
SmartDJ: An Interactive Music Player For Music
Discovery By Similarity Comparison

Maureen S. Y. Aw, Chung Sion Lim, Andy W. H. Khong
School of Electrical and Electronic Engineering,

Nanyang Technological University, Singapore

E-mail: {maureenaw, limcs}@outlook.com, andykhong@ntu.edu.sg

Abstract—We present a user-friendly method that employs
acoustic features to automatically classify songs. This is achieved
by extracting low-level features and reducing the feature space
using principle component analysis (PCA). The songs are then
plotted on a song-space graphic user interface (GUI) for manual
or automatic browsing. The similarity between songs is given
by the Euclidean distance in this lower-dimension song space.
Using this song space, a prototype application known as the
“SmartDJ” has been implemented on the MAX/MSP platform.
This prototype application enables users to visualize their music
library, select songs based on their similarity or automate the
song selection process using a given seed song. We also describe,
in this paper, several features of the application including the
smooth mix transition feature which provides an enhanced
experience for the users to perform song transition seamlessly.

I. INTRODUCTION

In the digital age of music, music organization and discov-

ery have become more challenging and time consuming than

before. This is due to the large pool of music available and the

introduction of new songs with time. Hence, a smart system

that is capable of organizing and presenting a large collection

of music in one’s personal library is essential [1], [2].

The motivation behind our prototype application, which

we called SmartDJ, is to create a system that organizes

music based on acoustic similarity. In this work, we propose

a new and interactive way of visualizing a personal music

library by translating all songs in a music library into points

on a two-dimensional song space which, in turn, serves to

provide visual feedback for the user. The acoustic similarity

between the songs is then determined by the proximity of

these points; points which are closer correspond to songs with

higher similarity. In order to achieve the acoustic similarity

comparison, low-level descriptors are extracted from the raw

audio signal and the large dataset is subsequently reduced via

the use of the principal component analysis (PCA.) These

descriptors are then plotted onto the two-dimensional song

space for similarity comparison.

In addition to music organization, our proposed SmartDJ
prototype application is capable of recommending songs to

users by automatically generating a playlist of acoustically

similar music based on a given seed song. Alternatively,

users can manually perform song selection based on visual

feedback via the song-space visualizer. In order to cater to

different listening needs of users, the two-dimensional song-

space model can be adjusted according to high-level concepts
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Fig. 1. The Thayer’s mood model.

that indicate social contexts for music listening. In addition,

deejay (DJ) transition techniques such as beat synchronization,

key matching and equalization mixing allow for the smooth

transition between songs so as to further enhance users’

listening experience.

II. BACKGROUND

Music can be classified in terms of emotions and the

classification of musical mood via the use of audio features

is often referred to as audio mood classification (AMC). A

well-know model for AMC is the Russell’s model [3] which

divides mood into two uncorrelated dimension vectors: arousal

and valence, as illustrated in Fig. 1. In this model arousal

can be described as the energy or activation of an emotion;

a low arousal corresponds to music that is perceived to be

sleepy or sluggish while a high arousal corresponds to frantic

or excited. Valence, on the other hand, describes how positive

or negative an emotion is. A low valence corresponds to songs

which are perceived to be negative, sad or melancholic while a

high valence corresponds to positive feelings, happy or joyful.

A method that exploits intensity, timbre and rhythm has

been proposed for the classification of music mood into four

nominal classes resembling the four quadrants in the mood

plane spanned by two vectors [4]. The first quadrant (excited

and positive) corresponds to “happy/excited” emotion, the

second quadrant (excited and negative) corresponds to “an-

gry/anxious” emotion, the third quadrant (calm and negative)

corresponds to “sad/bored” emotion while the last quadrant



TABLE I
LOW-LEVEL DESCRIPTORS

flatness brightness
root-mean-square (RMS) rolloff
low energy pitch
average silence ratio (ASR) key (chords)
event density key (major/minor)
tempo/beats-per-minute key (clarity)
pulse clarity zero-crossing rate (ZCR)
centroid MFCCs (13 coefficients)

(calm and positive) corresponds to “relax/serene” emotion. It

is therefore possible to project songs onto a song space with

different quadrants representing songs of different moods so

as to match the user’s social context. The user can then select

songs from a particular region on the song space which suits

his/her current social context, for e.g., working out in a gym,

romantic dinner, song before bed, etc.

In addition to the mood model, other forms of song and

genre classification methods exist. The use of mel-frequency

cepstral coefficients (MFCCs), spectral, and cepstral parame-

ters has been proposed [5]. This method employs linear dis-

criminant analysis for dimension reduction so as to project the

data for optimal class separation. The use of growing neural

gas as a form of self-organizing map and hidden Markov

models (HMMs) have also been proposed in [6] and [7],

respectively, for genre classification. It is useful to note that our

focus is not to classify the songs into a specific category (i.e.,

classification.) The aim of our work, however, is to represent

pattern within the musical set on a two-dimensional song space

so as to establish relationships between songs.

III. SONG-SPACE DEVELOPMENT

A. Feature Extraction

To determine and quantify the acoustic similarity between

songs, twenty-eight low-level descriptors listed in Table I are

first extracted from the raw audio signal using the MIRtool-

box [8]. For example, defining x(n) as the music signal at

time n, the flatness, defined by the ratio of the geometric to

arithmetic mean, i.e.,

F(n) =

[
N−1∏
n=0

x(n)

]1/N

1

N

N−1∑
n=0

x(n)

, (1)

is computed. This measure indicates whether the distribution

of the signal is smooth or spiky. The event density, on the

other hand, estimates the average number of note onsets per

second.

A corpus set of 310 songs were used for feature extraction.

The stereophonic channels of each song are encoded in “.wav”

lossless audio format with 16-bit resolution resulting in an

audio bit rate of 1,411,200 bits/s. A window length of 50 ms

with a 50% overlapping factor was used for the segmentation.

As opposed to that of [5] where the first 30 s of the song

TABLE II
SPECTRAL-SHAPE FEATURES

flatness brightness
centroid roll-off
zero-crossing rate (ZCR) root-mean-square (RMS)
low energy event density
average silence ratio (ASR)
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Fig. 2. Variance of the first ten principal components (bar) and their cumulative

percentage (line) using low-level descriptor features listed in Table I.

is analyzed, 30 s from the middle segment of the audio were

analyzed in our work. This short-segment was chosen in order

to reduce the computational power, time and memory space

required. The middle segment of the song was chosen since it

encapsulates the gist or chorus of a song in general.

To quantify the amount of dimension reduction via the

use of principle component analysis (PCA) for the low-

level descriptors listed in Table I, we first define σ2
i as the

variance of the ith principal component (PC.) The variance

σ2
i , i = 1, . . . , 10 obtained from each of the first ten PCs

along with its cumulative variance (in percentage) defined by

σ2
c,i =

[
σ2
c,i−1

100
+

σ2
i∑28

j=1 σ
2
j

]
× 100, (2)

where σ2
c,0 = 0, are illustrated in Fig. 2. It can be seen that

the first two PCs have a cumulative variance of only 25% of

the entire data. The reason for the low percentage obtained

was due to overfitting, i.e., too many features have been used

to describe the dataset. To resolve this overfitting problem,

the number of features employed had to be narrowed down

to a more specific set of descriptors. Further tests revealed

that some of the features such as tempo, key strength and

MFCCs do not load the PCs significantly and are therefore

removed from the feature dataset. In addition, spectral-shape

parameters such as listed in Table II are well-known to be

important parameters for many music classification tasks [9],

[10]. Hence, these spectral-shape features were chosen to

describe the proposed song space.

B. Dimension Reduction

It is useful to note that although a large dataset can

be reduced in dimension via PCA or support vector ma-

chines (SVMs,) SVMs may not be well-suited for visualization
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Fig. 3. The song-space model. Each dot denotes a song in the database.
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Fig. 4. Variance of the first six principal components (bar) and their cumulative

percentage (line) using spectral-shape features listed in Table II.

since the classifiers tend to result in a number of tight clus-

ters [11]. Therefore, using PCA, the dataset is projected onto

a two-dimensional song space as a form of visual feedback

to the user. The similarity between the songs is given by

the Euclidian distance in a lower-dimension song space with

similar songs being situated near each other. With PCA, the

highest variance is retained in the first PC while the second PC

accounts for the second largest variance in the data, orthogonal

to the first. Hence, as shown in Fig. 3, the data is plotted

against the first two PCs to illustrate the maximum amount of

variance in the song database.

The percentage variance obtained from the first six spectral-

shape features (out of the nine in Table II) is shown in Fig. 4.

The cumulative percentage variance obtained from the first

three PCs account for 51.05%, 72.87% and 81.64% of the data

respectively. This is a significant improvement from the 25%

cumulative variance with the twenty-eight low-level features

in Table I. A sharp bend at the second PC in Fig. 4 indicates

that the variability contributed by the third and subsequent PCs

are not as significant. Hence, a two-dimensional plot using the

first two PCs is employed in our model.

Fig. 5. Song-space visualizer in SmartDJ GUI.

C. The Song-Space Model

With the song-space model obtained in Fig. 3, it was

generally observed that as songs progress along the horizontal

axis (first PC,) it gets “nosier.” In terms of genre, this implies

that songs transverse from Jazz, Acoustics and light-hearted

Country songs to Rock, Techno, Pop and House music. The

vertical axis (second PC) increases in energy level as it

progresses from bottom to top; Jazz music is generally located

at the bottom, while Pop music is generally located at the

upper half of the song space. Therefore the second PC relates

to the massiveness or the heaviness of a song. This analysis

is supported by the individual feature loadings illustrated by

lines in Fig. 3. It can be seen that loadings for features such

as flatness, rolloff, zero-crossing rate (ZCR), centroid and

brightness lie closer to the horizontal axis as they quantify the

amount of high-frequency energy and the amount of oscillation

of the signal. This is in line with the fact that the horizontal

axis quantifies how noisy, or saturated the music is with

regard to the high-frequency content. Contrary to the above,

loadings of event density and root-mean-square (RMS) lie in

the direction close to the positive y-axis while loadings of low

energy and average silence ratio (ASR) point in the negative

y-axis direction. This agrees with the fact that the vertical axis

quantifies the amount of energy or how massive or heavy the

music is.

IV. THE SmartDJ APPLICATION AND ITS FEATURES

The song-space model shown in Fig. 3 is next ported to the

MAX/MSP platform for the development of the graphic user

interface (GUI.) A new song-space visualiser has been created

and, as shown in Fig. 5, it offers a new way of interaction

between the user and the music player. This is achieved by

providing a visual feedback with regard to song similarity

and adding the relationship between key proximity and beats-

per-minute (BPM) into the music library. This helps users to

visualize the relationship between songs around a particular

seed song. The visualizer incorporates five-dimension data on

a 2D space. The two dominant dimensions define the noisiness

and heaviness as described in Sections III-B and III-C whereas

the BPM, pitch and key proximity attributes of a song are

represented using the hue-saturation-luminance (HSL) color

model on the song space.

A. Song Recommendation Feature

In addition to the above, our proposed SmartDJ application

allows the user to opt for automatic song selection based on
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Fig. 6. Song-space categorization.

Fig. 7. Schematic of song recommendation process.

a seed song (a song recommendation feature.) To achieve this

feature, the k-th nearest neighbor algorithm is used to select

songs that are closest to the seed song. As shown in Fig. 6,

the selected candidates will be categorized into four groups

with different types of music characteristic. This categorization

helps the system to decide which direction to move across the

song space based on the user-defined “grooviness” parameter,

which defines how a set of songs in the playlist build up or

down throughout the playtime. As an illustrative example, a DJ

may need to build up the atmosphere by queuing songs such

that the BPM increases with time. SmartDJ also includes a

history playlist which acts as a filter to exclude songs that

have been played recently. The final outcome will be loaded

into buffer as subsequent track. Figure 7 shows the schematic

flow of the song recommendation process.

B. Song-transition feature

Similar to existing DJ software, our SmartDJ prototype

application also includes a song transition feature that employs

the detection and synchronization of tempo, spectral mixing

and tonality matching. These three criteria serve as primary

filtering components for the automatic song selection feature

such that once the subsequent song is selected by the appli-

cation, mixing occurs when the cue-out point is reached. It is

useful to note that spectrum mixing is applied to ensure the

frequency content of both songs will not overwhelm each other

(within a frequency band) and real-time frequency analysis is

performed while a song is playing.

Fig. 8. Beat detection and synchronization.

In terms of tempo (or BPM) estimation in an audio record-

ing, several algorithms have been proposed [12], [13]. For

beat synchronization between two songs, the speed of song

playback is normally altered by DJs. However, it is well-

known that changing the speed of the playback will alter the

pitch of the song. Therefore, to avoid changing the speed of the

playback significantly, we have additionally applied a 3% rule

where the tempo difference between two consecutive songs

should be within 3% of each other during transition. Therefore,

two songs in F Minor that have a BPM of 130 and 131 can

be harmonically mixed together since the tempo difference is

less than 3%. Figure 8 illustrates the process of beat detection

and synchronization.

Spectral mixing is one of the basic skills that DJs apply.

This technique involves the reduction of signal energies at

a particular range of frequencies while transiting to the next

song. In the music arena, DJs apply such EQ blend techniques

on a parametric equalizer so as to avoid “overcrowding” of

signals at a particular frequency range [14]. To automate the

process, one possible approach is via the use of spectrum

centroid to determine the center mass of the frequency content

of both songs within each frequency band. These bands can be

segregated to within 20-400 Hz for bass signal, 400-5.2 kHz

for vocal information and signals within the human-sensitive

hearing range, and 5.2-20 kHz for high-pitch instruments

such as cymbals. Therefore, a real-time spectrum analyzer

can be employed to perform spectral analysis and mixing is

performed by attenuating the frequency content when there is

significant frequency band overlap between the two songs.

The purpose of tonality matching is to ensure that transition

can be done smoothly [15]. The concept of harmonic mixing

is to ensure two songs will be harmonically compatible with

each other based on certain conditions such as having the

same key (tonic,) relative Major/Minor key, sub-dominant

key (perfect 4th) and dominant key (perfect 5th.) A matrix

of weights representing the proximity between tonalities is

applied to select subsequent songs with the best harmonic

matching possible. This matrix can be derived based on the

Camelot wheel chart as shown in Fig. 9. Each sector of the

wheel are described by the inner and outer sections which

correspond to the major and relative minor keys, respectively.

Using this wheel, any adjacent sections should produce a



Fig. 9. The Camelot wheel chart. [after [15]].

smooth-sounding mix. Therefore, as an illustrative example,

if a song that was in E-minor, another song that is either

in E-minor, B-minor, A-minor, G-major, D-major or A-major

should be chosen to ensure smooth transition.

V. CONCLUSION

In this work, we proposed a novel way in which music can

be displayed for the user based on similarity of the acoustic

features. By translating all songs in the music library onto a

two-dimensional feature space, the user can better understand

the relationship between the songs, with the distance between

each song reflecting its acoustic similarity. We achieve the

above by employing low-level acoustic features extracted from

raw audio signals and performing dimension reduction using

PCA on the feature space. The proposed approach avoids

the need to depend on contextual data (such as metadata)

and other collaborative filtering methods. With the song-

space visualizer, the user can make song choices or allow

the system to automate the song selection process given a

seed song. The above has been implemented on a MAX/MSP

platform and additional DJ features such as song-transition and

beat synchronization have also implemented in our SmartDJ
application to enhance user’s listening experience.
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