and l for which d(m, l) is the

minimum and merge them.

Once clustering is complete, it is important to pick the

most suitable cluster for feature compensation at each frame.

Samples can be generated from the Gaussian mixture density,

representing the selected cluster, using conventional Monte

Carlo methods. Selecting the best possible cluster is the single

most important factor effecting the performance of the PFC

algorithm. One approach for this selection is to derive the

cluster information from the N − best transcripts obtained

from recognition done using multi-condition trained models.

Alternatively, we can also chose the cluster that maximizes

the likelihood of the MFCC vector at time t, Ot, belonging to

that cluster as follows:

C = argmax
k

gmc(Ot|Ck), (13)

where gmc(.) represents the probability that Ot corresponds

to the cluster Ck.

It is important to emphasize here that gmc(.) is derived from
multi-condition speech models and has a different distribution

from the one used to generate the samples. Clean clusters

are obtained using methods described above. The composi-

tion information of these clusters is then used to build a

corresponding multi-condition cluster set from multi-condition

HMMs. A cluster Cj in clean clusters represents statistical

information of a particular section of the clean speech. The

multi-condition counterpart Cj represents statistics of the

noisy version of the same speech section.

V. SIMPLE VS COMPLEX MODELS

In the PFC algorithm, the compensation is done at the front

end of the ASR system. Consequently, the HMM set used

for compensation (Box 1 of Fig. 5) and the one used for

recognition (Box 2 of Fig. 5) can be different and independent

of one another. This relaxation can be exploited in the overall

compensation and recognition processes. For the compensation

phase, simpler models are better since the states are ultimately

merged into clusters that represent diverse statistics.

Fig. 5. Simple vs complex models

Starting from complex HMMs does not give a significant

advantage in the clustering phase and thus the compensation

phase because the statistical information related to a specific

speech segment will be lost at some stage. On the contrary,

complex models are much more useful for the recognition

phase. Here, the objective is to obtain precise information

about the speech segment being evaluated. Complex models

capture specific speech segments statistical information better.

It must be noted that if precise information about the speech

segmented being compensated is available, the compensation

will improve. However, there will be a greater risk of selecting

wrong statistics, i.e., the state might not represent the speech

being compensated. It has been observed that the penalty

incurred by wrong choice of cluster/state overwhelms the

advantage gained from using complex and specific models

and therefore, simpler models work better in the compensation

phase. Next section presents empirical analysis of this issue.

VI. PFC FOR LVCSR

In the PFC algorithm, four HMM sets are used in various

roles. The roles of these models are explained next. The most



important aspect of PFC, aside from the observation model,

is the placement of the samples. Clean FBANK HMM set

(hereafter known as Set 1) is used to generate the samples

because clean speech is being estimated from these samples,

and clean HMMs provide the distributions that best represent

the clean speech statistics. These models are derived from

FBANK features because PFC is done in the FBANK domain.

It is critical that the correct model from the HMM set is

chosen for the treatment of a particular frame so that the

samples can be generated from a distribution that precisely

represents the underlying speech for that frame. The structure

of the Set 1 HMMs should therefore be such that it is easy to

pick the most suitable model at each frame. As is described

in section V, a large number of models makes this selection

harder. For LVCSR systems, subword acoustic models are a

popular choice and triphone representation achieves the best

recognition performance. However, in the case of PFC, the

large number of models required in the triphone representation

make the model selection problem even harder.

Monophone models provide a convenient solution to the

problem. Although, accuracy of the statistical representation

is compromised for the case of monophone models compared

to the triphone model, but the number of statistical units

is drastically reduced by a ratio of approximately 1 : 20.
By further clustering the monophone models into 10 or less

statistical units, the composition of the set is reduced to about

1 : 250 when compared to the triphone models. This procedure

simplifies the cluster selection process to a great extent, but the

task of estimating the appropriate cluster from noisy speech is

another complication. Set 1 is unsuitable for the task because:

1) It is built from FBANK features, which have inferior

discrimination capability compared to MFCC features.

2) Clean models perform poorly in the recognition task

when applied to noisy speech.

3) Monophone models can not compete with the triphone

models in the recognition task.

To overcome this complication, a second set of HMMs (Set

2) is deployed to obtain speech information from the noisy

signal. This set is derived with the aim of getting optimum

recognition performance. Hence, the HMMs in set 2 are

triphone models built using multi-condition MFCC features.

A. Alignment of set 1 and set 2

As the HMMs in Set 2 are used to select the appropriate

cluster from HMMs in Set 1, a good alignment between

the two sets is essential to obtain good performance with

PFC algorithm. The two sets, however, use different features,

structures (one is made up of monophone while the other of

triphone models) and data (one uses clean and the other uses

noisy speech). Consequently, the two sets can be severely mis-

aligned. To overcome this problem, the clean MFCC HMMs

(Set 3) are used as the source and both Set 1 and Set 2 are

derived from it. The technique for this alignment procedure is

explained in Fig. 6.

We train Set 1 HMMs in 2 steps. Step 1 computes forward

and backward probabilities using clean MFCC monophone

Clean FBANK 

Monophone 

Acoustic 

Model 

Clean MFCC  

Monophone 

Acoustic 

Model 

Clean MFCC  

Triphone 

Acoustic 

Model 

Noisy MFCC  

Triphone 

Acoustic 

Model 

Training stage: 

SPR SPR 

Set 1 Set 2 Set 3 

Compensated 

MFCC  

Triphone 

Acoustic Model 

Set 4 

Fig. 6. A block diagram illustrates training process using the single-pass
retraining (SPR).

HMMs on clean MFCC features. Step 2 estimates parameters

of FBANK monophone HMMs using the statistics information

from Step 1, together with clean FBANK features. This is

known as single-pass retraining [21]

In this way, the state/phone alignment (i.e., the posterior

component probabilities) used to estimate parameters of mono-

phone FBANK HMMs is the same as one generated by using

the monophone MFCC HMMs. Therefore, same component

label of two states in two different feature domain will model

the same sound but in two different feature domain.

Training HMMs in Set 2 is similar. Step 1 compute forward

and backward probabilities using triphone HMMs on clean

MFCC features. Step 2 estimates HMM parameters using the

statistics from Step 1 along with noisy MFCC features.

Since all HMM parameters in Sets 1 and 2 are estimated

based on state alignment computed from clean MFCC HMMs,

a state mapping between the two sets can be obtained by just

using the same component labels.

B. Models for Compensated Features

As described in Section V, the HMMs (Set 4) used in the

final recognition of the compensated data is isolated from the

compensation process. Therefore, Set 4 is independent of sets

1,2 and 3. Set 4 is trained using multi-condition training data

that has been compensated like we would process the test

data in actual scenario. Since there are no constrains on these

models, their complexity can be increased to the optimum level

needed to obtain the best possible recognition performance.

VII. AURORA-4 EXPERIMENTS

In the following we present PFC experiments on the Aurora-

4 task. We focus on training simple and complex models

used in PFC, an oracle experiment to estimate the upper

bound of the method and an actual experiment to evaluate

the performance of the system.

A. General Configurations

The hidden Markov model toolkit (HTK) [20] was used

to extract speech features and train acoustic models. Log

mel filter bank (FBANK) coefficients (23 coefficients) were

extracted from 16KHz sampled speech signals and enhanced

by PFC method. Mel-frequency cepstral coefficients (13 co-

efficients) and their first and second differential features are

then extracted from compensated FBANK and used as speech
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Fig. 7. A block diagram illustrates oracle experiment vs. actual experiment.

features for speech recognizer. Ceptral mean normalization

was also applied to reduce the channel mismatch. A bigram

language model was used with language model scale factor

set to 15.

The four acoustic models were trained as described earlier.

In this study, HMMs in Set 1 have 120 states with 3 Gaussian

mixtures per state. The complexity of HMMs in Set 2, 3 and

4 were the same and have 1594 tied-states with 16 Gaussian

mixtures per state.

In the testing phase, we are interested in additive back-

ground noises. Six noisy test sets (car, babble, restaurant,

street, airport and train noises) without channel mismatch were

used to evaluate the PFC performance. The noise statistics are

estimated from silence frames of each utterance.

As PFC works in the FBANK domain, the compensated

FBANK features are then transformed to MFCC domain by

DCT transformation. For dynamic features (delta and delta-

delta features), we have two options: re-compute the dynamic

features from the compensated MFCC features or just use the

original noisy dynamic features. We will discuss about the two

options in more details in the next sections.

B. Experiments with Oracle Cluster ID

To estimate the potential of PFC, we first build an oracle

experiment with high accuracy of cluster selection. In this

experiment, we utilize the stereo data in Aurora-4 to generate

oracle state sequence which is clean state sequence and used

as noisy state sequence and thus the cluster selection is exact

(see Fig. 7). In this way, we can focus on optimizing particle

sampling and evaluate the upper bound of the PFC method.

Oracle experiments of clustering PFC is then investigated.

Un-clustered FBANK monophone HMMs has 120 states and

denoted by “set 1-120”. We group 120 states into 10 (or 5, 3,

2, 1) clusters as discussed in the previous sections and denote

as “Set 1-10” (or 1-5, 1-3, 1-2, 1-1 respectively).

The word accuracies of these versions of Set 1 are shown

in Table I. In the study, 120 is the largest cluster count

used. Although, the count can be increased to 1594, which
is the starting number of states if clustering directly from

triphone acoustic model, and it will most likely improve the

performance beyond the best figure of 85.6% because the

statistical information is more precise. However, it hasn’t been

explored due to the fact that obtaining good side information

in case of such a large number of clusters will be nearly

impossible in real scenarios.

TABLE I
Word accuracy (%) obtained by PFC using oracle cluster ID information.

Dynamic features are recomputed from PFC compensated features. 6 types

of noisy environments are shown (2-car, 3-babble, 4-restaurant, 5-street,
6-airport, 7-train).

No. of clusters
Noisy Test Cases

2 3 4 5 6 7 Avg.

- 87.4 81.5 75.6 78.4 80.9 75.4 79.9
1 86.6 82.6 76.2 79.3 80.7 76.2 80.3
2 87.2 83.9 78.2 80.4 82.1 77.1 81.5
3 87.3 84.5 78.9 81.3 82.3 79.0 82.2
5 88.1 84.9 81.2 83.0 84.0 82.1 83.9
10 88.2 85.8 81.3 83.5 83.7 81.7 84.0
120 88.8 86.3 83.4 84.4 87.1 83.8 85.6

1 2 3 5 10 15
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Fig. 8. Performance of PFC with different numbers of clusters. Both PFC
with oracle cluster ID and PFC with estimated cluster ID are shown.

On the other side, 1-cluster is the smallest cluster count

that can be used. Apart from the fact that the performance for

this case improves over the baseline multi-condition training,

the setup has it’s own advantages. First, the estimation of side

information is not required, making the compensation process

very efficient. Secondly, with 1-cluster, no errors can be made

in the estimation of side information and therefore, the actual

performance and the oracle performances are the same.

C. Experiments with Estimated Cluster ID

Now we investigate PFC using estimated side information,

i.e. the cluster IDs. A cluster ID sequence is generated by

using 1-best cluster selection method presented in Section IV.

The overall performance is shown in Fig. 8. From the figure,

we have two major observations. First, when oracle cluster

IDs are used, the performance of PFC improves monotonically

with the number of clusters. However, when estimated cluster

IDs are used, the performance of PFC peaks at 3 clusters, and

then degrades when more and more clusters are used. This

observation shows that only when accurate cluster information

are available (e.g. in the case of oracle cluster ID), PFC will

benefit from the more detailed side information provided by

more clusters. In practice, the gain of more detailed side

information is offset by the wrong estimated cluster ID and

hence the performance of PFC will decrease.

The second observation from Fig. 8 is that whether to re-

compute the dynamic features from PFC compensated static

features plays an important role in the overall performance



TABLE II
Word accuracy (%) obtained by PFC using estimated cluster IDs and WITH

re-computed the dynamic features.

No. of clusters
Noisy Test Cases

2 3 4 5 6 7 Avg.

2 87.2 82.3 76.3 79.4 79.5 76.4 80.2
3 87.3 82.8 76.6 79.3 79.5 77.7 80.5
5 86.1 78.5 72.6 78.0 75.5 76.8 77.9
10 86.0 76.9 71.5 78.0 74.6 75.6 77.1

TABLE III
Word accuracy (%) obtained by PFC using estimated cluster IDs and

WITHOUT re-computing the dynamic features.

No. of clusters
Noisy Test Cases

2 3 4 5 6 7 Avg.

2 88.1 82.9 76.0 79.1 81.1 76.6 80.6
3 88.4 82.4 76.7 79.5 81.4 77.2 80.9
5 88.7 81.8 76.2 79.5 81.8 76.9 80.8
10 88.5 82.1 76.7 79.4 82.0 76.6 80.8
15 88.8 81.9 76.5 79.0 81.9 76.4 80.8

of the PFC framework, especially when estimated cluster IDs

are used. If dynamic features are not re-computed and when

estimated cluster IDs are used, the performance of PFC is

quite stable when more than 3 clusters are used. However,

if dynamic features are re-computed, the PFC performance

degrades quickly as more than 3 clusters are used. The

observation is different when oracle cluster IDs are used.

This suggests that the dynamic features is very sensitive to

the errors in cluster ID estimation. A possible explanation is

that when wrong cluster is used, the temporal structure of

the PFC compensated static features are seriously distorted,

hence the re-computed dynamic features will be also wrong.

This suggests a possible way to improve the PFC framework is

to enforce the correlation between adjacent frames in a more

explicit way.

The detailed recognition word accuracies of PFC with

estimated cluster ID are shown in Table II and Table III. The

best result of 80.9% is obtained with 3 clusters and do not

re-compute dynamic features. This represents a 5.3% relative

error rate reduction over the multi-condition baseline system

(79.9%).

VIII. SUMMARY AND FUTURE WORK

We have extended the PFC framework to LVCSR and tested

it on the Aurora-4 task. An incorrect state selection issue

caused by a big triphone set in LVCSR can be lessened with a

clustering approach. However, there is a trade-off in choosing

the number of clusters. With less clusters, there is a less risk of

incorrect selection; but with more clusters, the more precisely

side information will be provided to the PFC if it can be

correctly estimated. The performance gap between the oracle

and actual experiments is still rather large. Hence, more studies

are required in the future to narrow the gap. Note that the

strategy of cluster selection is important, we should continue

pursuing for a better strategy in cluster selection.
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