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Abstract—This paper proposes a discriminative learning algo-
rithm for improving the accuracy of continuous speech recog-
nition systems through optimizing the language model parame-
ters on decoding graphs. The proposed algorithm employs soft
margin estimation (SME) to build an objective function for
maximizing the margin between the correct transcriptions and
the corresponding competing hypotheses. To this end, we adapted
a discriminative training procedure based on SME, which is
originally devised for optimizing acoustic models, to a different
case of optimizing the parameters of language models on a
decoding graph constructed using weighted finite-state trans-
ducers. Experimental results show that the proposed algorithm
outperforms a baseline system based on the maximum likelihood
estimation and achieves a reduction of 15.11% relative word error
rate when tested on the Resource Management (RM1) database.

I. INTRODUCTION

Weighted finite state transducer (WFST) is an appropriate
and flexible method for integrating various speech knowledge
sources together into an elegant recognition network [1].
The strength of WFST comes from the simple but powerful
operations, such as composition, determinization, and weight
pushing [2]. The process of building an integrated recogni-
tion network usually starts with representing each knowledge
source as a WFST. Then, a series of WFST operations are
applied to produce the final recognition network (also called
decoding graph). The resulting network can be used to decode
the speech signal efficiently through the application of a search
algorithm, such as the Viterbi search with beam pruning [3].

Most of current state-of-the-art speech research efforts are
directed towards optimizing the parameters of speech knowl-
edge sources separately without taking into consideration the
interdependency between them. However, this direction is
susceptible to achieve a sub-optimal performance of the overall
speech decoding process [4]. One key for enhancing the
accuracy of speech decoders is to find out a reliable estimation
procedure for optimizing the parameters of the various knowl-
edge sources jointly. This joint optimization can be achieved
through optimizing the parameters of these knowledge sources
while being integrated together into a single decoding graph
using a discriminative training technique.

Discriminative training techniques are considered as an
interesting approach for optimizing the parameters of pattern
classifiers [5]. The basic idea of discriminative training is to
penalize the parameters that are liable to confuse the correct
and competing hypotheses. Various discriminative training

criteria have been employed to optimize the acoustic and
language models parameters, such as minimum phone error
(MPE) [6], minimum word error (MWE) [7], maximum mu-
tual information estimation (MMIE) [8], minimum sample risk
(MSR) [9], minimum classification error (MCE) [10], and
reranking techniques based on the perceptron algorithm [11].

Discriminative training of decoding graph parameters has
received less attention compared to the discriminative training
of acoustic and language models [12][13]. The discriminative
training of decoding graph parameters is first introduced by
Lin and Yvon in [4]. In that research, the authors applied
discriminative training based on the MCE criterion to optimize
transition weights of a WFST-based decoding graph composed
of lexical, n-gram and acoustic models. This approach is
asserted to achieve better performance when compared with
the standard maximum likelihood estimation (MLE) approach.
An extension to that research is presented by Kuo et al. in [14]
in which the authors extended the work presented in [4] by
using context dependent acoustic models instead of the context
independent acoustic models. The benefit from optimizing
decoding graph parameters lies in the ability to include both
the language and acoustic scores in the optimization process
thus may yield better parameter adjustment.

The approach of margin-based discriminative training be-
came the current fashion in designing pattern classifiers due
to its robustness towards the miss-matched conditions between
training and testing data sets. However, it has been widely
applied for optimizing the parameters of acoustic models
[15], [16], but limitedly used for optimizing the parameters
of language models [17]. To best of our knowledge, margin-
based discriminative training has not been addressed yet for
optimizing the parameters of WFST-based decoding graphs.
This makes our findings are valuable for further improvements
in discriminative training of language models on WFST-based
decoding graphs. In this paper we propose a discriminative
training algorithm for optimizing the parameters of speech
decoding graphs using SME. The key advantage of soft margin
classifiers is that they does not require a well trained ground
models to achieve better recognition performance which makes
these classifiers more advantageous over large margin classi-
fiers [18].

This paper is organized as follows. In Section II the math-
ematical formulas of the SME are derived and the parameters
optimization procedure is also discussed. Experimental results
comparing the proposed method with both MLE and MMIE



are presented in Section III. Finally, Section IV presents the
conclusion and the perspectives for future work.

II. DISCRIMINATIVE TRAINING USING SME

Assume the speech utterance is represented as a sequence
of observation vectors, denoted by X , and the corresponding
word sequence is denoted by W = w1,w2, ...,wn. The
score of this observation sequence given the acoustic model
parameters, denoted by Λ, and the language model parameters,
denoted by Γ, is defined as [4]:

g (X,W , Λ, Γ) = logP (X|W , Λ) + α.logP (W |Γ) (1)

where α is the language model scaling factor, P (X|W , Λ)
and P (W |Γ) are the acoustic and language models scores
respectively. The task of the speech decoder is to select the
best word sequence Wbest that maximizes the score of X as
follows:

g (X,Wbest, Λ, Γ) = argmax
W

g (X,W , Λ, Γ) (2)

During the parameter optimization process, we need to com-
pare the score of the reference word sequence, Wref , with that
of the 1-best competing hypothesis, Wbest. For this purpose,
an anti-discriminant function is defined as [19]:

d (X, Λ, Γ) = −g (X,Wref , Λ, Γ) + g (X,Wbest, Λ, Γ) (3)

For simplicity, we incorporated only 1-best decoding hypoth-
esis in the preliminary experiments discussed in this paper.

A. Expected Risk

The purpose of classification and recognition is to minimize
the expected risk, which is calculated in terms of the classi-
fication errors of a representative test set. However, we don’t
know exactly the property of the test set to be considered,
but we can only assume that the training and the test sets
are independently and identically distributed from the same
expected density. Since there is no explicit knowledge of the
expected density, it can be approximated by an empirical
density. In this case, the expected risk can be expressed in
terms of the empirical density as follows [18]:

R(Λ, Γ) ≤ Remp(Λ, Γ) +Rgen(Λ, Γ) (4)

where the expected risk, R(Λ, Γ), and empirical risk,
Remp(Λ, Γ), are the system’s recognition error on testing and
training data, respectively. The generalization risk, Rgen(Λ),
is a regularization term proportional to model complexity.
Most current discriminative training methods focus only on
how to minimize the empirical risk, Remp(Λ, Γ), with the
hope to achieve a significant minimization of the expected
risk. However, an optimal performance on the training set
does not guarantee an optimal performance on the test set.
The minimum expected risk can be obtained when a good
balance between the empirical risk and the generalization risk
is achieved. The generalization risk usually depends on the
margin of the model and thus, this risk can be reduced if the
margin shown in Fig. 1 is increased. The margin serves as a

Fig. 1. Maximizing the margin between the two classes A and B to improve
the model generalization capability.

desired minimum distance between the training samples and
the decision boundary. During training the model parameters,
the objective is to pull those samples that fall within the margin
away from the decision boundary. Those samples already
far from the decision boundary do not contribute to model
parameters estimation. After training the model parameters,
all or most training samples will be outside the margin.
Consequently, if a test sample deviates from the training
samples of its correct class but the distance between the test
sample and its nearest training sample is less than the margin,
a correct decision can still be made.

B. Maximizing the margin

The key to improve the capability of model’s generalization
is to use a large margin. In our experiments, we use SME
[18] to maximize the margin due to its good approximation of
the expected risk. A brief description of SME is presented in
this section. For more detailed implementation and discussion
about SME, please refer to [18]. In SME, the language model
parameters on a decoding graph are estimated by minimizing
an approximated expected risk as follows:

LSME(ρ, Λ, Γ) =
λ

ρ
+Remp(ρ, Λ, Γ) (5)

where Γ is the set of language model parameters, Λ is the
acoustic model parameters, ρ is the soft margin, and λ

ρ is
the generalization risk. The variable λ is used to control the
relative weight of the two terms of Eq. (5). With large λ, the
training process will focus on reducing the generalization term
and the margin will be large and vice versa. To obtain a good
performance, it is important to obtain a good balance of these
two terms. In this paper, the empirical risk is defined as:

Remp(ρ, Λ, Γ) =

{
ρ− d(X, Λ, Γ) if ρ > d(X, Λ, Γ)
0 otherwise

(6)



using this empirical risk, the SME objective function can be
re-written as:

LSME(ρ, Λ, Γ) =
λ

ρ
+Remp(ρ, Λ, Γ)

=
λ

ρ
+ (ρ− d(X, Λ, Γ))I(X ∈ U) (7)

where I is an indicator function, and U is the set of utterances
that have the separation measures less than the soft margin.
The separation measure usually represents how well the correct
model is separated from the competing models corresponding
to X , or how far X is from the decision boundary. If the
separation measure is not large enough (i.e., it is less than the
margin), a loss is generated that equals to (ρ− d(X, Λ, Γ)).

C. Solution to SME

There are two solutions to SME similar to those presented
in [18]. One solution is to optimize the soft margin and the
decoding graph parameters jointly. The other is to set the
soft margin in advance, then find the optimal decoding graph
parameters. In this paper, we adopted the second solution and
the first one is left for future work. For both of these solutions,
the indicator function I(X ∈ U) is approximated with a
sigmoid function [18]. Therefore, Eq. (7) is reformulated as:

LSME(ρ, Λ, Γ) =
λ

ρ
+ (ρ− d(X, Λ, Γ))

× 1

1 + exp(γ(ρ− d(X, Λ, Γ)))
(8)

where γ is a smoothing parameter of the sigmoid function.
Equation (8) can be viewed as a smoothing function of the
soft margin ρ and the decoding graph parameters. Therefore,
these parameters can be optimized using the generalized
probabilistic descent (GPD) algorithm [20] on the training set
as follows:

Γt+1 = Γt − ε5 LSME (ρ, Λ, Γt) (9)

For simplicity, we keep the parameters of the margin ρ and
acoustic model Λ unchanged and calculate ∂LSME(ρ,Λ,Γ)

∂Γ , then
the gradient of (8) becomes:

∂LSME(ρ, Λ, Γ)

∂Γ
= A+B (10)

where

A =
∂(ρ− d(X, Λ, Γ))

∂Γ

1

1 + exp(γ(ρ− d(X, Λ, Γ)))
(11)

and

B = (ρ− d(X, Λ, Γ))
∂

∂Γ

1

1 + exp(γ(ρ− d(X, Λ, Γ)))
(12)

The two derivatives in Eq. (11) and Eq. (12) can be further
written as:

∂(ρ− d(X, Λ, Γ))

∂Γ
=
∂(−d(X, Λ, Γ))

∂Γ
(13)

where

∂d(X,Λ,Γ)
∂Γ = −z (Wref , s) + z (Wbest, s) (14)

where z(W , s) represents the number of occurrences of the
transition weight, sm in the decoding hypothesis, W . For the
derivative in Eq. (12), it can be written as:

∂

∂Γ

1

1 + exp(γ(ρ− d(X, Λ, Γ)))

= −
{

1

1 + exp(γ(ρ− d(X, Λ, Γ)))

}2

× exp(−γ(ρ− d(X, Λ, Γ)))(−γ)
∂(ρ− d(X, Λ, Γ))

∂Γ

= γ

{
1− 1

1 + exp(γ(ρ− d(X, Λ, Γ)))

}
× 1

1 + exp(γ(ρ− d(X, Λ, Γ)))

∂(ρ− d(X, Λ, Γ))

∂Γ
(15)

where ∂(ρ−d(X,Λ,Γ))
∂Γ is defined in Eq. (14). Then, by sub-

stituting Eq. (14) and Eq. (15) into Eq. (11) and Eq. (12)
respectively, we can get the derivative required for the GPD
update rule defined in Eq. (9).

D. Optimization procedure

The training procedure used to optimize the transition
weights (carrying the language model parameters) of WFST-
based decoding graph consists of the following steps:

1) For each training utterance, we extract a reference sub-
graph, Sref , by constructing an acceptor-type WFST,
Yref , which has an arc sequence that inputs and outputs
the same word labels and composing it with the large
decoding graph, R, as follows: Sref = R ◦ Yref .

2) Decode the training utterance using the large decoding
graph, R, and store the corresponding transitions of
the competing hypothesis along with the associated
decoding score.

3) Decode the training utterance using the extracted ref-
erence sub-graph, SRef , and store the corresponding
reference path along with the associated decoding score.

4) Count the transitions in reference and competing hy-
potheses based on the transition weights.

5) Calculate the score difference using Eq. (3), then calcu-
late the gradient of the loss function Eq. (10).

6) Update the transition weights of the large decoding
graph using the update rule Eq. (9).

7) Repeat from step 2 as long as the performance converges
or reaching a certain number of iterations.

Only the first transition in the set of candidate transitions
with different weight counts is updated [4].

III. EXPERIMENTS

A. Experimental setup

The experiments conducted in this paper are performed in
terms of the RM1 speech database. The utterances containing
out-of-vocabulary (OOV) words were removed from both



training and testing sets. In all experiments, the speech signal
is sampled at 16kHz, 16bits/sample and framed at a rate of
30msec with 75% overlap between successive frames. Each
frame is represented using 39 dimensional feature vector
consisting of 12 static Mel Frequency Cepstral Coefficients
(MFCC), energy, 26 dynamic coefficients (13 ∆, 13 ∆∆).

The HMM set contains physical acoustic models for 41
phones, 882 diphones and 26, 412 triphones. These physical
models are trained using Wall Street Journal (WSJ) speech
corpora. Additionally, 38, 229 logical models are synthesized
using state tying based on decision trees [21]. Each acoustic
model consists of 3 states with left to right transitions without
skip. There is a total of 8, 000 distinct states, each of which
is associated with 39-dimensional probability density function
taking the form of 32 mixtures per state with diagonal covari-
ance matrix. The language model consists of 5, 000 uni-grams,
258, 669 bi-grams and 171, 064 tri-grams. These n-grams are
trained using Gigawords text corpus and used to construct the
large decoding graphs with a vocabulary containing 5k words.
The acoustic and language models were freely available at the
location referred to in [22] at the time of writing this paper.

The decoder presented in [23] is used in our experiments.
This decoder runs at 1.5×RT and 0.02×RT on the large decod-
ing graph R and the reference sub-graph SRef , respectively,
when tested on 2.3 Ghz Intel Core i5 processor and after
applying some pruning thresholds. In the literature, there are
many faster decoders (eg. [24]), but these decoders only keep
track of the word history of hypotheses, thus the complete
sequence of state transitions which play a crucial role in
discriminative training cannot be recovered.

B. Results and discussion

Before experimenting with the GPD procedure, we per-
formed a number of experiments to set the slope of the sigmoid
function, γ, which was chosen as 0.01. Also, the training step
size for both SME and MMIE was chosen as 0.1. One way
to select these values is to cut and try. In all experiments,
five iterations of the GPD procedure were conducted. The
optimized models resulting from the five experiments were
incorporated in the evaluation of the RM1 test set.

The baseline system consists of various knowledge sources
trained using the standard MLE approach. While performing
the parameter optimization using the proposed SME approach,
and after each iteration, the optimized graph is saved on disk
and used for testing. The detailed testing results using the
trained graphs from each training iteration are listed in Tables
I and II for the MMIE and SME based training, respectively.
The first row of these tables is the testing results using the
MLE trained acoustic and language models. It is shown from
these results that the word error rate (WER) achieved by
SME approach outperforms the results achieved by both MLE
and MMIE approaches. The best WER achieved by the SME
approach was 25.00%, which is better than the WER achieved
by MLE (29.45%) and MMIE (25.65%).

An important factor affects the generalization capability of
the trained graphs is the margin size ρ defined in Eq. (7). Since

TABLE I
RECOGNITION PERFORMANCE USING THE MMIE TRAINED GRAPH.

Iteration Sub (%) Del (%) Ins (%) WER (%)
Baseline [22] 23.56 3.27 2.62 29.45

1 23.95 2.88 2.88 29.71
2 21.86 2.09 2.75 26.70
3 21.73 1.44 2.88 26.05
4 21.07 1.31 3.27 25.65
5 20.03 1.31 4.45 25.79

we set the margin value as a constant, several experiments have
been conducted for finding the best value for this margin. The
margin value of 15 is found to achieve the best recognition
performance. However, it is expected to achieve much better
results if the margin value is adjusted adaptively during the
training process and depending on the training samples whose
distance from the decision boundary is less than the margin.

TABLE II
RECOGNITION PERFORMANCE USING THE SME TRAINED GRAPH.

Iteration Sub (%) Del (%) Ins (%) WER (%)
Baseline [22] 23.56 3.27 2.62 29.45

1 23.95 2.88 2.88 29.71
2 21.86 2.09 2.88 26.83
3 21.07 1.70 3.01 25.79
4 20.55 1.31 3.14 25.00
5 20.03 1.18 4.32 25.52

IV. CONCLUSION

In this paper we presented a discriminative training method
for learning the parameters of speech decoding graphs. Exper-
imental results emphasized the effectiveness of the proposed
method when compared with one of the well-known discrimi-
native training criteria, namely MMIE. The research presented
in this paper can be extended from several perspectives. Firstly,
the use of N-best decoding hypotheses is proved to give better
performance when SME is applied for acoustic modelling.
Therefore, the proposed approach is expected to achieve
better results if N-best hypotheses are incorporated. Secondly,
changing the margin size adaptively also can give better
performance. In this case, the margin size can be learnt as well
as the transition weights using the GPD algorithm. Thirdly,
the proposed method is applied using the GPD, whereas other
learning algorithms, such as Rprob or Quickprop can be used
to improve the quality of the learnt parameters. Fourthly, The
proposed approach is tested on a small task, so it may be
further tested on a larger task.
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