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Abstract—Design of spatial weights and filters that extract
components related to brain activity of motor imagery is a
crucial issue in brain machine interfaces. This paper proposes
a novel method to design these filters. We use a similarity of
the covariance matrices of narrow band observed signals over
frequency bins. The similarity is defined based on the common
spatial pattern method. This proposed method enables us to
design the multiple bandpass filters. The experimental results
of classification of EEG signals during motor imagery show that
the proposed method achieves higher classification accuracy than
well-known conventional methods.

I. INTRODUCTION

Brain machine/computer interfacing (BMI/BCI) is a chal-
lenging technology of signal processing, machine learning, and
neuroscience [1]. BMIs capture brain activities associated to
mental tasks and external stimuli and realize non-muscular
communication and control channel for conveying messages
and commands to the external world [1]–[3]. Basically, nonin-
vasively measured data such as electroencephalogram (EEG),
magnetoencephalogram (MEG), and functional magnetic res-
onance imaging (fMRI) are widely used to observe brain
activities. Among them, because of its simplicity and low cost,
EEG is practical for use in engineering applications [4], [5].

Efficient decoding around motor-cortex is a crucial tech-
nique for realization of BMI associated with motor-imagery
(MI-BMI) [6], [7] with the application to controlling external
devices [7], prostheses [4], rehabilitation [8], and so forth.
For instance it is also known that the real and imaginary
movements of hands and feet evoke the change of the so-called
mu rhythm in different brain regions [2], [3]. Therefore, the
accurate extraction of these changes from the measured EEG
signals in the presence of measurement noise and spontaneous
components which are related to other brain activities enables
us to classify the EEG signal associated with the different
motor (imagined) actions such as movement of the right hand,
left hand, or feet.

In classification of EEG signals in MI-BMI and analyzing
of the brain activities during motor imagery, signal processing

This work is supported in part by KAKENHI, Grant-in-Aid for Scientific
Research (B), 21360179 and 24360146, and Grant-in-Aid for JSPS Fellows,
24686.

techniques such as bandpass filtering and spatial weighting
are used [1]. For the processing, presuming the parameters
such as coefficients of the filters and weights that extract the
related components is a crucial issue. Moreover, the optimum
parameters in classification are highly dependent on users and
measurement environments [9].

In order to determine the parameters, data-driven techniques
that exploit observed data are widely used [1], [2]. The
observed data essentially include class labels corresponding to
the tasks. The techniques should find the parameters that ex-
tract discriminative features as much as possible. For example,
the well-known common spatial pattern (CSP) method finds
the spatial weights by using observed signals [1], [9], [10] in
such a way that the variances of the signal extracted by the
linear combination of a multichannel signal and the spatial
weights differ as much as possible between two classes. The
standard CSP method has been extended to methods to esti-
mate the other parameters such as the frequency bands [11]–
[16], and methods to select the CSP features extracted with
various parameters [17], [18].

In this paper, we propose a novel method to design the
spectral filters. The idea of the method is to introduce a
similarity of the covariance matrices of narrow band signals
over frequency bins. The similarity is defined with the CSP
method. Based on the similarity, the method determines the
passbands of the filters. The advantage of the proposed method
compared with the other CSP based filter design methods is
that the proposed method is able to design multiple filters.
Furthermore, unlike discriminative filterbank common spa-
tial patterns (DFBCSP) [15] that can design multiple filters
having one passband for each filter, the passband of each
filter designed by the proposed method can comprise some
passbands. Therefore, under the assumption that there are
components that have some frequency bands each in EEG
signals, the proposed method can design the filters extracting
such components. We show experimental results of which
we classified EEG signals into two motor imagery classes.
Compared with some conventional methods, we suggest an
effectiveness of the proposed method in MI-BMI.



II. BAND SELECTION BY USING COMMON SPATIAL
PATTERNS IN FREQUENCY BINS

We introduce the proposed method in this section. First, we
review the CSP method in Sec. II-A. Next, we reformulate
the covariance matrices of the observed signals with discrete
Fourier transform and define the CSP method with the band
selected covariance matrices in Sec. II-A. In Sec. II-C, we
introduce an algorithm to determine the set of the filters for
the band selections.

A. Common Spatial Pattern (CSP) – Review [10]

Let X ∈ RM×N be an observed signal, where M is the
number of channels and N is the number of samples. In BMI
application, we do not directly use X , but use the filtered
signal described as X̂ = H(X) to find the CSP, where H is a
bandpass filter which passes the frequency components related
to brain activity of motor imagery. Denote the components of
X̂ by X̂ = [x̂0, . . . , x̂N−1], where x̂n ∈ RM and n is the
time index. We assume sets of the observed signals, C1 and C2,
where Cd contains the signals belonging to class d, d ∈ {1, 2}
is a class label, C1∩C2 = ∅, and ∅ is a set having no elements.
CSP is defined the weight vector that minimize the intra-class
variance in Cc under the normalization of samples, where c is
a class label. More specifically, for c fixed, the weight vector
is found by solving the following optimization problem [9],
[10];

min
w

EX∈Cc

[
1
N

N−1∑
n=0

|wT (x̂n − µ)|2
]

,

subject to
∑

d=1,2

EX∈Cd

[
1
N

N−1∑
n=0

|wT (x̂n − µ)|2
]

= 1,

(1)

where EX∈Cd
[·] denotes the expectation over Cd, µ is the

time average of X given by µ = (1/N)
∑N−1

n=0 x̂n, ·T is the
transpose of a vector or a matrix, and | · | is the absolute value
of a scalar. The solution of (1) is given by the generalized
eigenvector corresponding to the smallest generalized eigen-
value of the generalized eigenvalue problem described as

Σcw = λ(Σ1 + Σ2)w, (2)

where Σd, d = 1, 2, are defined as

Σd = EX∈Cd

[
1
N

N−1∑
n=0

(x̂n − µ)(x̂n − µ)T

]
. (3)

Although the solution of (1) is given by the eigenvector
corresponding to the smallest eigenvalue in (2), we can use the
other eigenvectors for classification [19]. The M eigenvectors
can be obtained by solving (2) as ŵ1, . . . , ŵM , where ŵi is
the eigenvector corresponding to the ith smallest eigenvalue
of (2). We assume that the 2r eigenvectors are used for
classification of unlabeled data, X . Then we obtain the feature
vector, v ∈ R2r, from X defined as

v =[σ2(X, ŵ1), . . . , σ2(X, ŵr),

σ2(X, ŵM−r+1), . . . , σ2(X, ŵM )]T . (4)

B. CSP with Spectrally Selected Covariance Matrices

In this section, the CSP method with the covariance matrices
filtered in frequency domain is shown. First, we show that
the covariance matrix defined in (3) can be represented as the
sum of the covariance matrices calculated in narrow frequency
bins. Introducing the filters, the CSP method with the filtered
covariance matrices and the feature vector using the CSPs and
the filters are defined.

As well as Sec. II-A, we assume that the signal sets of C1
and C2. Let X̃ ∈ RM×N be the signal matrix defined as

[X̃]m,n = [xn]m−[µ]m, n = 0, . . . , N−1, m = 1, . . . ,M.
(5)

We define a mean vector of X̃ as µ = 1
N

∑N−1
n=0 xn. Let F ∈

CN×N be a matrix that performs discrete Fourier transform
defined as

[F ]k,l =
1√
N

e−j2π(l−1)(k−1)/N , l, k = 1, . . . , N, (6)

then the equations;

F HF = FF H = IN , (7)

are given. The Fourier transform of X is obtained by

Y = FX. (8)

The kth element of each row of Y represented by yk as Y =
[y0, . . . ,yN−1] is the kth coefficient of the discrete Fourier
transform of X defined as

[yk]m =
1√
N

N−1∑
n=0

[xn]me−j2πnk/N , (9)

for k = 0, . . . , N − 1 and m = 1, . . . ,M . By using the above
equations, the covariance matrix of the signals in each set can
be transformed as

Sd =
1
N

EX∈Cd

[
X̃X̃T

]
=

1
N

EX∈Cd

[
X̃FF HX̃T

]
=

1
N

N−1∑
k=1

EX∈Cd

[
ykyH

k

]
=

1
N

K∑
k=1

EX∈Cd

[
ykyH

k + yN−k+1y
H
N−k+1

]
=

1
N

K∑
k=1

EX∈Cd

[
ykyH

k + ȳkȳH
k

]
=

1
N

K∑
k=1

EX∈Cd

[
2<(ykyT

k )
]

=
1
N

K∑
k=1

S
(k)
d , (10)

for d = 1, 2, where a matrix, S
(k)
d ∈ RM×M , is a covariance

matrix at kth frequency bin defined as

S
(k)
d = EX∈Cd

[
2<(ykyT

k )
]
, (11)



the operator, <(·) takes the real value of an input, and K =
bN/2c. The covariance matrix of the filtered signals is

Ŝd(h) =
1
N

K∑
k=1

[h]kS
(k)
d , (12)

where h is a vector consisted of the filter coefficients that take
either 0 or 1 as

[h]k ∈ {0, 1}, k = 1, . . . ,K. (13)

We define the CSP method with the filters. Assume the set
consisting of the Nf filters denoted by

H = [h1, · · · ,hNf
]T , (14)

where [hi]j ∈ {0, 1}, i = 1, . . . , Nf , j = 1, . . . ,K, and Nf

is the number of the filters. The CSP method with the filtered
signals can be defined with the filtered covariance matrices by

wi = arg min
w

wT Ŝc(hi)w

wT
(
Ŝ1(hi) + Ŝ2(hi)

)
w

, (15)

for i = 1, . . . , Nf . The solution of (15) is the generalized
eigenvector corresponding to the smallest generalized eigen-
value of the generalized eigenvalue problem:

Ŝc(hi)w = λ
(
Ŝ1(hi) + Ŝ2(hi)

)
w. (16)

As well as CSP, we can use the multiple generalized eigenvec-
tors corresponding to the largest and smallest eigenvalues as
the spatial weights. The generalized eigenvector corresponding
to the jth largest eigenvalue is denoted as w

(j)
i . Then, the

feature vector of the observed signal, X , with H and the
corresponding spatial weights is defined by

v =[αX(w(1)
1 ,h1), . . . , αX(w(r)

1 ,h1),

αX(w(M−r+1)
1 ,h1), . . . , αX(w(M)

1 ,h1), . . . ,

αX(w(1)
Nf

,hNf
), . . . , αX(w(r)

Nf
,hNf

),

αX(w(M−r+1)
Nf

,hNf
), . . . , αX(w(M)

Nf
,hNf

)]T ,

(17)

where the 2r spatial weight vectors for each filter are supposed
to form the feature vector and αX(w,h) is the logarithm of
the variance of the signal extracted by w and h defined as

αX(w,h) = log

[
wT

(
1
N

K∑
k=1

[h]k2<(ykyT
k )

)
w

]
. (18)

C. Search for Filters

In this section, we introduce an algorithm to determine the
set of the filters, H . For designing H , we use the similarity of
the covariance matrices over frequency bins that is evaluated
by using the CSP method.

First, we find the CSP, w̃k, and the cost, Jk(w̃k), in each
frequency bin as

w̃k = arg min
w

Jk(w), (19)

and

Jk(w) =
wT S

(k)
c w

wT
(
S

(k)
1 + S

(k)
2

)
w

. (20)

By using (19) and (20), we quantitatively evaluate the similar-
ity of the covariance matrices over the frequency bins. The idea
for the evaluation is that {S(k′)

1 ,S
(k′)
2 } and {S(k′′)

1 ,S
(k′′)
2 }

are similar to each other under w̃k′ , if the difference between
Jk′(w̃k′) and Jk′′(w̃k′) is small.

Based on the similarity, we introduce the algorithm for
finding the filters as follows. We sequentially obtain the
filters forming H . Therefore, we find hi after obtaining
h1, . . . ,hi−1 in the following algorithm. A vector, p ∈ RK ,
whose elements are the CSP cost is defined as

p = [J1(w̃1), . . . , JK(w̃K)]T . (21)

The bin index corresponding to the minimum of p is defined
as

kmin = arg min
k

[p]k (22)

to decide the target covariance matrix that is used for evaluat-
ing its similarity. The frequency, ηk, k = 1, . . . ,K, is selected
by thresholding the similarities as

ηk =

{
1, Jk(w̃kmin) ≤ Ts

0, otherwise
, (23)

where Ts is a threshold. Furthermore, we remove isolated
bands including ηk, k = 1, . . . ,K and determine ith filter
of H as

[hi]k =


1,

k∑
k′=k−NB+1

ηk′ = Tb or
k+NB−1∑

k′=k

ηk′ = Tb

0, otherwise

,

(24)
for k = 1, . . . ,K, where Tb is a threshold deciding the
minimum bandwidth of the passbands. To prevent the next
filter, hi+1 from having the same passband as h1, . . . ,hi, we
remove the possibility to select the same bins as the passbands
of hi for next kmin by updating p as

[p]k =

{
∞, [hi]k = 1 or k = kmin

[p]k, otherwise
, (25)

for k = 1, . . . ,K. After updating p, if all elements of hi are
zero, we return to (22) for finding hi again, otherwise update
i ← i + 1 and return to (22) for finding the next filter. The
repetition is finished if Jkmin(w̃kmin) > Ts. After finishing
the repetition, if i = 1, this means that any filters can not be
decided. Therefore, we define a filter that is represented by a
K-dimensional vector whose elements are all ones defined by
h1 = [1, . . . , 1]T , and set i to 2. Then the number of the filters
is decided as Nf = i− 1. The pseudo-code of the procedure
for finding the filters is shown in Algorithm 1.



Algorithm 1 Design of the filters by thresholding of the CSP
cost

Input: {S(k)
1 ,S

(k)
2 }Kk=1: the set of covariance matrices.

Parameters: Ts: the threshold of the similarity. Tb: the
threshold of the bandwidth.
Output: H: the set of the filters.

i = 1
Obtain p as (21) with (19) and (20)
repeat

Choose kmin as (22)
Obtain ηk by (23)
Obtain hi by (24)
Update p by (25)
if ‖hi‖ 6= 0 then

i← i + 1
end if

until Jkmin(w̃kmin) > Ts

if i = 1 then
h1 = [1, . . . , 1]T

i = 2
end if
Nf = i− 1

TABLE I
DESCRIPTION OF THE DATASET.

Classes right hand and right foot
Subject labels aa, al, av, aw, ay

Number of channels 118
Signal length 3.5 secs
Sampling rate 100 Hz

Number of the trials per class 140

III. EXPERIMENT

We conducted an experiment of classification of EEG sig-
nals during motor imagery. We compare the proposed method
with well-known conventional methods, CSP, common sparse
spectral spatial pattern (CSSSP) [12], and filterbank CSP
(FBCSP) [17] in the accuracy rate of the classification.

A. Data Description

We used dataset IVa from BCI competition III [20], which
was provided by Fraunhofer FIRST (Intelligent Data Analysis
Group) and Campus Benjamin Franklin of the Charité -
University Medicine Berlin (Department of Neurology, Neu-
rophysics Group) [21]. The condition for the dataset is shown
in Table I. The signals in the provided datasets were recorded
with the sampling rate of 1000 Hz.

We furthermore applied to this dataset a Butterworth low-
pass filter whose cutoff frequency is 50 Hz and the filter order
is 4, and downsampled to 100 Hz. The dataset for each subject
consisted of signals of 140 trials per class.

B. Results

For classification of the trial signals, the feature vectors were
formed by each method as follows.

• CSP: We applied the Butterworth bandpass filter with
the passband of 7–30 Hz, and minimized the variance
cost of the right hand class in (1). The eigenvectors
corresponding to the r largest and r smallest eigenvalues
of the eigenvalue problem (2) as the spatial weights.

• CSP-Exh: This was an exhaustive search for the parame-
ters using the CSP method. We obtained classification ac-
curacy rates by 5×5 cross validation (CV) using various
passbands for the bandpass filter used for preprocessing
in CSP. The passband is represented as [fl, fu] [Hz] for
fl = 1, . . . , 48 and fu = fl + 1, . . . , 49. The exhaustive
search was performed to find fl and fu that give the best
classification accuracy rate for each subject.

• CSSSP: The order of the FIR filter was fixed to 16 [12].
The bandpass filter between 7–30 Hz was applied as
preprocessing Then, the bandpass filter designed by
CSSSP was applied to the observed signals, and then
we classified them by the same procedure as the CSP
method.

• FBCSP: The filterbank comprising 9 bandpass filters
covering 4–40 Hz was used. All filters were Chebyshev
Type II filters with a bandwidth of 4 Hz each. The number
of spatial weights, NM , in each band was set to 8. These
parameters were decided by referring [17]. We selected
the r feature values used for classification by mutual
information based best individual feature with a naı̈ve
Bayesian Parzen window (NBPW) classifier [17].

• Proposed: We assumed that the filter coefficients corre-
sponding to bands except for 7–30 Hz were zero. After
designing the filters with the thresholds of Ts and Tb, we
extracted the feature vectors defined in (17).

In the column below the classification accuracy in Tables II,
we show the parameters that we tuned to obtain the high-
est classification accuracy rate by using 5×5 CV for each
method and subject. The parameters tested and decided in
advance were as follows. The parameter for the dimension
of the feature vector, r, was chosen out of {1, 2, . . . , 20}.
The regularization parameter, C, in CSSSP was chosen out of
{0, 0.01, 0.1, 0.2, 0.5, 1, 2, 5}. The thresholds, Ts and Tb, in the
proposed method was chosen out of {0.05, 0.1, . . . , 0.5} and
{d350k/100e+1}5k=1, respectively. Finally, the feature vector
extracted by each method was projected into the 1-dimensional
space determined by linear discriminant analysis [22] and
was classified by a threshold that is the middle point of
two class averages over the learning samples. The proposed
method achieves the highest accuracy in three subjects and the
accuracy averaged over all subjects.

Figure 1 shows the relations between the classification
accuracy rate and the parameters, Tb and Ts, in the proposed
method. The parameter, r, is fixed to 1. As shown in the figure,
the classification accuracy with the proposed method highly
depends on the parameters. Moreover, the combinations of the
parameters performing the high accuracy rates are different
among the subjects.

Figures 2 and 3 show the examples of the filters designed
by the proposed method. The same parameters as those shown



TABLE II
CLASSIFICATION ACCURACY [%] GIVEN BY 5×5 CV IN DATASET IVA FROM BCI COMPETITION III. THE FIGURE WITH ± REPRESENTS THE STANDARD

DEVIATION (S.D.). THE VALUES BELOW THE COLUMNS SHOWN IN THE CLASSIFICATION ACCURACIES ARE THE PARAMETERS FOR EACH SUBJECT.

Method Subject
aa al av aw ay Ave.

CSP 81.5±4.0 98.8±1.5 74.14±4.1 97.1±2.5 93.1±4.2 88.9
(r) 4 8 3 4 3

CSP-Exh 92.7±3.0 99.6±0.7 76.9±6.2 99.6±0.8 94.3±3.8 92.6
(r, fl–fu) 1, 11–16 1, 12–20 2, 10–12 5, 9–15 3, 9–22

CSSSP 91.9±3.0 99.2±1.5 74.9±4.1 99.3±1.0 93.7±3.7 91.8
(r, C) 1, 0 10, 0.01 3, 2 5, 0.01 3, 0
FBCSP 92.0±4.0 99.1±1.5 72.4±5.3 98.5±1.5 90.5±4.0 90.5

(r) 1 1 2 9 10
Proposed 91.3±3.5 99.4±1.4 78.1±5.9 99.4±1.1 95.9±2.5 92.8

(r, Tb, Ts) 1, 2, 0.4 5, 5, 0.2 2, 4, 0.45 3, 0, 0.1 3, 4, 0.5
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Fig. 1. Relations between the classification accuracy rate and the parameters, the thresholds for the similarity, Ts, and the bandwidth, Tb. r is fixed to 1.

in Table II are used for each subject. We can observe that the
different filters are designed for each subject. However, the
band in between 10–15 Hz is selected for the passband in
all subjects. An oscillation in the band of 10–15 Hz is called
the mu rhythm known as a rhythmic component associated to
imagery tasks of body movement.

IV. CONCLUSIONS

This paper has proposed the new method to design the
set of the filters with multiple passbands. The ideas of the
proposed method are to evaluate the similarities between the
covariance matrices in each frequency bin by using the CSP
method and to decide the passbands based on the similarities.
Although the experimental results suggest that the proposed
method can outperform some conventional methods in the

classification accuracy rate in the motor-imagery based BMIs,
the classification accuracy depends on the parameters. How to
choose the parameters has still been an open problem in this
paper.
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