
UML-Based Robotic Speech Recognition
Development: A Case Study

Abdelaziz A.Abdelhamid and Waleed H.Abdulla
Electrical and Computer Engineering, University of Auckland, New Zealand

E-mail: aabd127@aucklanduni.ac.nz, w.abdulla@auckland.ac.nz

Abstract—The development of automatic speech recognition
(ASR) systems plays a crucial role in their performance as well
as their integration with spoken dialogue systems for controlling
service robots. However, to the best of our knowledge, there
is no research in the literature addressing the development of
ASR systems and their integration with service robots from
the software engineering perspective. Therefore, we propose in
this paper a set of software engineering diagrams supporting a
rapid development of ASR systems for controlling service robots.
The proposed diagrams are presented in terms of a case study
based on our speech recognition system, called RoboASR. The
internal structure of this system is composed of five threads
running concurrently to optimally carry out the various speech
recognition processes along with the interaction with the dialogue
manager of service robots. The diagrams proposed in this paper
are presented in terms of the COMET method which is designed
for describing practical and concurrent systems.

I. INTRODUCTION

Service robots could recently attract the attention of both
academic and industry domains [1], [2], [3], [4], [5]. These
robots are designed to assist humans performing services (i.e.,
medical services [5]). Therefore, it is essential for these robots
to provide a human-robot interaction (HRI) using natural
speech through speech recognition technology. However, this
capability is still not widely spread for service robots due to
either the limited resources available by these robots or the
difficultly of integrating speech recognition systems with the
dialogue managers of these robots [6]. Service robots assisting
older people in particular received a lot of attention because
of the dramatic increase in the ageing population as well as
the increase of the costs of the elderly care [7], [8], [9]. Some
of these service robots have been developed as outcomes of
several projects initiated in the developed countries [7], [10].

In this regard, the R&D program of the Korea Ministry
of Knowledge and Economy (MKE) and Korea Evaluation
Institute of Industrial Technology (KEIT) with the cooperation
of the University of Auckland started a new project to develop
a service robot for presenting medical services for older people
[5]. In this project, when building a software for a service
robot, it is essential to develop a well-defined software archi-
tecture as well as integrating the software components with
the robot in a comprehensive way. The software components
of robotic systems are usually related together in the form
of many-to-many relations. Therefore, the interaction among
these components must be carefully analysed and managed
from an early stage of the development to understand the
full picture of the complete system. As the developed speech

recognition system is part from this project, it was of a high
importance to develop it in a systematic way to enable other
members of the team to easily integrate it with the other
software components.

To the best of our knowledge, there is no research
in the literature addressing the systematic development of
speech recognition systems for controlling service robots from
the software engineering perspective. Therefore, this paper
presents a systematic analysis of the development of robotic
speech recognition systems based on the COMET method
and in terms of the developed speech recognition system,
RoboASR [11], as a case study. In this analysis the Tripodal
schematic architecture presented in [12], [13] was employed.
This architecture gives a rigorous viewpoint about the internal
components of the developed system as well as the external
components interacting with the system components.

This paper is organized as follows. An overview of our
service robot and the supported services are presented in
Section II. The description of the speech recognition system,
RoboASR, and its integration with HealthBots service robot
are described in Section III. The analysis of the developed
speech recognition system is then discussed in Section IV
based on the COMET method, followed by a discussion in
Section VI. Finally, the conclusion of this work comes in
Section VI.

II. BACKGROUND ON HEALTHBOTS SERVICE ROBOT

A. Robot platform

Our HealthBots service robot is shown in Fig. 1. This robot
is designed for presenting medical services for older people.
On of the key features of this robot is the speech capabilities,
such as speech recognition and speech synthesis. This robot is
sponsored by the HealthBots project1 as a joint development
of the University of Auckland in New Zealand, with ETRI
and Yujin Robot Co. Ltd., in South Korea. The HealthBots
service robot is powered by a 24v Li-Polymer battery. It
consists of bumper sensors, ultrasonic sensors, microphones,
a rotatable touch screen and a laser range finder. The dialogue
manager of this robot is developed using ActionScript. The
software provided by this robot is communicated with several
web-services for information retrieval and update, and is
integrated with third-party applications for providing added
functionalities. User inputs are received in terms of spoken

1https://wiki.auckland.ac.nz/display/csihealthbots

commands directed through a head mounted microphone or
through buttons on a touch screen. The robot then responds to
the user inputs through synthesized speech, visual output on
the touch screen, or through physical movements.

Camera &
Microphones

Touch screen

Pan-tilt enabled

Speakers

Medical
devices tray

Laser scanner

Rotatable body

Fig. 1. HealthBots service robot.

B. Robot services

Some of the primary services provided by the HealthBots
service robot for older people are described in the following.

1) Multi-modal interaction: The interaction with Health-
Bots service robot can be established through a visual
output on a touch screen and/or voice commands cap-
tured using a wireless microphone.

2) Medication reminding: Our robot provides also a med-
ical reminding service for older people. This service
allows doctors to remotely follow up the health status
of older people.

3) Vital signs measurement: Three vital signs measure-
ments are supported by this robot. These vital signs in-
clude blood pressure, blood oxygen, and blood glucose.

4) Autonomous navigation: The user can command the
robot to move to a specific position in a predefined map.
The navigation is performed using a set of laser and
ultrasonic sensors with the help of ceiling landmarks.

Of these services, we emphasize in this paper on the
speech recognition system as a challenging approach in multi-
modal interaction with service robots. This system performs
several processes, such as signal acquisition, voice activation
detection, feature extraction and speech decoding as well
as communication with the robot’s dialogue manager. More
details about this system are presented in the following section.

III. ROBOASR: THE SPEECH RECOGNITION SYSTEM

The analysis proposed in this paper is presented in terms
of the speech recognition system, RoboASR [14][11][15]. In
comparison to other promising systems [16][17], our speech
recognition system has the advantage of being applicable to

service robots with limited resources. The developed speech
recognition system is fully implemented in C++, and the
currently supported operating system is Windows. This speech
recognition system is based on multi-threads as an efficient
way to achieve a harmony in the processing of the various
operations that take place on the captured speech signal. The
use of multi-threads also allows a continuous capturing of and
audio stream which enables an automatic speech decoding of
the detected speech regions. The structure of RoboASR, shown
in Fig. 2, is based on the following five threads.

1) Control thread: This thread is developed to control the
overall system. It is also responsible for loading a set of
acoustic models as well as a set of tiny decoding graphs,
which are loaded on-demand, for speech decoding.

2) Monitoring thread: We developed this thread to keep
the speech recognition system updated with the last
changes occurred to a set of extensible markup language
(XML) files containing the potential spoken commands
at each point of the robotic interaction scenarios.

3) Signal acquisition thread: The continuous capturing of
the speech signal from the sound card is the task of this
thread. The speech signal is captured using a series of
multi-buffers working together as a pipeline.

4) Preprocessing thread: While capturing the continuous
audio stream, this thread is responsible for detecting the
buffers containing parts of the spoken command. The
detected buffers are then accumulated into another large
buffer for further speech decoding after and extracting
a set of acoustic features.

5) Speech decoding thread: The actual recognition pro-
cess (also referred as speech decoding) is performed
using this thread. The recognition process is realized
using Viterbi beam pruning algorithm. The recognition
command is then sent to the robot’s dialogue manager
to react accordingly.

A. RoboASR integration with HealthBots service robot

A service robot should be enabled to interact and transact
providing its own functionalities and those of other devices to
humans. Speech recognition is a common and natural choice
to perform this task. The interaction scheme of the developed
speech recognition system with the dialogue manager of
HealthBots service robot is shown in Fig. 3. This scheme is
based on the following components.

1) Speech decoding: This component refers to the single-
pass decoder, which is responsible for decoding the
detected speech regions in the continuous audio stream.
Speech decoding is performed in terms of a tiny de-
coding graph corresponding to the state identifier of
the accessed HRI state. In other words, once an HRI
state is accessed, its identifier is sent to the decoding
engine to load the corresponding tiny decoding graph.
Consequently, the decoding engine expects only the
potential spoken commands defined at this HRI state.
In addition, once the spoken command is recognized by

B
u

ffe
r

Yes

No

Yes

Speech
decoding

. . .

. . .

Tiny decoding
graphs

Yes

No

No

Changes
detected?

Update tiny
decoding graphs

Buffer1

BufferN

Bufferi

Is
speech?

Command
ready?

Feature extraction

Monitoring
Thread

Signal acquisition
Thread

Preprocessing
Thread

Speech decoding
Thread

Control
Thread

Get next buffer

Fig. 2. Architecture of the developed speech recognition system.

the decoding engine, it is sent to the dialogue manager
to react accordingly.

2) XML Parser: The files containing the interaction sce-
narios (represented in XML scripts) are parsed by this
parser to generate a set of weighted finite state acceptors
(WFSAs) corresponding to the changed or newly added
spoken commands at each HRI state.

3) Tiny WFSTs extraction: This component is responsible
for extracting a tiny WFST for each WFSA generated by
the parser. The resulting tiny WFST are then added to a
pool containing the tiny WFST used in speech decoding.

Tiny WFSTs
extraction

Speech
decoding

XML parser

Dialogue Manager

Dialogue
Definitions

(XML) Tiny
WFSTs

HRI State
IdentifierRecognized

Command

R
o

b
o

A
SR

Offline Online

Fig. 3. The integration of the developed speech recognition system with the
dialogue manager of HealthBots service robot.

It is worth noting that the extraction of the tiny decoding
graphs is performed in an offline mode to speed up the robot’s

response to the user input. However, as the dialogue moves
from one HRI state to another, the corresponding tiny decoding
graph is loaded in an online mode.

B. The COMET method

The analysis presented in this paper is based on the COMET
method [18], which is developed for analysing real-time and
distributed applications. This method integrates object oriented
and concurrent concepts in the form of unified modelling
language (UML) notations [19]. The COMET object oriented
software life cycle model is a highly iterative software devel-
opment process based around the usecase concept and consists
of the following modelling stages.

1) Requirement modelling: In this modelling stage, the
system functional requirements are modelled using ac-
tors and usecases.

2) Analysis modelling: This modelling focusses on devel-
oping both static and dynamic models of the system. The
static model defines the structural relationships among
problem domain classes. A dynamic model is then
developed in which the usecases from the requirements
model are refined to show the objects that participate in
each usecase and how they interact with each other.

3) Design modelling: This modelling is concerned with the
design of the system software architecture. Using this
design, the operational environment is mapped from the
analysis model.

IV. APPLYING THE COMET TO ROBOASR
The analysis of the developed speech recognition system is

explained in this section in terms of the COMET method.

A. Requirements modelling

In the stage of modelling the system requirements, black
boxes are usually used to represent the main functions of
the system. These black boxes are denoted by usecases. The
usecase model, shown in Fig. 4, is developed to represent
the whole system process. In this figure, a set of usecases
and actors are used to represent the functions (i.e., functional
requirements) provided by the system. An actor is usually used
to represent a human user. However, it may also represent an
external I/O device or a timer in real-time systems [20].

Commander
(from 1.0 Actors)

ASR

<< extend >>

Definitions Monitoring
Clock

(from 1.0 Actors)

Fig. 4. Usecase diagram of the developed speech recognition system..

The developed ASR system has two actors; the first repre-
sents the commander, who is the user of the system, and the
second actor represents the clock that schedules the definition
monitoring process. In addition, two usecases are defined, the
first represents the speech recognition process, ASR. While the
other represents the process of monitoring a set of definition
files containing the potential spoken commands. The latter
usecase is called Definitions Monitoring. This modelling stage
is based on function requirements defined in the following.

The first function requirement is to receive a spoken com-
mand from the commander, then recognize it, and finally send
the recognized command to the robot’s dialogue manager to
behave accordingly. Therefore, the first usecase was defined as
ASR to represent the whole process of the speech recognition.
As the speech recognition/decoding process is performed in
terms of a set of tiny decoding graphs [11] corresponding
to the potential spoken commands expected at each HRI
state, the second function requirement was to keep these tiny
decoding graphs updated with the latest changes occurred to
the definition files containing these potential spoken com-
mands. Therefore, the other usecase, Definitions Monitoring,
was defined to represent the continuous monitoring of the
changes that may occur to definition files and to keep the ASR
usecase aware of these changes. Therefore, the ASR usecase
is extended to the other usecase Definitions Monitoring.

B. Analysis modelling

The modelling of real-time systems consists of two types,
namely static and dynamic modelling. In this section, both of
these modelling types are discussed in more details.

1) Static modelling: This modelling process is used to
represent the static relationships in the context of the speech
recognition system. For real-time systems, it is important
to understand the relationship between the system and the
external environment. This relationship is usually described
using a system context [20], which provides the boundary
of the system. The static modelling is used to determine the
system context in terms of the external classes connected to the
system. Figure 5 shows the context diagram of the developed
system. In this diagram, the commander utters a spoken
command, which is captured using a wireless microphone.
Once the spoken command is captured, it is recognized and
sent to the robot’s dialogue manager to do some action.
Therefore, the system is depicted as an aggregate class with
the stereotype, <<system>>, and the external environment
is depicted as the external classes by using stereotypes. These
external classes are, graphical user interface (GUI) as the
external user class, wireless microphone as an external input
device, and service robot as an external output device. Also,
an external timer class, called clock, is required for the clock
actor to provide the system with timer events, so that the
system periodically checks the files changes to avoid any
inconsistencies. Afterwards, to determine the software objects
of an ASR system in preparation for dynamic modelling,
object structuring criteria, provided in the COMET method,
are applied for the purpose of decomposing the system into
classes and objects. In our system, a set of external classes
interfacing with the system are used to determine the inter-
face objects including GUI, signal acquisition, and dialogue
manager interfaces. We identified four entity objects including
spoken command, acoustic features, best decoding hypothesis,
tiny decoding graphs, that are defined as long-living objects
used to store information in the developed system.

Commander
(from 1.0 Actors)

Clock
(from 1.0 Actors)

Interacts with Outputs to

Awakenes

1

1 1

1 .. *

Inputs to

1 1 1 11 1

<< external user >>
Graphical User Interface

<< system >>
ASR

<< external user >>
Service Robot

<< external timer >>
Clock

<< external input device >>
Wireless Microphone

Fig. 5. Context class diagram of the developed speech recognition system.

Additionally, a set of control objects, such as state-
dependent control, or timer objects, are used to describe the
coordination of objects in a usecase. For the developed system,
a state-dependent control object, called ASR Controller, is
identified, which controls the speech recognition process. Also,
a timer object is identified to periodically check the status of
the scenario definition files. This timer generates a timer event
periodically and every fixed portion of time (i.e. 50 ms).

On the other hand, the updates to speech decoding graphs

<< external user >> << user interface >>

Delibrate
Layer

Sequencing
Layer

Reactive
Layer

<< external input device >> << external input device >> << output device interface >> << external output device >>

1.1: Access HRI State

1.2: HRI State

<< algorithm >> << entity >>

<< algorithm >> << entity >> << entity >> << algorithm >>

<< entity >> << algorithm >>

2.2 Read

2.3 Data

2.1 Read Audio
2.4 Audio Data

6.4 Hypothesis Ack

6.1 Best Hypothesis

6.2.b Stop
6.2.a Start

6.3.b Stopped Ack

5.1 Extract
Graph

5.2 Graph
Extracted

3.6: Extract
Features

3.7: Features
Extracted

3.2: Listen

3.3: Captured Command

4.2: Decode
Features

4.3: Best Decoding
Hypothesis

<< start dependent control >>

1.4: Tiny Graph

1.3: Load Tiny Graph

3.5: Get
Features

3.8: Features

3.1: Capture Command

3.4: Command

4.1: Get Best
Hypothesis

4.5: Best
Hypothesis

: ServiceRobot

6.3.a Started Ack

: TouchScreen

: Graph
Extraction

: GraphicalUserInterface

: ASR
Controller

: Acoustic
Features

: VAD

: Token
Passing

: TinyGraph

: Feature
Extraction

: Spoken
Command

: Best
Hypothesis

: Microphone : SignalAcquisitionInterface : DialogManagerInterface

Fig. 6. Collaboration diagram of the ASR usecase.

<< external output device >>

Sequencing
Layer

Reactive
Layer

<< external timer >>

4
.2

: B
es

t
H

yp
ot

h
es

is

1.1 Timer Event

3.1.b Stop
3.1.a Start

3.2.b Stopped Ack

<< start dependent control >>

: ServiceRobot

3.1.a Started Ack

: Clock

: ASR
Controller

: DialogManagerInterface

<< timer >>

<< output device interface >><< external input device >>

2.1 Read

2.2 Data

: Microphone : SignalAcquisitionInterface

<< external input device >>

: DefinitionsMonitoringTimer

4
.1

: H
yp

ot
h

es
is

 A
ck

1.6 Update Tiny
Decoding Graphs

1.7 Tiny
Decoding Graphs

Updated

1.2 Notify

1.3 Notified

1.4 Pause1.5 Paused

Fig. 7. Collaboration diagram of the Definitions Monitoring usecase.

are performed by a timer event once any changes are de-
tected in these definition files. Also, voice activation detection
(VAD), feature extraction and token passing algorithm objects

are described as an encapsulated algorithms usually used in
speech recognition systems. As the object’s behaviour varies
in each of its states, the next section presents an analysis of

the dynamic modelling of the ASR control object.
2) Dynamic modelling: The dynamic modelling process

is used to emphasize the dynamic behaviour of the speech
recognition system. This modelling process plays an important
role in the analysis of concurrent and real-time systems [20]. In
dynamic modelling, the contribution of the system objects to
the usecases as well as the interaction between these objects
are described. Additionally, the dynamic modelling process
presents the definition of state-dependent objects in terms
of a finite-state machine called state-chart. This modelling
approach starts with describing the objects of usecases, ASR
and Definitions Monitoring, that are identified during the
static modelling, using collaboration diagrams. Then, state-
chart diagram is developed for collaborations having state-
dependent objects.

Figure 7 illustrates the collaboration diagram of the Defini-
tions Monitoring usecase. In this figure, the object interactions
of this usecase start with a timer event received from the
clock. If this event indicates that the definition files have
been changes, a notification is sent to the dialogue manager to
inform it that the speech recognition system will start updating
its decoding graphs. In addition, a message is sent to the
SignalAcquisitionInterface object to pause capturing the audio
stream. Finally, a message is sent to the ASR Controller to
start updating the tiny decoding graphs based on the changes
occurred to the definition files.

On the other hand, Fig. 6 depicts the collaboration diagram
of the ASR usecase. In this figure, the object interactions of
the ASR usecase start with the commander accessing an HRI
state. The identifier of the accessed state is provided to the
ASR controller through the GUI. Also, a set of messages
sequences, each of which is assigned to separate thread, are
passed between the objects of the collaboration diagram as
follows. The message sequence starting from 1.1 to 1.4 is used
to address the loading of the decoding graph corresponding to
the accessed HRI state. The next message sequence starts from
2.1 to 2.2, is used to capture an audio stream. Followed by
the message sequence starting from 3.1 to 3.8 corresponding to
voice activation detection and extraction of acoustic features.
Then, the message sequences from 4.1 to 4.5, from 5.1 to 5.2
and from 6.1 to 6.4 are used for handling the decoding process,
extraction of tiny decoding graphs and sending actions to the
service robot.

A state-chart diagram is then defined for each control object
in the collaboration diagram. The state-chart diagram contains
a set of states connected with each other using a set of
messages. These message may carry an information or a
function call. The messages of state-chart and collaboration
diagrams should be considered together. In other words, an
input event to a control object in the collaboration diagram
should coincide with an input message to a state in the state-
chart. Also, output messages in the state-chart should coincide
with output events shown in the collaboration diagram. It
worth noting that, a message arriving at the control object
causes a state transition. For example, in Fig. 6, GUI sends
the 1.1: HRI-state event to ASR Control, and thus a transition

is defined in state-chart from Idle state (the initial state) to
Loading Tiny Graph state, as shown in Fig. 8. The action
associated with this transition is Load Tiny Graph. This action
corresponds to the output events 1.3: Load Tiny Graph in
the collaboration diagram. Because the state-chart modelling
involves two state-dependent usecases (ASR and Definitions
Monitoring), the two partial state-charts are integrated to create
the complete state-chart shown in Fig. 8.

3) Software architecture: The collaboration diagrams of
each usecase are then merged into a single consolidated
collaboration diagram. The consolidation diagram describing
the two usecases, ASR and Definitions Monitoring, is depicted
in Fig. 9. This consolidated diagram is used to provide a
complete description of all objects and their interactions.

Using the COMET method, the architecture of software
systems can be modelled using client/server or layered archi-
tectural style. In this work, the layered architectural style is
adopted in the design and modelling of the developed speech
recognition system. This style provides three layers, namely
deliberate, sequencing, and reactive layers. In the collaboration
and consolidated collaboration diagrams shown in Fig. 6 and
Fig. 9, the deliberate layer includes the GUI for interfacing
with end users. Whereas the reactive layer contains the signal
acquisition and dialogue manager interfaces as well as the
definition monitoring timer. On the other hand, the sequencing
layer contains the other objects that are used in controlling the
speech recognition process. This approach is very helpful in
arranging various software modules and functions.

C. Design modelling

This part focuses on the tasks incorporated in the design of
the developed system. The following sections discuss this part
in terms of two phases, namely task structuring and detailed
design.

1) Task structuring: In this phase, the system is structured
into concurrent tasks, and the task interfaces and interconnec-
tions are defined. In this phase, the terms task and object are
used to denote active and passive objects, respectively. Using
the COMET method, the mapping between an object-oriented
analysis model and a concurrent tasking architecture can be
established using task structuring.

The tasks included in a system can be determined by
understanding how objects in that system interact with each
other. This can be determined easily from a consolidated
collaboration diagram. According to the consolidation diagram
shown in Fig. 9, the token passing object is activated peri-
odically to decode the extracted acoustic features from the
acoustic features object, and to return back the best decoding
hypothesis to the ASR controller. Therefore, the token passing
algorithm is structured as internal periodic algorithm tasks,
based on the internal task structuring criteria in COMET,
because they are executed on a periodic basis, as shown in
Fig. 10. Four passive entity objects, namely spoken command,
acoustic features, best decoding hypothesis, and tiny decoding
graphs can be viewed in the figure. These passive objects do
not need a separate thread of control, and can be described

Load Tiny Graph

Voice Activation
Detection (VAD)

Check Detected
Utterance

Signal Captured

Detected Utterance

Valid Utterance

Changes
Detected

Recognized Command

Acoustic Features

Start Monitoring

Graph
Loaded

Resume
Acquisition

HRI State
Changed

Changes
Applied

Updating Tiny
Decoding Graphs

Monitoring XML
Changes

Controlling
Service Robot

Signal
Acquisition

Loading Tiny
Decoding Graph

Idle

Speech
Decoding

Feature Extraction

Fig. 8. State-chart diagram of the developed speech recognition system.

<< external user >> << user interface >>
Delibrate
Layer

Sequencing
Layer

Reactive
Layer

<< external input device >> << external input device >> << output device interface >> << external output device >>

Navigate HRI states

HRI State

<< algorithm >> << entity >>

<< algorithm >> << entity >> << entity >> << algorithm >>

<< entity >> << algorithm >>

Read

Data

Read
Audio Audio

Data

Best Hypothesis

Stop

Started Ack

Start

Stopped Ack

Extract Graph

Graph Extracted

Extract
Features

Features
Extracted

Listen

Detected Command

Decode
Features

Best Decoding
Hypothesis

<< start dependent control >>

Tiny Graph
Loaded

Load Tiny Graph

Get Features

Features

Capture Command

Command

Get Best
Hypothesis

Best Hypothesis

NotifyPause

<<
 s

ta
rt

 g
ra

ph
 e

xt
ra

ct
io

n
>

>

Notify AckPaused Ack

Timer Event
<< external timer >> << timer >>

: Spoken
Command

: VAD: TinyGraph: Graph
Extraction

: Feature
Extraction

: Acoustic
Features

: SignalAcquisitionInterface: Microphone

: Clock

: Best
Hypothesis

: Token
Passing

: ServiceRobot: DialogManagerInterface

: ASR
Controller

: TouchScreen : GraphicalUserInterface

: DefinitionsMonitoringTimer

Hypothesis
Ack

Fig. 9. Consolidated collaboration diagram of the developed speech recognition system.

in terms of data abstractions. On the other hand, microphone
device and service robot are considered as passive tasks,
as there is no interruption generated by these tasks on the
completion of their operations. It worth noting that, by using
the task clustering criteria, we can determine the possibility
of grouping tasks together to reduce the overall number
of tasks, because too many tasks can potentially result in
increasing system complexity and execution overhead. The
next section describes the characteristics of each task using
the task behaviour specification.

2) Detailed software design: In this phase, the information
hiding classes are designed. These classed are used in instanti-
ating the passive objects. The design of the interfaces of these
classes and the operations of each class can be determined
using either static or dynamic models (i.e., collaboration
diagrams). They are specified in a class interface specification.
To show the information hiding objects, the internal design of
the ASR is considered as shown in Fig. 12. The information
hiding objects include signal acquisition and dialogue manager
interface objects and the GUI object.

The communications between the ASR task and Spoken
command, Acoustic features and Best competing hypothesis
are established through data abstraction classes. In the case
of inter-task communication between the ASR and Definitions
Monitoring tasks, synchronization is required since these tasks
try to access to a shared resource, namely the tiny decoding
graphs. In other words, when a change in the scenario defini-
tion files is detected by Definitions Monitoring, the task sends
a suspend events, such as pauseSignalAcquisition in Fig. 9,
to the signal acquisition interface to pause the ASR task that
depends mainly on the signal acquisition.

Additionally, the sequence of task’s events is described
using a task event diagram, as shown in Fig. 11. This figure
shows how the task responds to each of its message or event
inputs, which is very useful in implementing the tasks and
their corresponding events.

V. DISCUSSION

In this section, we summarize the lessons learned from
applying the COMET method in the development of speech
recognition systems for controlling service robots.

A. UML for robotic ASR systems

Through this case study we leaned that, system require-
ments, structuring, system decomposition into objects, and
communication between objects can be efficiently described
and modelled using the COMET approach. This modelling
can be established using the following set of diagrams which
are important for analysing, modelling and designing real-time
systems.

1) Usecase diagram: Using this diagram, the functions
or processes of a speech recognition system can be
represented in terms of actors who are the users of the
ASR system and usecases that are used to define the
behaviour of a global task in the ASR system without
revealing its internal structure.

2) Collaboration diagram: This type of diagrams is used
to model the requirements of usecases defining a system
through describing the system objects in terms of their
corresponding interactions. This diagram is particularly
useful for modelling the architecture of real-time sys-
tems.

3) State-chart diagram: The ASR is considered as a
state-dependent system, which is the case of most real-
time embedded systems. State-chart diagram is used to
model state-dependent aspects of the system using finite-
state machines. This can help in simplifying the design
and development of state-dependent systems. It is also
possible for this diagram to model object behaviour over
several usecases with the collaboration diagrams.

4) Task event diagram: The interaction between objects
arranged in time sequence is described using a task
event diagram. In other words, this diagram is used
to describe how tasks respond to each of their input
events or messages. The order in which messages are
passed between tasks can be used to help engineers in
implementing the system tasks more efficiently.

A significant gain from applying the UML notations to the
development of ASR systems is to enable different develop-
ment teams and research groups to communicate together to
develop and integrate the various tasks performed by the ASR
system.

B. Importance of systematic development of ASR systems

In order to efficiently resolve the issues in developing an
ASR system and integrating it with a real robotic platform, a
systematic and comprehensive software development method
has to be employed. In the case study presented in this
paper, the COMET method is employed to developing an
ASR system for controlling service robots. The advantage
of the COMET method is that it is based on the usecase
concept in a highly iterative software development process
performed through three modelling stages. In the stage of
requirement modelling, the global functions of the speech
recognition systems are defined as usecases, whereas the
objects interacting with the system are defined as actors. In
the stage of analysis modelling, each usecase is represented
in terms of it constituting tasks along with the interactions
among these tasks. Finally, in the stage of design modelling,
the concurrency, distribution, and information hiding of each
task is further analysed. The case study presented in this paper
clarified the importance of applying the COMET method in
developing an effective speech recognition system for control-
ling service robots through carefully handling the technical
components of this system along with it integration with the
dialogue manager of service robots.

VI. CONCLUSION

In this paper, the COMET method is employed to present
the development of robotic speech recognition systems in
terms of our speech recognition system, called RoboASR, as
a case study. The advantage of using the COMET method

<< external user >>Delibrate
Layer

Sequencing
Layer

Reactive
Layer

<< passive output device >>

accessHRIState(in HRIState)

<< data abstraction >> << algorithm >>

<< algorithm >>

captureSpokenCommand(in audioData, out Command)

<< passive input device >>

timerEvent notify()

<< data abstraction >>

<< external timer >> << tiny decoding graphs extraction >>

parseXML()

createWFSA()

extractTinyWFST()

loadTinyGraph(in HRIState)

decodeSpokenCommand(in Features, out BestHypothesis)

extractFeatures(in Command, out Features)

: TouchScreen

: ASR
Controller

: Spoken
Command

: VAD

: Best
Hypothesis

: Token
Passing

: Microphone

: ServiceRobot: DefinitionsMonitoringController: Clock

notifyRobot(in BestHypothesis)

read(out audioData)

<< algorithm >>

<< algorithm >>

: TinyGraph: Graph
Extraction

: Feature
Extraction

: Acoustic
Features

<< data abstraction >>

<< data abstraction >>

Fig. 10. Task architecture diagram of the developed speech recognition system.

GraphicalUserInterface ASRController VAD FeatureExtraction SpeechDecoding Robot DefinitionMonitoring TinyGraphsSignalAcquisition

accessHRIState()

readAudio()
checkAudio()

detectCommand()

processEvent()

extractFeatures()

decodeCommand()

notifyRobot()

loadTinyDecodingGraph()

processEvent()

processEvent()

activateMonitoring()

updateGraphs()

processEvent()

{If a change is detected}

{If a command is detected}

pauseSignalAcquisition()

resumeSignalAcquisition()

notifyRobot()

notifyRobot()

Fig. 11. Task event diagram of the developed speech recognitions system.

is providing software engineering techniques to describe the
architecture of real-time embedded systems. These techniques
are used in this paper to fully define and analyse the devel-
opment process of the proposed speech recognition system
for controlling service robots. We consider this analysis an
important contribution to the systematic development of ASR

systems for controlling service robots as it may guide software
engineers in developing, integrating and documenting robotic
speech recognition systems.

<< external user >>

startRoboASR(in HRIState)

captureSpokenCommand(in audioData, out Command)
activate()

parseXML()
createWFSA()

extractTinyWFST()

read(out audioData)

loadTinyDecodingGraph(in HRIState)

extractFeatures(in Command, out Features)extractBestHypothesis(in Features, out BestHypothesis)
<< data abstraction >>

<< data abstraction >>

<< data abstraction >> << data abstraction >>

<< timer >> stopMonitoring()
startMonitoring()startTimer()

stopTimer()

accessHRIState(in HRIState)

<< input device interface >> << output device interface >>

: TouchScreen

: ASR
Controller

: Acoustic
Features

: Spoken
Command

: Best
Hypothesis

: Tiny
Graphs

: Microphone : ServiceRobot

: DefinitionsMonitoring: Clock

: SignalAcquisitionInterface : DialogManagerInterface

: GraphicalUserInterface

notifyRobot(in BestHypothesis)

Fig. 12. Detailed software design of the developed speech recognition system.

VII. ACKNOWLEDGEMENT

This work is supported by the R&D program of the Korea
Ministry of Knowledge and Economy (MKE) and Korea Eval-
uation Institute of Industrial Technology (KEIT) [KI001836].
We thank ETRI for their contributions and help with the
work. The authors would like to acknowledge the HealthBots
Project Leader A/P Bruce A.MacDonald for the great support
in developing this research.

REFERENCES

[1] R. Bischoff and V. Graefe, “Dependable multimodal communication and
interaction with robotic assistants,” in IEEE International Workshop on
Robot and Human Interactive Communication, 2002.

[2] T. Portele, S. Goronzy, M. Emele, A. Kellner, S. Torge, and J. Vrugt,
“SmartKomHome - An advanced multi-modal interface to home enter-
tainment,” in Proceeding of European Conference on Speech Communi-
cation and Technology (EuroSpeech), Geneva, Switzerland, 2003.

[3] I. Toptsis, A. Haasch, S. Huwel, J. Fritsch, and G. Fink, “Modality
integration and dialog management for a robotic assistant,” in Proceed-
ings of European Conference on Speech Communication and Technology
(EuroSpeech), 2005.

[4] J. Ido, Y. Matsumoto, T. Ogasawara, and R. Nisimura, “Humanoid with
interaction ability using vision and speech information,” in Proceedings
of IEEE/RSJ International Conference on Intelligent Robots and Sys-
tems, 2006.

[5] C. Jayawardena and et. al, “Deployment of a service robot to help
older people,” in Proceedings of IEEE/RSJ International Conference on
Intelligent Robots and Systems, 2010, pp. 5990–5995.

[6] M. Doostdar, S. Schiffer, and G. Lakemeyer, “A robust speech recogni-
tion system for service-robotics applications,” in Proceedings of Inter-
national RoboCup Symposium, 2008, pp. 1–12.

[7] R. Reddy, “Robotics and intelligent systems in support of society,” IEEE
Transactions on Intelligent Systems, vol. 21, no. 3, pp. 24–31, 2006.

[8] M. Kim, S. Kim, S. Park, M. Choi, M. Kim, and H. Gomaa, “Service
robot for the elderly,” IEEE Robotics and Automation Magazine, pp.
34–45, 2009.

[9] C. Granata, M. Chetouani, A. Tapus, P. Bidaud, and V. Dupourque,
“Voice and graphical -based interfaces for interaction with a robot
dedicated to elderly and people with cognitive disorders,” in Proceedings
of international IEEE RO-MAN conference, September 2010, pp. 785–
790.

[10] B. Siciliano and O. Khatib, Springer Handbook of Robotics. New
YorkL Springer, 2008.

[11] A. Abdelhamid, W. Abdulla, and B. MacDonald, “RoboASR: A dynamic
speech recognition system for service robots,” in Social Robotics, ser.
Lecture Notes in Computer Science. Springer Berlin Heidelberg, 2012,
vol. 7621, pp. 485–495.

[12] G. Kim, W. Chung, M. Kim, and C. Lee, “Tripodal schematic design
of the control architecture for the service robot PSR,” in Proceedings
of IEEE International Conference on Robotics and Automation, Taiwan,
2003, pp. 2792–2797.

[13] ——, “Implementation of multi-functional service robots using tripodal
schematic control architecture,” in Proceedings of IEEE International
Conference on Robotics and Automation, New Orleans, LA, 2004, pp.
4005–4010.

[14] A. Abdelhamid, W. Abdulla, and B. MacDonald, “WFST-based large
vocabulary continuous speech decoder for service robots,” in Proceed-
ings of International Conference on Imaging and Signal Processing for
Healthcare and Technology, 2012, pp. 150–154.

[15] A. Abdelhamid and W. Abdulla, “Discriminative training of context-
dependent phones on WFST-based decoding graphs,” in Proceedings
of International Conference on Communication, Signal Processing and
their Application, 2013.

[16] S. Young, G. Evermann, M. Gales, T. Hain, D. Kershaw, X. Liu,
G. Moore, J. Odell, D. Ollason, D. Povey, V. Valtchev, and P. Woodland,
The HTK book. Cambridge University, 2009.

[17] D. Huggins, M. Kumar, A. Chan, A. Black, M. Ravishankar, and
A. Rudnicky, “PocketSphinx: A free, real-time continuous speech recog-
nition system for handheld devices,” in Proceedings of International
Conference on Acoustics, Speech, and Signal Processing (ICASSP),
Toulouse, May 2006, pp. 185–188.

[18] H. Gomaa, “Designing real-time and embedded systems with the
COMET/UML method,” Dedicated Systems Magazine, pp. 44–49, 2001.

[19] M. Fowler and K. Scott, UML Distilled 2nd Edition. MA: Addison-
Wesley, 2000.

[20] H. Gomaa, Designing Concurrent, Distributed, and Real-Time Applica-
tion with UML. MA: Addison-Wesley, 2000.

