
Complexity Control of Motion Compensation for

Video Decoding

Wei-Hsiang Chiou Chih-Hung Kuo and Yi-Shian Shie

National Cheng Kung University, Tainan, Taiwan

E-mail:{n26004799, chkuo, n26011445}@mail.ncku.edu.tw,

Abstract—This paper proposes a complexity control mecha-
nism for the video encoder to generate a bitstream that fits the
power constraint of the decoder. We combine the complexity term
of motion compensation with the conventional rate-distortion
optimization (RDO). The Lagrange multiplier is updated for
each macroblock (MB) to meet the target computing complexity.
Experimental show that the proposed method provides a good
control accuracy of computing complexity. The whole average
error of test sequences is 1.20% with constant bit rate constraints.

I. INTRODUCTION

Modern video coding standards enhance the video quality

by searching for the best combination from a large amount

of prediction modes. The complexities both on the encoder

and the decoder are highly increased comparing to prior cod-

ing standard. For encoders, motion estimation dominates the

computation power, including different block sizes, multiple

reference frames, and different precision of motion vectors

(MVs). There have been many speed-up methods proposed to

adjust the complexity such as diamond search, hexagon search,

and fast mode decision for the inter predictions.

On the other hand, the decoder has less flexibility to adjust

the computing complxity. The decoders are more strictly de-

fined by the standards, and their tasks are simply to reconstruct

the videos from bitstreams. They have less options to adjust the

complexity. When an encoder generates a bitstream, it usually

has no information on the capability of decoding platform.

Although the decoder is less complex than the encoder,

sometimes it is still necessary to restrict the computing power

of the decoder. If the required computation power exceeds

the capability of the decoding platform, the user may suffer

from many unpleasant visual experiences. The limitation of

the computing power becomes more realistic as the portable

multimedia devices become increasingly popular. Different

from traditional general-purpose computers, portable devices

have many hardware constraints. Therefore, how to generate

a decoder-friendly bitstream according to computing power of

the decoder platform becomes more and more important.

For an H.264/AVC decoder, the operation of motion com-

pensation usually dominates the computing power. This high

complexity mainly comes from the needs of high precision

for MVs. If the MVs are not integer, the 6-tap finite impulse

filters are invoked to interpolate for the fraction pixel. There

are two major methods to predict the complexity of the

motion compensation according to whether it uses the trained

model or not during the encoding precess. The former uses

a linear model which is trained off-line to get the more

precise decoding time. Lee et al. [1] propose a prediction

model for the motion compensation as a linear function of

cache misses, the number of interpolation, and the number of

MV per MB. Then, this model is used in the rate-distortion

optimization (RDO) process to control the complexity. If the

complexity estimated from linear model is higher than the

target complexity at motion estimation process, the mode

decision process is skipped. Mehdi et al. [2] show that the

motion compensation complexity is linearly related to the

basic operations such as sum, multiply, and shift to interpolate

one pixel. The latter is joining the Lagrangian based cost

function with computing complexity. Ugur et al. [3] proposes

the interpolation complexity based on the precision of MVs,

and combines the complexity to the conventional Lagrange

cost function in order to find the trade off between RD

performance and computing complexity.

Lee et al. [4] propose that the complexity allocated for

each frame should be the same. Theoretically, it has good

complexity control when the complexity difference between

one frame to another is similar. However, if the difference

is huge, the remaining complexity from previous frame can

not be used to later frames. This may waste the available

computing power, and increase the error in complexity control.

In this paper, we focus on adjustment in the motion estimation.

With different MV precisions, the filters which are used to

get the fraction pixels may be different. We combine the

interpolation complexity model [1] with the H.264 convention

Lagrangian cost function, and update the Lagrange multiplier

to meet the target complexity constraint. This mechanism

enables the encoder to generate the bitstream that meets the

capability of the decoder platform.

The rest of the paper is organized as follows. Section II

introduces how to incorporate the complexity control mech-

anism into the encoder, which generate bitstream that meets

the complexity constraint. Section III shows the experimental

results. Finally, Section IV concludes our work.

II. COMPLEXITY CONTROL

In order to fit the hardware constraint of the decoder,

we propose a complexity control mechanism for encoder to

choose suitable prediction mode. The proposed mechanism is

composed of two main processes as shown in Fig 1. In the

RDO process, we combine the Lagrangian cost function with



Motion Estimation

Mode Decision

by (3)

Compute the 

complexity

Update

by (6)

Finish all

MBs

Load MB

YES

NO

RDO
Loop for all 

mode

Find the best 

mode

Fig. 1. The proposed complexity algorithm.

the complexity cost so that the prediction mode can obtain

trade-offs between bit rate, quality and computing complexity.

After finding the best prediction mode, we use the subgradient

method to update the Lagrange multiplier in order to meet the

target complexity constraint. In the following subsection, we

will introduce how to measure the complexity.

A. Modeling Complexity of Interpolation

The H.264/AVC standard enables MVs with half-pixel and

quarter-pixel precisions in the motion estimation precess to

enhance the prediction accuracy. For different precisions of

MVs, it uses different methods to interpolate the sub-pixels.

For half-pixels, 6-tap finite impulse filters are used. For

quarter-pixels, two nearest half- or integral-pixels are used for

interpolations.

For example, in Fig 2, A,B,C,D are interger-pixels, and

a through p are fraction-pixels. The half-pixel j should be

interpolated in x-direction and y-direction. In order to use 6-

tap filters to interpolate j, the extra sub-pixels need to be inter-

polated in advance. Due to these additional computations, the

half-pixel j is the most complex in all sub-pixels. Besides, the

quarter-pixels f ,i,k,n should use the j value, so these pixels

are most complex in all quarter-pixels. Lee et al. [1] proposed

a model that can compute the complexity by counting the

number of the 6-tap filters, and Table I summarizes the number

of filters for diffrent accuracy of MVs.

B. Cost Function for Complexity

In order to generate bitstream that meets the target complex-

ity, we add a complexity term in the conventional H.264/AVC

RDO process. The RDO is used to trade off between bit

rate and video quality. It consists of two steps: the motion

TABLE I
NUMBERS OF THE INTERPOLATION 6-TAP FILTER FOR MXN BLOCK

MV(x,y) Accuracy Nx Ny

(Int-pel,Int-pel) 0 0
(Sub-pel,Int-pel) M·N 0
(Int-pel,Sub-pel) 0 M·N

(Half-pel,Sub-pel) M·N M·(N+5)
(Sub-pel,Half-pel) M·(N+5) M·N

(Quarter-pel,quarter-pel) M·N M·N

A a b c B

d e f g

h i j k

l m n o

C D

Fig. 2. Fraction pixel interpolation.

estimation and the mode decision. The former finds the best

MV that minimize the Lagrange cost in the search range

among all reference frames. The latter finds the best prediction

mode from all candidate modes to minimize the Lagrange cost.

At the motion estimation step, the reference frames are

searched for each inter prediction mode, and the MV that

has minimal Lagrangian cost is chosen. The convention

H.264/AVC motion estimation Lagrangian cost is given by

J(MV, λmotion) = SAD(MV ) + λmotionR(MV ) (1)

where MV is the motion vector, λmotion is the Lagrangian

multiplier, SAD is the sum of absolute difference between

original and reference blocks, R is the bits to code the MV.

After finding the best MV, we compute the complexity of

interpolation according to the precision of MV, and combine

it in the later steps.

At the mode decision step, the best mode that has minimal

Lagrangian cost is chosen from all candidate prediction modes.

The convention H.264/AVC mode decision Lagrangian cost is

represented by

J(mode, λmode) = SSD(mode) + λmodeR(mode) (2)

where R is the bits generated by the entropy coding, λmode

is the Lagrangian multiplier, SSD is the sum of square

difference between reconstruct and original blocks.

Taking the computing complexity into consideration, we

modify the equation (2). The equation becomes

J(mode, λmode, λc) = SSD(mode)

+ λmodeR(mode) + λcCmode (3)



where λc is the Lagrangian multiplier associated with the

computing complexity. Cmode represents the interpolation

complexity counted as in Table I, and it is accumulated of

all involved in one MB. It can be written as

Cmode =
N∑

i=1

Cintp(i) (4)

where N is the number of MVs in a MB, and Cintp is the

number of 6-tap filters which is used for each partition. For

example, if the MB is coded as inter-8×8 mode, there are four

motion vectors in a MB. The value of N is 4. After the mode

decision step, the best mode which is chosen from Equation (3)

obtains a trade-off between the video quality, the bit rate and

the computing complexity. In the next subsection, we proposed

an algorithm for controling the computing complexity.

C. Complexity Control

The procedure of the complexity control is similar to that

of the rate control. It uses parameter λc to allocate the

complexity cost for each coding units, and finally meets the

target complexity constraint. For complexity control, we need

to decide λc which controls the trade-off between the R-D

performance and computing complexity. The value of λc is

usually a constant value [3]. However, the complexity of each

MB (or each frame) is different, and λc should be dynamically

adjusted which depends on the complexity in previous MBs.

In this work, we use the subgradient method to adjust λc. The

coding unit is set to be a MB. For the (k+1)th MB, λc should

be adjusted according to the previous MB by

λ(k+1)
c = λ(k)

c − αkg
(k) (5)

where g(k) is a subgradient of the equation (3), α is a positive

step size. In order to simplify the computation, we use the

difference between the C(mode) and the target decoding

complexity Ctarget as the subgradient gk. The equation (5)

is rewritten as

λ(k+1)
c = λ(k)

c + αk(C
(k)
mode − Ctarget). (6)

After the RDO process, we find the best prediction mode,

and the complexity of interpolation Cmode. Then we use

Equation (6) to get a new λ for next MB to use. For example,

when the Cmode of the current MB is higher than the target

Ctarget, it means that we have used more complexity than

expected, and we should decrease the complexity for next MB.

Hence, λk+1
c increases slightly and less complexity is used for

the next MB.

III. EXPERIMENTAL RESULTS

The proposed algorithms are implemented on the

H.264/AVC software reference JM18.0. The search range

is 32x32 pixels, and the number of reference frames is 5.

Totally 6 video sequences are tested, each has 300 frames.

The QP value ranges from 20 to 36. In order to emulate

different decoding platforms, we set different complexity

ratios from 0.5 to 0.8. For example, if the ratio is 0.8, we

0 50 100 150 200 250 300
2

4

6

8

10

12

14
x 10

4 foreman

frame number

c
o
m

p
le

x
it
y

ori−H.264

proposed

0 50 100 150 200 250 300
41

42

43

44

45
foreman

frame number

P
S

N
R

ori−H.264

proposed

Fig. 3. Frame-to-frame complexity and PSNR, target complexity set to 60%.

0 50 100 150 200 250 300
0

100

200

300

400
coastguard

frame number

la
m

b
d
a

QP=20

QP=24

QP=28

QP=32

QP=36

0 50 100 150 200 250 300
0

50

100

150

200

250
akiyo

frame number

la
m

b
d
a

Fig. 4. The values of λc for various QP.

expect that the number of filters to be used to interpolate

fraction pixels is only 80 percent of the original. Fig. 3

compares frame-to-frame complexities and PSNR. Our

proposed algorithm can allocate complexity according to each

frame and the distribution of complexity is similar to original

H.264 reference software. Fig. 4 shows the evolution of λc

as the frame index grows in test sequences ‘coastguard’ and

‘akiyo’. The former is a high motion sequence, and the latter

is a low motion sequence. In the test sequence ‘coastguard’,

we can see that λc is very close to zero (but not exactly zero)

from the 40th frame to 75th frame. During these frames, the

complexity is lower than target complexity, so the value of

λc decreases in order to allocate more complexity to meet the

target complexity constraint. However, the sequence ‘akiyo’

is more static, and the motion is lower. Hence, the values of

λc fluctuate less than the other.

The performance at different complexity is summarized in

Table II, where we list the differences in PSNR loss between

original H.264 and our algorithm. The result shows 60%

complexity is achieved at the cost of a small bit rate increase,

as well as a small PSNR loss. The above simulations do not

impose any bit rate constraint. The bit rate varies for different

test sequences and different complexities. For more practical

simulations, we combine our complexity algorithm with the

H.264/AVC rate control. The performance is summarized in



TABLE II
R-D-C PERFORMANCE UNDER COMPLEXITY CONSTRAINT

sequence Complexity PSNR loss (dB) bit rate increase(%)

akiyo
0.8 0.038 -1.88
0.6 0.089 -1.77

silent
0.8 0.022 -0.32
0.6 0.045 0.35

foreman
0.8 0.050 -0.32
0.6 0.100 0.95

stefan
0.8 0.075 -0.08
0.6 0.145 0.86

coastguard
0.8 0.125 -0.95
0.6 0.217 0.43

mobile
0.8 0.082 -0.32
0.6 0.244 0.23

Average
0.8 0.065 -0.65
0.6 0.14 0.18

TABLE III
R-D-C PERFORMANCE UNDER COMPLEXITY AND BIT RATE CONSTRAINT

sequence
Target PSNR Rate Complexity

bit rate(kbit/s) loss(dB) (kbit/s) error(%)

akiyo
400 0.414 399.47 0.18
1200 0.273 1200.48 0.05

silent
400 0.136 399.95 0.35
1200 0.190 1201.13 2.69

foreman
400 0.258 400 1.01
1200 0.296 1199.69 0.42

stefan
400 0.298 400.47 0.13
1200 0.379 1199.51 0.32

coastguard
400 0.196 399.82 0.75
1200 0.304 1200.66 0.4

mobile
400 0.305 400.65 0.54
1200 0.371 1201.21 0.01

Average
400 0.268 400.06 0.49
1200 0.302 1200.45 0.65

Table III. The results show that 50% of the complexity is

reduced under different bit rate constraints. This demonstrates

that our algorithm has a good control accuracy under different

bit rate constraints.

We compare the proposed algorithm with the reference

work [4], in which Lee et al. propose that the complexity

allocated to each frame should be the same. However, this

is not an efficient way. Fig. 5 shows the frame-by-frame

complexity for different algorithms. Lee’s algorithm does not

adjust the complexity according to different frames. If there

exists any extra computing power in the previous frame, it can

not be utilized in the current frame. This is the reason that the

control error is larger than our algorithm. Fig. 6 compares

the error rate for different video sequences under different

complexity constraint. For each complexity, we average 4

control errors from 4 different bit rate constraints. Different

from the scheme proposed by Lee et al., the control error is

more stable in various test sequences and the whole average

control error is 1.20% approximately in our algorithm. The

result shows that our algorithm more accurately controls the

complexity.

IV. CONCLUSION

In this work, we propose a new approach to generate

decoder-friendly bitstream. This algorithm helps the encoder to

0 50 100 150 200 250 300
0

5

10

15
x 10

4 coastguard

frame number

c
o
m

p
le

x
it
y

proposed

Lee [4]

0 50 100 150 200 250 300
0

1

2

3
x 10

4 akiyo

frame number

c
o
m

p
le

x
it
y

proposed

Lee [4]

Fig. 5. Frame-by-frame complexity.

50 60 70 80
0

2

4

6

8

10

12
akiyo

complexity
c
o
n
tr

o
l 
e
rr

o
r(

%
)

50 60 70 80
0

2

4

6

8

10

12
silent

complexity

c
o
n
tr

o
l 
e
rr

o
r(

%
)

50 60 70 80
0

2

4

6

8

10
foreman

complexity

c
o
n
tr

o
l 
e
rr

o
r(

%
)

proposed

Lee [4]

50 60 70 80
0

5

10

15

20
stefan

complexity

c
o
n
tr

o
l 
e
rr

o
r(

%
)

50 60 70 80
0

5

10

15
coastguard

complexity

c
o
n
tr

o
l 
e
rr

o
r(

%
)

50 60 70 80
0

1

2

3

4

5

6
mobile

complexity

c
o
n
tr

o
l 
e
rr

o
r(

%
)

Fig. 6. The complexity error for different algorithms.

choose the suitable prediction modes, and generate a bitstream

that meets the complexity constraints for different decoding

platforms. As a result, the bitstream has a balance between

RD performance and computing complexity. Our mechanism

is verified experimentally. The whole average control error of

all test sequences is 1.20% with the bit rate constraint.

V. ACKNOWLEDGMENT

The work is supported in part by National Science Council

(NSC) of Taiwan under Grant NSC101-2220-E-006-007.

REFERENCES

[1] S. W. Lee and C. -C. Jay Kuo, “Complexity Modeling for Motion Com-
pensation in H.264/AVC Decoder,” IEEE International Image Processing,
vol. 5, pp. 313-316, Oct. 2007.

[2] Mehdi Semsarzadeh , Mohsen Jamali Langroodi , Mahmoudreza Reza
Hashemi and Shervin Shirmohammadi, “Complexity Modeling of the Mo-
tion Compensation Process of the H.264/AVC Video Coding Standard,”
IEEE Multimedia and Expo, pp. 925-930, Oct. 2012.

[3] Kemal Ugur, Jani Lainema, Antti Hallapuro, and Moncef Gabbouj
“Generating H.264/AVC Compliant Bitstreams for Lightweight Decoding
Operation Suitable for Mobile Multimedia Systems ,” ICASSP, May 2006.

[4] S. W. Lee and C. -C. Jay Kuo, “Motion Compensation Complexity
for Decoder-Friendly H.264 System Design,” IEEE Multimedia Signal

Processing, pp. 119-122, Oct. 2007.


