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Abstract—A systematic way to construct Integer-valued zero
autocorrelation sequences is proposed. This method only uses
fundamental theorems of discrete Fourier transform(DFT) and
some number theories.

I. INTRODUCTION

Zero autocorrelation(ZAC) sequences have many applica-

tions in communication and cryptography. In this work we pro-

pose a systematic way to find integer-valued ZAC sequences.

By the properties of Fourier transform and Ramanujan’s sum,

the method is easy to understand and implement.

ZAC sequences have been extensively used in commu-

nication engineering, such as synchronization, CDMA [1],

[2] and OFDM[3] system. They have also been applied to

cryptography for constructing pseudo random sequences. In

this paper a special kind of ZAC sequences is considered,

that is, integer-valued ZAC, because integer has the following

advantages comparing to complex floating point number.

1) Integer requires less memory, for both saving and send-

ing.

2) Arithmetic operations can be done faster and error-free.

3) The system can be implemented on hardware easily.

There are some trivial integer-valued ZAC. The most obvi-

ous one is
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The second one, although less known, is still in simple form
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where N is the signal length. For example, N = 5 and N = 6
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and
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When N is a composite number, constructing integer-valued

ZAC from its factor by zero-padding is not difficult to think

of. Let say N = 15 = 3 × 5, by the examples given above,

we can organize signals like

(3, 0, 0,−2, 0, 0,−2, 0, 0,−2, 0, 0,−2, 0, 0)

or

(1, 0, 0, 0, 0,−2, 0, 0, 0, 0,−2, 0, 0, 0, 0)

One natural question is, are there any non-trivial integer-valued

ZAC? The answer is yes, such as
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In this paper we will show how to find these signals system-

atically. One related research is [5] which generates Gaussian

Integer and some real integer ZAC, but the major drawback

of that method is the signal length N must be even.

The paper is organized as follows. In section II we will state

some definitions, and in section III we will describe two major

theorems that help us to construct integer-valued ZAC signals.

The algorithm will be presented in section IV. The conclusion

is in section V.

II. PRELIMINARIES

Unless specified otherwise the singal is considered as pe-

riodic, with period N . The terms ”signal” is equivalent to

”sequence”.

Let WN = exp(2πi/N), i =
√
−1. If x(n) is the input

signal with period N , then X(k) =

N−1∑

n=0

x(n)W−nk
N is called



the discrete Fourier transform (DFT) of x(n), also represented

by F {x(n)}.

One of the useful lemma of DFT is the circular shift

property.

X(k + s) = F
{
W−ns

N x(n)
}

(1)

A signal x(n) is called constant amplitude (CA) if

x∗(n)x(n) = C ∀n and for some constant C, where ∗ means

complex conjugate.

The autocorrelation of a signal x(n) is defined as Rxx(m) =
∑N−1

n=0 x∗(n+m)x(n). A signal is called zero autocorrelation

(ZAC) if its autocorrelation is Bδ(n) for some constant B,

where δ(n) is periodic delta function

δ(n) =







1, n ≡ 0(mod N)

0, elsewhere
(2)

A signal is called gcd-delta if s(n) = δ(d− gcd(N,n)) for

some constant d|N . We express it as sN,d(n). For example,

s6,2(n) =
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, s6,6(n) =
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Since gcd(N, 0) = N we can easily prove that sN,N(n) =
δ(n).

III. THEORY

In this section we will discuss two fundamental theorems.

The first one is elementary to verify [6]

Theorem III.1. If a signal x(n) is CA, then X(k),the discrete

Fourier transform of x(n), is ZAC. Moreover, if x∗(n)x(n) =
C, then RXX(m) = CN2δ(m)

Proof:

RXX(m) =

N−1∑

k=0

X∗(k +m)X(k)

=

N−1∑

k=0

(

N−1∑

n1=0

x∗(n1)W
n1(k+m)
N )(

N−1∑

n2=0

x(n2)W
−n2k
N )

=

N−1∑

n1=0

Wn1m
N

N−1∑

n2=0

x∗(n1)x(n2)

N−1∑

k=0

W
(n1−n2)k
N

=
N−1∑

n1=0

Wn1m
N

N−1∑

n2=0

x∗(n1)x(n2)Nδ(n1 − n2)

= N

N−1∑

n1=0

Wn1m
N x∗(n1)x(n1)

= CN

N−1∑

n1=0

Wn1m
N

= CN2δ(m)

As an example we consider N = 6, and

x(n) =
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which is CA. So the F {f(n)} is equal to

X(k) =











0

2− 2
√
3i

0
2
0

2 + 2
√
3i











which is ZAC.

The second theorem is related to Ramanujan’s sum.

Theorem III.2. The discrete Fourier transform of a gcd-delta

signal is integer-valued.

Proof:

SN,d(k) =
N−1∑

n=0

sN,d(n)W
−nk
N

=
∑

gcd(n,N)=d

W−nk
N

=
∑

gcd(s,N/d)=1

W−sk
N/d

= cN/d(k)

The last term is call Ramanujan’s sum. The proof of any

Ramanujan’s sum is integer can be found in [4].

IV. CONSTRUCTING INTEGER ZAC SEQUENCE

A. Algorithm

By Theorem III.1 we can construct ZAC sequences but

can not guarantee if they were integer-valued. Thus we need

Theorem III.2 to help us. The steps are described as follows

Step 1) Given a signal length N , calculate all its factors d.

Step 2) for every d choose a binary number bd = 0 or 1
and a phase shift W pd

N , where pd is any integer between 0 and

N − 1.

Step 3) Let

g(n) =
∑

d|N

(−1)bdW pdn
N sN,d(n)

Step 4) Then G(k) = F {g(n)} is an integer-valued ZAC

squence.

Before we prove this, we provide another example to explain

the ideas. Let N = 6, so d = 1, 2, 3, 6. We can arbitrarily



choose b1 = 0, b2 = 1, b3 = 1, b6 = 0 and p1 = 2, p2 =
1, p3 = 2, p6 = 0. Since

s6,1(n) =
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, s6,2(n) =
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s6,3(n) =
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, s6,6(n) =
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therefore in step 3,

g(n) =
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And the fourier transform of g(n) is

G(k) =
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The G(k) is an integer-valued ZAC as seen in the introduction.

From the example above we can notice that g(n) is CA, so

by theorem III.1 G(k) is ZAC. We now formally prove this.

Theorem IV.1. g(n) in step 3 is CA.

Proof: Let gcd(N,n) = d′,

g(n) =
∑

d|N

(−1)bdW pdn
N sN,d(n)

=
∑

d|N

(−1)bdW pdn
N δ(d− gcd(N,n))

=
∑

d|N

(−1)bdW pdn
N δ(d− d′)

= (−1)bd′W
pd′n
N (3)

so g(n) is on unit circle for all n. In other words,

g∗(n)g(n) = 1 ∀ n

which complete the proof.

The last part is to verify G(k) is integer-valued.

Theorem IV.2. G(k) in the step 4 is integer-valued.

Proof: Since Fourier transform is a linear transformation,

G(k) = F {g(n)}
=

∑

d|N

(−1)bdF {W pdn
N sN,d(n)}

and by (1)

=
∑

d|N

(−1)bdSN,d(k − pd)

Since by theorem III.2 SN,d(k) is integer-valued, and the

circular shift of an integer-valued sequence is still integer-

valued, thus G(k) is in fact a linear combination of integer-

valued sequence with coefficients ±1. This proves that G(k)
is integer-valued.

It is worthy to note that in step 3, if we change (−1)bd to

ibd and choose bd in the range of 0 to 3, then the G(k) is a

Gaussian-Integer valued ZAC as in [5]

B. Some special cases

We will check two special cases, the first one is

{1, 0, ..., 0
︸ ︷︷ ︸

k1

, 1, 0, ..., 0
︸ ︷︷ ︸

k2

, 1, 0, ..., 0
︸ ︷︷ ︸

k1

,−1, 0, ..., 0
︸ ︷︷ ︸

k2

}

if N is even and 2k1 + 2k2 + 4 = N . It is trivial that it is an

integer-valued ZAC. We claim that this type can be established

in step 3. In fact, if we choose all bd = 1 and

pd =







k1 + 1, d ≡ 1(mod 2)

0, elsewhere

The proof is easy so we omit it here. As a tiny example let

N = 6 and k1 = 0. So

g(n) =


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which is the scaling of [1, 1, 0, 1,−1, 0]. This is what we want

since k1 = 0 so the first two 1s has no zero between them.

The second special case is zero-padding as seen in the

introduction. We want to prove that, if g(n) is the length N
signal we choose in step 3, with parameters [bd, pd], and build

G(k) in step 4, then the length MN zero-padding integer-

valued ZAC signal

H(k) =







G( k
M ), k ≡ 0(mod M)

0, elsewhere

can also be built by choose

p′d = Mpgcd(d,N)

b′d = bgcd(d,N) (4)



Proof: By basic Discrete Fourier Transform property, rep-

etition in time domain will cause zero-inserting in frequency

domain. So we divide the proof into two parts. First we show

that h(n) = g(n) for 1 ≤ n ≤ N , and then prove that

h(n+N) = h(n).
Part 1. Recall (3)

g(n) = (−1)bd1W
pd1

n

N , d1 = gcd(N,n)

h(n) = (−1)b
′

d2W
p′

d2
n

MN , d2 = gcd(MN,n)

since h(n) is also built in step 3. Rewrite h(n) by (4),

h(n) = (−1)b
′

d2W
p′

d2
n

MN , d2 = gcd(MN,n)

= (−1)bgcd(d2,N)W
Mpgcd(d2 ,N)n

MN

= (−1)bgcd(d2,N)W
pgcd(d2,N)n

N (5)

And note that gcd(gcd(n,MN), N) = gcd(n,N) for 1 ≤
n ≤ N , thus

h(n) = (−1)bgcd(d2,N)W
pgcd(d2,N)n

N , d2 = gcd(MN,n)

= (−1)bgcd(n,N)W
pgcd(n,N)n

N

= g(n)

Part 2. By (5)

h(n+N) = (−1)bgcd(d2,N)W
pgcd(d2,N)(n+N)

N

, d2 = gcd(MN,n+N)

= (−1)bgcd(d2,N)W
pgcd(d2,N)n

N

But gcd(gcd(n + N,MN), N) = gcd(n,N) =
gcd(gcd(n,MN), N), so h(n + N) = h(n) and the

proof is completed.

C. Discussion in algebraic view

One can notice that the set of signals we construct in step 3

actually forms a finite abelian group (G, ·), where · means the

pointwise product: g1(n) · g2(n) = g1(n)g2(n). To prove that

this set is a group, we first note that g is determined by the

choices of bd and pd. Suppose we have two elements g1 and

g2, with the parameters [b1d ,p1d] and [b2d , p2d] respectively.

Then define

b3d = b1d + b2d(mod 2)

p3d = p1d + p2d(mod N)

this parameters form g3 ∈ G. We can easily show that

g1(n)g2(n) = g3(n), which prove the closure property. The

identity in this group is I(n) = 1 and the inverse of g1 is g2
where

b2d = −b1d(mod 2)

p2d = −p1d(mod N)

We can extend our discussion in abelian group with Q.

Theorem IV.3. If g1(n), g2(n) are CA, and

F{g1(n)}, F{g2(n)} are rational-valued. Then

1) g1(n)g2(n) is CA, and

2) F{g1(n)g2(n)} is rational-valued.

Proof: Since the pointwise product of two constant am-

plitude function is still constant amplitude, the first part is

trivial.

Second, recall that the Fourier transform property

F{g1(n)g2(n)} = F−1{g1(n)} ⊙N F−1{g2(n)}
where ⊙N means N points circular convolution. By assump-

tion F{g1(n)}, F{g2(n)} are rational-valued, and

F−2{x(n)} =
1

N
x(−n)

so F−1{g1(n)}, F−1{g2(n)} are the reverse order of

F{g1(n)}, F{g2(n)} and divided by N , so they are rational-

valued, too. Since the circular convolution of two rational-

valued signals is still rational-valued, the proof is completed.

The theorem immediately tells us:

Corollary IV.4. The rational-value ZAC signals form a group

(G,⊙N ).

In practice we can multiply the least common multiple

(LCM) to get rid of rational-value and become integer-value

signal.

V. CONCLUSIONS

In this paper a systematic approach to construct integer-

valued zero autocorrelation signal is proposed. By the cicular

shift property and Ramanujan’s sum, we can generate a lot of

these signals which form a finite abelian group. In addition,

zero-padding method can be viewed as our special case.
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