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Abstract—We report implementations of automatic speech
emotion recognition systems based on support vector machines
in this paper. While common systems often extract a very large
feature set per utterance for emotion classification, we conjecture
that the dimension of the feature space can be greatly reduced
without severe degradation of accuracy. Consequently, we system-
atically reduce the number of features via feature selection and
principal component analysis. The evaluation is carried out on
the Berlin Database of Emotional Speech, also known as EMO-
DB, which consists of 10 speakers and 7 emotions. The results
show that we can trim the feature set to 37 features and still
maintain an accuracy of 80%. This means a reduction of more
than 99% compared to the baseline system which uses more than
6,000 features.

I. INTRODUCTION

Affective computing is an emerging field of researches,
covering a broad range of expertise, e.g., computer sciences,
psychology, cognitive science, and engineering [1]. It is con-
cerned with the recognition and synthesis of human emotional
expressions, and the integration of such in computational
systems. Emotional expressions convey information of the
internal states of human, and they play important roles in
achieving high levels of user satisfaction in interactive systems,
such as information agents or computer games. The basic
means to the recognition of emotion is through the visual
(expression and color of faces) or acoustic cues (voices), as
in the PHYSTA project [2]. In addition, lexical and discourse
information can be integrated as well [3]. Besides, emotion can
be described by arm gesture to present music emotion [4].
In emotion researches, how to collect the real emotion is
a problem. When collecting frustrated and delighted smiles,
nature emotion is different with acted emotion [5]. Participants
are at a unfamiliar site sometimes also cannot express the
real emotion. Crowdsourcing which collects data through
Internet can let participants at their room or any they feel
comfortable. [6].

The research in this paper belongs to the area of speech
emotion recognition (SER). Many approaches have been re-
searched on SER. An SER system generally is equipped with
a front-end feature extraction module and a back-end recog-
nition/classification module. A survey on SER with respect

to features, classifiers, and databases can be found in [7].
Common acoustic features include spectral features, energy
features, cepstral features, quality features, prosodic features,
and pitch-related features. For example, the Interspeech 2009
Emotional Speech Challenge [8] adopted a feature set con-
taining prosodic, spectral and HMM-based features. Common
recognizers include model-based classifiers such as hidden
Markov models (HMM) and artificial neural networks (ANN),
and examplar-based classifiers such as support vector ma-
chines (SVM). Comparison across databases has been carried
out in [9], where evaluation results on 9 databases in combi-
nation of different recognizers are reported.

Our system is evaluated on the Berlin Database of Emo-
tional Speech (EMO-DB). EMO-DB is a popular database, on
which many works have been reported. In [10], SVM, multiple
layer perceptron (MLP), and probabilistic neural networks
(PNN) on the same feature set were experimented, with SVM
getting 78% accuracy. In [11], half of the 4,368 features
adopted in [8] are reduced for each emotion by Kolmogorov-
Smirnov test, while still achieving accuracy as high as 88%
for certain emotion classes. In [12], temporal interval time
information is studied, and achieving 91.6% accuracy with
the optimal feature on MLP. In [13], a small feature set of
segment-level features such as the fundamental frequency (F0)
and mel-frequency cepstral coefficients (MFCC) with global
statistics is used. In contrast, a huge feature set containing
6,552 acoustic features is used in [9]. On EMO-DB, this large
set of features achieves 85.2% accuracy.

In this research, we aim to find an optimal feature set
with the minimum number of features while maintaining a
decent recognition accuracy for SER on EMO-DB. In SER,
the common approach is to extract a very large feature set and
use it to train a recognizer. However, not all these features have
a positive impact on recognition. Too many features not only
reduce performance of recognition, but also increase comput-
ing time. Thus, it is of interest to investigate the relationship
between the number of features and the performance level.
Efforts for finding optimal features have been attempted in
the past. In [13], the linear discriminant analysis (LDA) is
applied to reduce the feature space. In [14], a scheme called



iterative feature normalization (IFN) is explored to reduce
speaker variability by normalizing the acoustic features from
neutral utterances. At this moment, the SER community still
have not converged to a best default feature set [15].

The baseline feature set [9] used in this paper contains
many acoustic features and functionals. First, we explore
the delta regression’s effects on SER. Second, we try to
find out the optimal acoustic feature set and functional set.
Finally, the principal component analysis (PCA) is employed
to aggressively reduce the number of features. Our goal is to
reduce feature number under 100, while keeping the accuracy
above 80%.

This paper is organized as follow: Section 2 introduce
Support Vector Machine and the common low-level descrip-
tors. Section 3 is split 3 part: First, we describe database
information; second part lists the detail of baseline feature set;
third part shows how we reduced the feature set in different
ways. Last, our conclusion are drawn in the final section.

II. FROND-END FEATURE AND BACK-END

A. Basic Acoustic Feature

We introduce zero-crossing rate (ZCR), signal energy, pitch,
and MFCC, which are common features in speech recognition.

ZCR is the sign change rate of waveform within a given
frame and is often used with energy for end-point detection.

Signal energy is variation of voice intensity. Under fixed
window size, signal energy is:

E =

(
N∑

n=0

xn
2

)
/N (1)

where N is PCM frame size and PCM frame values xn, n =
1..N . Because human do not hear loudness on a linear scale,
it is more similar to log scale. Log energy formula is:

El = log

[(
N∑

n=0

xn
2

)
/N

]
(2)

Pitch means the human perception of audio signal which can
be represented by fundamental frequency or equivalently, the
reciprocal of the fundamental period of voiced audio signals.
In our system, we use Auto-correction function to estimate
pitch.

In speech recognition, the most common feature is MFCC.
Human auditory system are much better at discerning small
changes in pitch at low frequencies than they are at high
frequencies. Mel scale is to match closely to human. The
formula for converting from frequency to Mel scale is:

M (f) = 1125 ln(1 + f/700) (3)

MFCCs consider this characteristic so that they are suit
to speech recognition. In the implementation steps, the most
important thing is to multiply the magnitude frequency re-
sponse by a set of 20-40 (standard 26) triangular bandpass
filters to get the energy of each triangular bandpass filter. It
applies Mel frequency to get the filter banks. The reason why

using triangular bandpass filters is to smooth the magnitude
spectrum in order to obtain the envelop of the spectrum
with harmonics. Therefore, MFCCs will not contain pitch of
utterances information.

B. Support Vector Machine

SVM is to find the optimal separating hyperplane which sep-
arates two different label sets. Given a set of data {xi, yi}, i =
1..n where xi ∈ Rd denotes the input vector, yi ∈ {+1,−1}
denotes the output value. Optimal separating hyperplane for-
mula is as:

w · φ (x) + b = 0 (4)

where x is input vector, w is weight vector, and φ() is a
mapping function in non-linear SVM. When linear SVM
cannot solve the problem, non-linear SVM uses kernel
function to project vector to higher dimensional space[16].
Then SVM finds a linear separation linear hyperplane from
high dimensions. SVM can be formulated as following
optimal problem:

Minimize
φ(w) =

1

2
||w||2

Subject to
yi (w · φ (xi) + b) ≥ 1

Above the optimal question have solution if and only if
it exists one optimal separating hyperplane to separate data
perfectly. For non-separable case, it must add a slack variable
ξ to release the restrict condition. Then, new optimal problem
is:

Minimize

φ(w, ξi) =
1

2
||w||2 + C

N∑
i=1

ξi

Subject to

yi (w · φ (x) + b) ≥ 1− ξi, ξi ≥ 0 ∀i

where C is the penalty parameter of the error term. The
decision function of SVM is defined as:

f (x) = sign

(
N∑
i=1

αiyik (x, xi) + b

)
(5)

where αi is Lagrange multipliers and k() is kernel function.

III. EXPERIMENT

We use the common database EMO-DB [17]. This database
contains utterances from ten native speakers of German, 5
male and 5 female speakers. Each speaker speaks 10 utterance
with 7 emotion states: anger, boredom, disgust, anxiety/fear,
happiness, sadness, and neutral. In order to provide more
reliable data, each utterance have been taken perception-test by
20 evaluators. Most utterances in database have more than 80%
recognition and 60% naturalness. We used all 535 utterances
in our evaluation.



TABLE I
56 LOW-LEVEL DESCRIPTORS

Feature Group Feature in Group # of LLD
Raw Signal Zero-crossing-rate 1
Signal energy logarithm 1
Pitch Fundamental frequency F0 in Hz via Cep strum and Autocorrelation (ACF). Exponentially

smoothed F0 envelope.
2

Voice Quality Probability of voicing (ACF (T0)
ACF (0

) 1
Spectral Energy in bands 0 - 250 Hz, 0 - 650 Hz, 250 - 650 Hz, 1 - 4 kHz 25 %, 50 %, 75 %, 90%

roll-off point, centroid, flux, and rel. pos. of spectrum max. and min.
12

Mel-spectrum Band 1-26 26
Cepstral MFCC 0-12 13

TABLE II
39 FUNCTIONALS APPLIED TO LLD

Functionals, etc. # of functionals
Respective rel. position of max./min. value 2
Range (max.-min.) 1
Max. and min. value - arithmetic mean 2
Arithmetic mean, Quadratic mean 2
Number of non-zero values 1
Geometric, and quadratic mean of non-zero values 2
Mean of absolute values, Mean of non-zero abs. values 2
Quartiles and inter-quartile ranges 6
95% and 98% percentile 2
Std. deviation, variance, kurtosis, skewness 4
Centroid 1
Zero-crossing rate 1
# of peaks, mean dist. btwn. peaks, arth. mean of peaks, arth. mean of peaks - overall arth. mean 4
Linear regression coefficients and corresp. approximation error 4
Quadratic regression coefficients and corresp. approximation error 5

A. Baseline

The baseline feature set is used in [9]. OpenEAR toolkit is
used to extract 6552 features consisting of 39 functionals of 56
acoustic low-level descriptors (LLD) along with the first and
second order delta regression coefficients. TABLE I shows all
LLD and TABLE II shows all functionals mapping LLD from
time series onto a statical value. Note that these features are
utterance-level.

B. Experimental Setup

Speech input is processed using 25ms Hamming window,
with a frame rate of 10ms. Feature values are normalized be-
fore training or prediction. We apply the Leave-One-Speaker-
Out method to speaker independent experiments. The back-end
classifier is support vector machine with polynomial kernel
based on Sequential Minimal Optimization (SMO) [18]. We
first remove certain regressions, feature groups, and func-
tionals. Then we apply PCA for further feature dimension
reduction.

C. Reducing Regression Features

The baseline set includes first and second order delta
regression coefficients. The delta coefficients are computed
using (6).

dt =

∑W
i=1 i

(
xt+i − xt−i

)
2
∑W

i=1 i
2

(6)

xt is the tth frame, and W specifies half the size of
the window to be used to computation of the regression
coefficients, and we set W to 2. Equation (6) relies on past and
future speech parameter. Performance of speech recognition
can be prevented by adding time derivatives. To know whether
delta regression is good for SER or not, we design three
experiments: baseline set without second order delta, baseline
set without first order delta, and baseline set without first
and second order delta regression. The first result gets 86.1%
accuracy; the second result gets 83.7% accuracy; the third
result gets 83.3% accuracy. TABLE III shows 3 experimental
results. According to the above results, we assume that second
delta regression can be delete to get a smaller feature set. From
comparing the second result with the first result, we assume
that first delta regression benefits SER. In following section,
most feature set of experiments do not contain second delta
regression coefficients. Here we reduce 1/3 feature set.

D. Reducing Feature Groups

In TABLE I, the baseline set has 7 feature groups. We
only have 6 feature groups because we combine voice quality
group into pitch group. This new group is called vpitch . We
experiment with different feature sets which include at most 3



TABLE III
3 EXPERIMENTS IN REDUCING REGRESSION FEATURE. ’O’ - ORIGINAL

DATA; ’∆’ - DELTA REGRESSION

Feature # of Features Accuracy
O+∆ 4368 86.1
O+∆2 4368 83.7
O 2184 83.3

feature groups. TABLE IV presents the 18 feature group sets
that perform more than 80% accuracy, and TABLE V presents
the times of each feature group showing in TABLE IV. In
these 18 experiments, 16 feature sets include the MFCC group.
However, the times of other 5 feature groups are only 5
to 7. We can assume that MFCC group is more efficient
than other 5 feature groups. Because they may be somewhat
redundant. Therefore, we run three experiments each only
using one feature group to compare these three groups. The
results also show MFCC group is better than other two groups.
Therefore, we delete Mel-spectrum and spectral groups. Then,
we select the feature sets which have at least 83% accuracy
and do not include Mel-spectrum and spectral groups from TA-
BLE IV, and we get MFCC+vpitch+ZCR, MFCC+energy, and
MFCC+ZCR sets. We also add MFCC+energy+vpitch+ZCR
set to include all feature groups. These four feature group sets
are applied to following experiments. In order to reduce more
feature, we try to delete some LLD in energy, vpitch , and ZCR
groups. These 3 groups have 5 LLD: F0, F0 envelope, log
energy, voice probability, and ZCR. In order to compare these
5 LLD, we perform 5 experiments with each one. TABLE VI
shows these 5 results. We delete F0 and F0 envelope because
these 2 LLD are the worst of 5 LLD. The first table of
TABLE VII shows our 4 feature group sets with only reducing
feature group and LLD; the second table of TABLE VII shows
reducing with feature group, LLD and delta regression.

TABLE IV
18 EXPERIMENTS FROM 41 FEATURE GROUP EXPERIMENTS ABOVE 80%

ACCUARCY

Feature Group Set # of Features Accuracy
MFCC+Mel-spectrum+spectral 3978 85.6
MFCC+Mel-spectrum+vpitch 3276 84.4
MFCC+spectral+vpitch 2184 83.7
MFCC+Mel-spectrum+ZCR 3120 83.5
MFCC+spectral 1950 83.5
MFCC+ZCR 1092 83.5
MFCC+vpitch+ZCR 1326 83.3
MFCC+energy+spectral 2028 83.1
MFCC+spectral+ZCR 2028 83
MFCC+energy 1092 83
MFCC+Mel-spectrum 3042 82.8
MFCC+Mel-spectrum+energy 3120 82.6
MFCC+vpitch 1248 82.6
MFCC+energy+vpitch 1326 82.4
MFCC+energy+ZCR 1170 82.2
Mel-spectrum+spectral+vpitch 3198 81.4
MFCC 1014 81.3
Mel-spectrum+spectral+energy 3042 80.5

TABLE V
THE TIMES OF EACH FEATURE GROUP SHOWING IN TABLE IV

Feature Group # of in 18 Experiments
MFCC 16

Mel-spectrum 7
spectral 7
energy 6
vpitch 6
ZCR 5

TABLE VI
ORDER OF 5 LLD EXPERIMENTS

LLD Accuracy
log energy 60.2
ZCR 57.6
voice probability 53.6
F0 52.5
F0env 52

TABLE VII
4 FEATURE SETS WITH DIFFERENT REDUCING STEPS

Baseline
Feature Group Set # of Features Accuracy
baseline 6552 85.2

Reducing Regression Features
Feature Group Set # of Features Accuracy
baseline without ∆2 4368 86.1

Reducing Feature Groups and LLD
Some results in this table is different with TABLE IV

because the vpitch group in TABLE IV have not deleted
F0 and F0env LLDs yet.

Feature Group Set # of Features Accuracy
MFCC+vpitch+ZCR 1170 83.7
MFCC+energy+vpitch+ZCR 1248 81.9
MFCC+energy 1092 83
MFCC+ZCR 1092 83.5

Reducing Functionals
Feature Group Set # of Features Accuracy
MFCC+vpitch+ZCR 180 81.1
MFCC+energy+vpitch+ZCR 192 80.7
MFCC+energy 168 79.1
MFCC+ZCR 168 78.7

Reduction via Principal Component Analysis
Feature Group Set # of Features Accuracy
MFCC+vpitch+ZCR 37 80.2
MFCC+energy+vpitch+ZCR 38 78.5
MFCC+energy 34 78.5
MFCC+ZCR 36 79.4

E. Reducing Functionals

Because we integrate quartile 0.25, 0.5, and 0.75 into one
functional, and so does inter-quartile range 1-2, 2-3, 1-3, we
just perform 35 experiments with each functional. TABLE VIII
shows 35 experimental results which sort by accuracy.

We select the best 14 of functionals from TABLE VIII.



TABLE VIII
35 EXPERIMENTS OF FUNTIONALS SORT BY ACCURACY

No. Functionals, etc. # Accuracy
1 quartile 0.25, 0.5, and 0.75 3 82.4
2 linear error between contour and linear regression line 1 79.6
3 arithmetic mean of absolute values 1 78.7
4 quadratic error between contour and linear regression line 1 78.7
5 95 percent percentiles to compute 1 78.5
6 98 percent percentiles to compute 1 78.5
7 standard deviation 1 78.5
8 arithmetic mean of absolute values 1 78.3
9 geometric mean 1 78.3

10 inter-quartile range 1-2, 2-3, 1-3 3 78.1
11 variance 1 77.6
12 quadratic mean 1 77
13 quadratic mean (of non-zero values only) 1 76.8
14 linear error between contour and quadratic regression line (parabola) 1 75.9
15 arithmetic mean of peaks 1 75.3
16 quadratic error between contour and quadratic regression line (parabola) 1 74.2
17 the arithmetic mean of the contour 1 72.7
18 The offset (t) of a linear approximation of the contour 1 71.5
19 arithmetic mean of peaks - arithmetic mean of all values 1 70.6
20 maximum value minus arithmetic mean 1 69.5
21 arithmetic mean - minimum value 1 68.7
22 max-min 1 64.1
23 The slope (m) of a linear approximation of the contour 1 62.8
24 zero-crossing rate 1 60.3
25 number of peaks 1 59.8
26 quadratic regression coefficient 3 (c = offset) 1 59.8
27 The kurtosis (4th order moment) 1 59.4
28 quadratic regression coefficient 2 (b) 1 56.4
29 the skewness (3rd order moment) 1 55.9
30 mean distance between peaks 1 52.7
31 quadratic regression coefficient 1 (a) 1 47.1
32 centroid of contour 1 42.1
33 number of non-zero values 1 36.6
34 the absolute position of the maximum value (in frames) 1 35.5
35 the absolute position of the minimum value (in frames) 1 35.3

After we try to perform different experiments with different
functional combination, we choose 3rd, 4th, 5th, 7th, 8th, and
9th functionals to be our optimal functional set. We discard
functional No.1 and No.2, which degrade the performance in
the functional combination phase. This optimal functional set
combine with our 4 feature group sets can get 78.7 to 81.7
accuracy, and the feature numbers are 168 to 192. The 3rd
table of TABLE VII shows these 4 experiments.

TABLE IX
DETAIL OF REDUCING NUMBER OF FEATURE STEP BY STEP USING OUR

OPTIMAL FEATURE GROUP SET. ’DD’ - WITHOUT SECOND ORDER DELTA
REGRESSION COEFFICIENT; ’FEA’ - OPTIMAL FEATURE GROUP SET; ’FUN’
- OPTIMAL FUNCTIONAL SET; ’PCA’ - PRINCIPAL COMPONENT ANALYSIS

Feature Set Accuracy # of Features % Reduction
baseline 85.2 6552 0%
dd 86.1 4368 33%
dd+fea 83.7 1170 82.1%
dd+fea+fun 81.1 180 97.2%
dd+fea+fun+PCA 80.2 37 99.4%

F. Reduction via Principal Component Analysis

The last step, we use PCA to select smaller number of
components, which keeps at least 95 percent of the variance
in the original data. When principle component number is 34,
36, 37 or 38, we get the best results with different feature
sets. With PCA, MFCC+vpitch+ZCR set gets 80.2% accuracy
with 37 features; MFCC+energy+vpitch+ZCR set gets 78.5%
accuracy with 38 features; MFCC+energy gets 78.5% accuracy
with 34 features; and MFCC+ZCR gets 79.4% accuracy with
36 features. Finally, we choose MFCC+vpitch+ZCR to be
our optimal feature group set because it is the only set that
keeps performance above 80% after reduction via PCA. The
4th table of TABLE VII shows 4 experiments. TABLE IX,
TABLE X, Fig. 1 adopt our optimal feature group set. TABLE
IX shows the accuracy and feature number each step. Fig. 1
shows the relationship between accuracy and feature number.
TABLE X shows the confusion matrix. Comparing with our
best reducing experiment, we get 77.2% accuracy with only
using PCA reducing from 6552 to 37 features.



TABLE X
CONFUSION MATRIX WITH 37 FEATURES USING OUR OPTIMAL FEATURE
GROUP SET. ’A’ - ANGER; ’B’ - BOREDOM; ’D’ - DISGUST; ’F’ - FEAR;

’H’ - HAPPINESS; ’N’ - NEUTRAL; ’S’ - SADNESS

````````Reference
Answer A B D F H S N Avg.

Anger(127) 113 0 0 3 10 0 1 88.98
Boredom(81) 1 68 1 0 0 7 4 83.95
Disgust(46) 0 3 41 2 0 0 0 89.13

Fear(69) 8 0 1 53 3 2 2 76.81
Happiness(71) 24 0 0 5 42 0 0 59.15
Sadness(62) 0 11 1 0 0 50 0 80.64
Neutral(79) 3 5 1 4 1 3 62 78.48
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Fig. 1. This figure gives accuracy and feature number step by step. The x axis
stands for step of reducing. The left y axis stands for feature number. The
right y axis indicates the accuracy of each reducing step.

IV. CONCLUSIONS

In this paper, we reduce the feature set of a baseline speech
emotion recognition system. This is achieved by a sequence
of steps, including the removal of delta features, the selection
of feature groups, the selection of functionals, and finally
the application of principal component analysis. The resultant
feature set consists of only 37 features, amounting to a size
reduction of more than 99% from the original set of 6,552
features. Furthermore, the accuracy is kept above 80%, not
severely degraded from the baseline of 85.2%.

In the future, we will experiment this optimal feature set
on different corpus to verify that it is general enough on
SER. Also, we will test other classifiers in combination of
the feature set. From the results, it is curious why the emotion
of happiness has the worst accuracy, and we will look into this
issue. In summary, we hope to improve the fronted of speech
emotion recognition.
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