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Abstract—Recently, context-dependent deep neural network
hidden Markov models (CD-DNN-HMMs) have been successfully
used in some commercial large-vocabulary English speech recog-
nition systems. It has been proved that CD-DNN-HMMs signifi-
cantly outperform the conventional context-dependent Gaussian
mixture model (GMM)-HMMs (CD-GMM-HMMs). In this paper,
we report our latest progress on CD-DNN-HMMs for commercial
Mandarin speech recognition applications in Baidu. Experiments
demonstrate that CD-DNN-HMMs can get relative 26% word
error reduction and relative 16% sentence error reduction in
Baidu’s short message (SMS) voice input and voice search appli-
cations, respectively, compared with state-of-the-art CD-GMM-
HMMs trained using fMPE. To the best of our knowledge, this is
the first time the performances of CD-DNN-HMMs are reported
for commercial Mandarin speech recognition applications. We
also propose a GPU on-chip speed-up training approach which
can achieve a speed-up ratio of nearly two for DNN training.

I. INTRODUCTION

The main-stream of traditional automatic speech recognition
(ASR) system typically uses hidden Markov models (HMMs)
to model the evolvement of speech units (e.g., phonemes) and
uses Gaussian mixture models (GMMs) to represent the rela-
tionship between acoustic inputs and speech units. Speech co-
articulation is modeled by context-dependent (CD) units, such
as triphones. This is the well-known generative CD-GMM-
HMM architecture in the literature. Expectation-maximization
(EM) algorithm is usually used for HMM training, while
further recognition accuracy improvement can be achieved
using discriminative training algorithms [1-3] such as MMI,
MCE and MPE, etc. About two decades ago, artificial neural
networks (ANNs), as a kind of discriminative model, were
also investigated in speech recognition [4-6] with some limited
success. In a typical ANN approach, instead of using GMMs,
ANNs with a single layer of nonlinear hidden units are used to
predict HMM states from acoustic observations. However, due
to the limitations of the computation power and the learning
algorithms, such a single-hidden-layer ANN approach was
not sufficiently powerful to seriously challenge GMMs. As a
result, the main practical contribution of ANNs was to provide
useful features, namely tandem or bottleneck features [7], in
which the posterior probability of each phone was estimated
using ANN.

With the rapid development of machine learning theory and
computer hardware in recent years, it is now capable enough
to train a much deeper ANN which contains many layers of
non-linear hidden units and a very large output layer. In [8],
a new context-dependent deep neural network hidden Markov
model (CD-DNN-HMM) was proposed for speech recognition.
A significant performance improvement was achieved as com-
pared with traditional CD-GMM-HMM. Unlike previous work
of ANN in the ASR area, the posterior probability of context
dependent triphone state given acoustic input is estimated
directly by a DNN with many layers of hidden units. It has
been shown that CD-DNN-HMMs can achieve 33% relative
word error reduction over discriminatively-trained CD-GMM-
HMMs on the switchboard benchmark task [9]. Moreover, CD-
DNN-HMMs have been successfully used in several commer-
cial large-vocabulary English speech recognition applications,
such as the Bing mobile voice search application [10][11],
Google voice input speech recognition task [12][11] and
Youtube speech recognition task [12], etc. Especially, Google
voice input recognition task used about 5870 hours of training
data and achieved 23% relative word error reduction compared
to the best GMM-based system for this task [12][13].

In this paper, we report our latest progress on CD-DNN-
HMMs for commercial Mandarin speech recognition applica-
tions in Baidu. First, we demonstrate that CD-DNN-HMMs
can be effectively used in large-scale Mandarin speech recog-
nition tasks with similar accuracy improvement over CD-
GMM-HMMs as in English speech recognition tasks. To our
best knowledge, this is the first time the performances of CD-
DNN-HMMs are reported for commercial Mandarin speech
recognition applications. Second, a new efficient DNN training
approach is proposed, in which multiple GPU cards in a single
server are utilized in parallel. A speed-up ratio of 1.95 is
achieved without recognition accuracy loss.

II. TRAINING CD-DNN-HMMS

A. CD-DNN-HMM

A DNN is actually a conventional multi-layer perceptron
(MLP) with more than one layers of hidden units between
the input layer and the output layer. In each hidden unit of a



certain layer, a nonlinear activation function is used with input
as a linear combination of the outputs of the hidden units in
the previous layer. The activation function is typically chosen
to be a sigmoid function such as a logistic sigmoid function
described as 
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where xlj and ylj are the input and output of the jth hidden unit
in the lth layer, respectively. xlj is also a linear combination
of the hidden units in (l − 1)

th layer, blj is the bias parameters
of hidden unit j in the lth layer, and wl−1,l

ij is the weight on
a connection to hidden unit j in the lth from the hidden unit
i in the (l − 1)

th layer.
Since the output of DNN in CD-DNN-HMM consists of

all states, DNN is actually an ANN capable of multi-class
classification. Therefore, softmax output activation function
with the corresponding multi-class cross-entropy error function
is naturally used in which output unit j converts its total input
xj into a class probability pj by using the softmax nonlinear
function as follows:
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where k is an index over all classes.
Online error back-propagation (BP) algorithm is usually

used for ANN training with stochastic gradient ascent:
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for an objective function D and a learning rate ε. With the
ground-truth labels s(t), the objective for minimizing cross-
entropy is easily to be seen as maximizing the total log
posterior probability over the T training samples o(t), i.e.,

D =

T∑
t=1

logPs|o(s(t)|o(t)). (4)
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where δ(a, b) =
{

1 a = b
0 otherwise .

In order to embed a DNN into the HMM structure, the
HMM’s state emission likelihoods po|s(o|s) are converted

TABLE I
DNN TRAINING PARAMETER SETUP

Parameter Value

Sample size per mini-batch

200 in pretrain

200 in the first epoch in fine-tune

500 in the rest epoches in fine-tune

# of hidden layer 7

# of hidden unit in each layer 2048

Learning rate decreased from 0.005 to 0.0001

Momentum 0.5

from state posterior probability obtained from DNN as fol-
lows:

po|s(o|s) =
Ps|o(s|o)
Ps(s)

· const(s) (9)

where classes s correspond to HMM states, and observation
vectors o are acoustic feature vectors. Ps(s) is the prior
probability of state s.

B. Training Procedure of CD-DNN-HMMs

1) Basic training process: In order to determine the state
structure of a CD-DNN-HMM, a state-of-the-art CD-GMM-
HMM is trained in advance. Each clustered triphone state of
the CD-GMM-HMM system is mapped to a unique integer id
which is used as the label. The ground truth of each acoustic
sample is derived with state-level forced alignment on the
training set using the CD-GMM-HMM system. Moveover,
because error back-propagation optimization procedure easily
get trapped in poor local optima for deep networks, we use
discriminative pre-training [10] to grow the DNN model layer
by layer. After pre-training, the DNN model is fine-tuned
using a general error back-propagation procedure described
as follows.
• Train a state-of-the-art state tied CD-GMM-HMM sys-

tem, and map each tied state to a unique integer id ;
• For each training utterance, do state-level forced align-

ment and get the ground truth state-level label for each
training sample;

• Perform discriminative pre-training until the DNN prede-
fined layer number is arrived [10]:

1) Initialize a three-layer DNN with an input layer, an
output layer and a single hidden layer, and use BP
algorithm to train the DNN with two epoch;

2) Discard the weight which connects the output layer
and the top hidden layer and add a new top hidden
layer which connects the old hidden layer and the
output layer, respectively;

3) Use BP algorithm to retrain the DNN with one
epoch;

4) Repeat step 2) and step 3) until the predefined layer
number is arrived.

• Use normal BP algorithm to retrain (fine-tune) DNN until
the maximum number of training epoches is achieved.



2) Parameter setup: In order to make the optimization
procedure efficient and effective, several parameters should
be set up in advance, as shown in Table I. Please note that
the mini-batch size in the fine-tune procedure is different from
that of pretrain due to the efficiency issue. Given a good initial
model which is trained using a mini-batch size of 200, there
is no recognition accuracy degradation using 500 as the mini-
batch size in the remaining fine-tune epochs. The momentum
in our procedure is set to 0.5, which is different from [11].
We tried several momentum values and no significant accuracy
difference is observed. In the BP algorithm, the learning rate
adjusting strategy is very important. In our procedure, an
exponential decrease is used with learning rate range from
0.005 to 0.0001 during the training process. Specifically, we
halved the learning rate when the performance of the DNN
model increased slightly on the validation set. In addition, the
order of samples is globally randomized in each epoch.

3) 2-GPU Core Parallel BP training: The nature of the
online BP algorithm is a sequential algorithm that makes the
models be hardly trained in parallel. But within each mini-
batch, the forward propagation and backward propagation
can be done in parallel. However, the model weight update
should be done given total temporal parameters calculated in
the forward/backward propagations. As a result, if parallel
training is used within each mini-batch, the key point is
how to efficiently transfer the temporal parameters calculated
in the forward/backward propagations among the different
computation nodes. In Baidu, Nvidia K10 [14] is used as
the GPU card for DNN training. Within each K10 card,
there are two GPU cores and the communication bandwidth
between them is beyond 10GB/s. It makes sense to utilize these
two GPU cores during the DNN training. The detail training
strategy is as follows:
• Initialization: divide the samples in the current mini-batch

into two parts, one is forward to GPU core one, another
is forward to GPU core two;

• GPU core one/two implements the forward/backward
propagations in parallel;

• Once forward/backward propagations are both completed
in the two GPU cores, GPU core two transfers the
temporal parameters to GPU core one;

• GPU core one updates the model weight and transfers the
new model to GPU core two;

• Repeat the above steps until the termination criterion
(e.g. no recognition accuracy improvement is observed)
is satisfied.

III. EXPERIMENTS AND ANALYSIS

A. Experimental Setup

In this paper, two real-world Mandarin ASR tasks, i.e., SMS
voice input and voice search, were used for the performance
evaluation of CD-DNN-HMMs. Tabel II shows the data setup
for the two tasks. Please note that the testing datasets are
collected in real usage scenarios from real mobile users and
sampled at 8kHz. The two tasks are quite challenging because

TABLE II
EXPERIMENTAL DATASETS

Data SMS Voice Input Voice Search

Training 2600hrs 2100hrs

Testing 5.9hrs (8000 sentences) 1.6hrs (2500 sentences)

TABLE III
THE CD-GMM-HMM MODEL SETUP

Parameter SMS Voice Input Voice Search

Training data (hrs) 2600 2100

HMM structure
3 states per HMM for voice HMM

5 states per HMM for silence HMM

State number 8913 11365

Gaussian number per state 64 64

the speech data contains real-world variations, e.g., noise,
accents, sloppy pronunciation and different audio channels.

The speech data was analyzed using a 25ms Hamming
window with a 10ms frame rate. Both tasks use 13-dimension
PLP features with windowed mean normalization and the first
and second order delta features, which forms the 39-dimension
feature vectors. We used tonal syllable initial/final triphones
as the acoustic modeling units. State-of-the-art CD-GMM-
HMM systems were used for comparison, where decision-
tree based tied-state triphone GMM-HMMs were trained using
MLE/MPE/fMPE criteria for each task. Table III shows the
details of the CD-GMM-HMM model setup. For all CD-DNN-
HMM experiments, we used 11 continuous frames of PLPs as
the input features of the DNN. The recognition experiments
were performed using a real-time one-pass decoder in which
a 4-gram language model is used with 100K words in the
recognition vocabulary. Recognition performance was evalu-
ated using word accuracy for the SMS voice input task and
sentence accuracy for the voice search task.

TABLE IV
THE RECOGNITION ACCURACY (%) ON BAIDU’S SMS VOICE INPUT AND

VOICE SEARCH TASKS

Model SMS (Word Acc.) Voice Search (Sen. Acc.)

CD-GMM-HMM MLE 82.5 60.4

CD-GMM-HMM MPE 83.2 62.5

CD-GMM-HMM fMPE 84.0 63.7

CD-DNN-HMM 88.2 69.5

B. Experimental Results

The best recognition performances on the testing sets are
summarized in Table IV. As demonstrated in Table IV, an
absolute 4.2% word accuracy improvement and an absolute
5.8% sentence accuracy improvement were observed over the
fMPE baselines for the SMS voice input task and the voice
search task, respectively. The relative error rate reduction was
26% (word) and 16% (sentence) for the SMS voice input
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Fig. 1. The relationship between the word accuracy and the number of hidden
layers of DNN in the SMS voice input task.

1 2 3 4 5 6 7
58

60

62

64

66

68

70

Number of Hidden Layers

S
e

n
te

n
c
e

 A
c
c
u

ra
c
y
 R

a
te

 (
%

)

 

 

CD−DNN−HMM

CD−GMM−HMM (fMPE)

Fig. 2. The relationship between the sentence accuracy and the number of
hidden layers of DNN in the voice search task.

task and the voice search task, respectively. The results show
that the CD-DNN-HMMs are superior to the state-of-the-art
CD-GMM-HMMs in real-world Mandarin speech recognition
tasks.

C. Effects of Layer Depth

To illustrate the effects of different depths of DNN hidden
layers, 7 sets of CD-DNN-HMMs were trained with the hidden
layer number ranging from 1 to 7. The relationship between
the accuracy and the number of hidden layers for the two tasks
are shown in Fig. 1 and Fig. 2, respectively. It can be observed
that with the increase of the number of hidden layers, there is
a consistent performance improvement accordingly. Moreover,
a significant performance improvement comparing with CD-
GMM-HMM can be observed when the hidden layer number
goes beyond 5 for the SMS voice input task and 3 for the voice
search task. Overall, using 7 hidden-layer models provides a
relative 13.4% word and a relative 15.4% sentence accuracy
improvement over the single hidden-layer system for the two
tasks, respectively. Please note that the training epoch in the
fine-tune step was fixed to one and the training data set was
set to 2600hrs (SMS voice input) and 2100 hrs (voice search).
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Fig. 3. The relationship between the word accuracy and the training epoch in
the fine-tune step of DNN in the SMS voice input task.
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Fig. 4. The relationship between the sentence accuracy and the training epoch
in the fine-tune step of DNN in the voice search task.

D. Effects of Training Epoch

In Fig. 3 and Fig. 4, the influence of training epoch on DNN
is shown. It is illustrated that the accuracy goes up with the
increase of the training epoch. In general, the word accuracy
for the SMS voice input task is lifted from 85.9% to 88.5%
when the training epoch increases from 1 to 7; the sentence
accuracy for the voice search task increases from 67.2% to
69.5% when the training epoch raises from 1 to 6. For the
SMS voice input task, a large word accuracy improvement
can be obtained with the training epoch increasing from 1 to
3. But with more training epochs, only small improvements
are achieved. This is probably mainly due to the ability of
the learning rate adjusting strategies. Further studies should
be given to this phenomenon. Please note that the depth of
the hidden layers was set to 7 and the training data size was
set to 2600hrs (SMS voice input) and 2100 hrs (voice search)
in the experiments showing the influence of training epoch.

E. Effects of Amount of Training Data

Fig. 5 demonstrates the influence of training data size on
DNN for the voice search task. It can be observed that with
the increase of the amount of training data, the sentence
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Fig. 5. The relationship between the sentence accuracy and the amount of
training data in the voice search task.

TABLE V
THE TRAINING TIME ( IN TERMS OF MILLISECOND) PER MINI-BATCH FOR
THE 2-GPU PARALLEL TRAINING APPROACH AND THE NORMAL SINGLE

GPU TRAINING APPROACH.

Training stage
Samples per mini-batch
500 1000

2-GPU 1-GPU 2-GPU 1-GPU
Propagation 31.9 70.7 56.7 140.8

Back-propagation 110.2 151.6 161.3 285.3
Total 142.1 222.3 218.0 426.1

Speed-up ratio 1.56 1.95

accuracy can be improved consistently. It is also seen that
the accuracy is improved greatly when the amount of training
data is increased from 800 hours to 1100 hours. After that, the
speed of improvement decreases. The relative accuracy gain is
3.5% when the training data size is increased from 400 hours
to 2100 hours. Please note that the depth of the hidden layers
was set to 7 and the training epoch was 1 in the fine-tune step
in the experiments.

F. Performance of 2-GPU Parallel Training

In Table V, the speedup ability of the proposed 2-GPU
parallel training approach is illustrated. We can clearly see
the effectiveness of the speed-up strategy. Meanwhile, we
observe that the speed-up ratio is highly relevant to the sample
size of the mini-batch. Further speed-up occurs with a larger
mini-batch size. Specifically, using the 2-GPU parallel training
strategy, the speed-up ratio of DNN training is 1.95 when the
sample per mini-batch is set to 1000.

IV. CONCLUSIONS

In this paper, we used CD-DNN-HMMs to train acoustic
models on very large data sets for two real-world Mandarin
speech recognition tasks in Baidu, namely SMS voice input
and voice search. Our results illustrate that CD-DNN-HMMs
have good capacity to learn from large datasets and can be
efficiently applied to different tasks. Experiments demonstrate

that CD-DNN-HMMs can get relative 26% word error re-
duction and relative 16% sentence error reduction in Baidu’s
SMS voice input and voice search applications, respectively,
compared with state-of-the-art CD-GMM-HMMs trained us-
ing fMPE. To speed up model training, we proposed a 2-GPU
parallel training approach which achieved a speed-up ratio of
1.95 when the mini-bath size was set to 1000. Our future work
is to find an efficient training algorithm in order to train DNN
models using tens of thousands of hours of data.
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