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Abstract—In this paper, we review a blind musical-noise-free
speech extraction method using a microphone array that can
be applied to nonstationary noise. In our previous study, it was
found that optimized iterative spectral subtraction (SS) results
in speech enhancement with almost no musical noise generation,
but this method is valid only for stationary noise. The proposed
method consists of iterative blind dynamic noise estimation by,
e.g., ICA or multichannel Wiener filtering, and musical-noise-
free speech extraction by modified iterative SS, where multiple
iterative SS is applied to each channel while maintaining the
multichannel property reused for the dynamic noise estimators.
Also, related to the proposed method, we discuss the justification
of applying ICA to such signals nonlinearly distorted by SS. From
objective and subjective evaluations simulating real-world hands-
free speech communication system, we reveal that the proposed
method outperforms the conventional methods.

I. INTRODUCTION

In the past few decades, many applications of speech
communication systems, such as hearing aids and mobile
phones, have been investigated. It is, however, well known
that these systems always suffer from the deterioration of
speech quality under adverse noise conditions, and thus noise
reduction is a problem requiring urgent attention. Spectral
subtraction is a commonly used noise reduction method that
has high noise reduction performance with low computational
complexity [1], [2], [3], [4], [5]. However, in this method,
artificial distortion, so-called musical noise, arises owing to
nonlinear signal processing, leading to a serious deterioration
of sound quality.

To achieve high-quality noise reduction with low musical
noise, an iterative SS method has been proposed [6], [7], [8].
This method is performed through signal processing in which
weak SS processes are iteratively applied to the input signal.
Also, some of the authors have reported the very interesting
phenomenon that this method with appropriate parameters
gives equilibrium behavior in the growth of higher-order
statistics with increasing number of iterations [9]. This means
that almost no musical noise is generated even with high noise
reduction, which is one of the most desirable properties of
single-channel nonlinear noise reduction methods. Following
this finding, the authors have derived the optimal parame-
ters satisfying the no musical noise generation condition by
analysis based on higher-order statistics. We have defined this

method as musical-noise-free speech enhancement, where no
musical noise is generated even for a high SNR in iterative
SS [10].

In conventional iterative SS, however, it is assumed that
the input noise signal is stationary, meaning that we can
estimate the expectation of noise power spectral density from
a time-frequency period of a signal that contains only noise.
In contrast, under real-world acoustical environments, e.g.,
a nonstationary noise field, although it is necessary to dy-
namically estimate noise, this is very difficult. Therefore in
this paper, first, we propose a new iterative signal extraction
method using a microphone array that can be applied to
nonstationary noise [11], [12]. Our proposed method consists
of iterative blind dynamic noise estimation by independent
component analysis (ICA) [13], [14] and musical-noise-free
speech extraction by modified iterative SS, where multiple
iterative SS is applied to each channel while maintaining the
multi-channel property reused for ICA.

Secondly, related to the proposed method, we discuss the
justification of applying ICA to such signals nonlinearly
distorted by SS. We theoretically clarify that the degradation
in ICA-based noise estimation obeys an amplitude variation
in room transfer functions between the target user and mi-
crophones. Next, to reduce speech distortion, we introduce a
channel selection strategy into ICA, where we automatically
choose less varied inputs to maintain a high accuracy of the
noise estimation. Furthermore, we introduce a time-variant
noise PSD estimator [15] instead of ICA for improvement of
the noise estimation accuracy. From objective and subjective
evaluations, we reveal that the proposed method outperforms
the conventional method.

The rest of the paper is organized as follows. In Sect. II, we
describe related works on spectral subtraction and the musical
noise metric. In Sect. III, new musical-noise-free blind speech
extraction method is proposed. In Sect. IV, an improvement
scheme for poor noise estimation is presented. In Sect. V,
objective and subjective evaluations are described. Following
a discussion on the results of the experiments, we present our
conclusions in Sect. VI.
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Fig. 1. Block diagram of iterative SS.

II. RELATED WORKS

A. Conventional non-iterative SS [2]

We apply short-time Fourier analysis to the observed signal,
which is a mixture of target speech and noise, to obtain
the time-frequency signal. We formulate conventional non-
iterative SS [2] in the time-frequency domain as follows:

y(f, τ) =


√
|x(f, τ)|2 − βE[|N |2] exp(jarg(x(f, τ)))

(if |x(f, τ)|2 > βE[|N |2]),
ηx(f, τ) (otherwise),

(1)

where y(f, τ) is the enhanced target speech signal, x(f, τ)
is the observed signal, f denotes the frequency subband, τ
is the frame index, β is the oversubtraction parameter, and
η is the flooring parameter. Here, E[|N |2] is the expectation
of the random variable |N |2 corresponding to the noise power
spectra. In practice, we can approximate E[|N |2] by averaging
the observed noise power spectra |n(f, τ)|2 in the first K-
sample frames, where we assume the absence of speech in
this period and noise stationarity. However, this often requires
high-accuracy voice activity detection.

B. Iterative SS [6], [7], [8]

In an attempt to achieve high-quality noise reduction with
low musical noise, an improved method based on iterative SS
was proposed in previous studies [6], [7], [8]. This method is
performed through signal processing, in which the following
weak SS processes are recursively applied to the noise signal
(see Fig. 1). (I) The average power spectrum of the input
noise is estimated. (II) The estimated noise prototype is then
subtracted from the input with the parameters specifically set
for weak subtraction, e.g., a large flooring parameter η and
a small subtraction parameter β. (III) We then return to step
(I) and substitute the resultant output (partially noise reduced
signal) for the input signal.

C. Modeling of input signal

In this paper, we assume that the input signal x in the power
spectral domain is modeled using the gamma distribution as

P (x) =
xα−1

Γ(α)θα
exp(−x/θ), (2)

where x ≥ 0, α > 0, and θ > 0. Here, α is the shape
parameter, θ is the scale parameter, and Γ(α) is the gamma
function, defined as Γ(α) =

∫∞
0

tα−1 exp(−t)dt.

D. Mathematical metric of musical noise generation via
higher-order statistics for non-iterative SS [16]

In this study, we apply the kurtosis ratio to a noise-only
time-frequency period of the subject signal for the assessment
of musical noise [16]. This measure is defined as

kurtosis ratio = kurtproc/kurtorg, (3)

where kurtproc is the kurtosis of the processed signal and
kurtorg is the kurtosis of the observed signal. Kurtosis is
defined as

kurt = µ4/µ
2
2, (4)

where µm is the mth-order moment, given by

µm =

∫ ∞

0

xmP (x)dx, (5)

and P (x) is the probability density function (p.d.f.) of a power-
spectral-domain signal x. A kurtosis ratio of unity corresponds
to no musical noise. This measure increases as the amount of
generated musical noise increases.

The mth-order moment after SS, µm, is given by [9]

µm = θmn M(αn, β, η,m), (6)

where θn is the noise scale parameter, αn is the noise shape
parameter, and

M(αn, β, η,m) =S(αn, β, η) + η2mF(αn, β, η), (7)

S(αn, β,m) =
m∑
l=0

(−βαn)
lΓ(m+1)Γ(αn+m−l, βαn)

Γ(αn)Γ(l+1)Γ(m−l+1)
,

(8)

F(αn, β,m) =
γ(αn+m,βαn)

Γ(αn)
. (9)

Γ(b, a) and γ(b, a) are the upper and lower incomplete
gamma functions defined as Γ(b, a) =

∫∞
b

ta−1 exp(−t)dt

and γ(b, a) =
∫ b

0
ta−1 exp(−t)dt, respectively. From (4), (6),

and (7), the kurtosis after SS can be expressed as

kurt =
M(αn, β, η, 4)

M2(αn, β, η, 2)
. (10)

Using (3) and (10), we also express the kurtosis ratio as

kurtosis ratio =
M(αn, β, η, 4)/M2(αn, β, η, 2)

M(αn, 0, 0, 4)/M2(αn, 0, 0, 2)
. (11)

Also, as a measure of noise reduction performance, the noise
reduction rate (NRR), the output signal-to-noise ratio (SNR)
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Fig. 2. Relation between NRR and kurtosis ratio obtained from theoretical
analysis for Gaussian noise case.

minus the input SNR in dB, can be given in terms of a 1st-
order moment as [9]

NRR = 10 log10
αn

M(αn, β, η, 1)
. (12)

E. Musical-noise-free speech enhancement [10]

In [10], we have proposed musical-noise-free noise reduc-
tion, where no musical noise is generated even for a high
SNR in iterative SS. In the study, first, some of the authors
discovered an interesting phenomenon that the kurtosis ratio
sometimes does not change even after SS via mathematical
analysis based on (11) [9]. This indicates that the kurto-
sis ratio can be maintained at unity even after iteratively
applying SS to improve the NRR, and thus no musical
noise is generated. Following this finding, the authors have
derived the optimal parameters satisfying the musical-noise-
free condition by finding a fixed-point status in the kurto-
sis ratio, i.e., by solving M(αn, 0, 0, 4)/M2(αn, 0, 0, 2) =
M(αn, β, η, 4)/M2(αn, β, η, 2) [10]. Given the noise shape
parameter αn, we can choose combinations of the over-
subtraction parameter β and the flooring parameter η that
simultaneously satisfy the musical-noise-free condition using
the following equation;

η4 ={F(αn, β, 4)(αn+1)αn−F2(αn, β, 2)(αn+3)(αn+2)}−1[
S(αn, β, 2)F(αn, β, 2)(αn+3)(αn+2)

±
[
{S(αn, β, 2)F(αn, β, 2)(αn+3)(αn+2)}2

−
{
F(αn, β, 4)(αn+1)αn−F2(αn, β, 2)(αn+3)(αn+2)

}
{
S(αn, β, 4)(αn+1)αn−S2(αn, β, 2)(αn+3)(αn+2)

} ] 1
2

]
.

(13)

Figure 2 shows an example of the kurtosis ratio in optimized
iterative SS, where Gaussian noise is assumed. We can confirm
the flat trace of the kurtosis, indicating no musical noise
generation.

III. PROPOSED METHOD: EXTENSION TO MICROPHONE
ARRAY SIGNAL PROCESSING

A. Conventional blind spatial subtraction array

In the previous section, we assumed that the input noise sig-
nal is stationary, meaning that we can estimate the expectation
of a noise signal from a time-frequency period of a signal that
contains only noise, i.e., speech absence. However, in actual
environments, e.g., a nonstationary noise field, it is necessary
to dynamically estimate the noise power spectral density.

To solve this problem, we previously proposed blind spatial
subtraction array (BSSA) [17], which involves accurate noise
estimation by ICA followed by a speech extraction procedure
based on SS (see Fig. 3). BSSA improves the noise reduction
performance, particularly in the presence of both of diffuse and
nonstationary noises; thus, almost all the environmental noise
can be dealt with. However, BSSA always suffers from musical
noise owing to SS. In addition, the output signal of BSSA
degenerates to a monaural (not multi-channel) signal, meaning
that ICA cannot be reapplied; thus, we cannot iteratively
estimate the noise power spectra. Therefore, it is impossible
to directly apply iterative SS to the conventional BSSA.

B. Iterative blind spatial subtraction array [11]

In this section, we propose a new multi-iterative blind signal
extraction method integrating iterative blind noise estimation
by ICA and iterative noise reduction by SS. As mentioned
previously, the conventional BSSA cannot iteratively and
accurately estimate noise by ICA because the conventional
BSSA performs a delay and sum (DS) operation before SS.
To solve this problem, we propose a new BSSA structure
that performs multiple independent SS in each channel before
DS; we call this structure channel-wise SS [18], [19], [20].
Using this structure, we can equalize the number of channels
of the observed signal to that of the signals after channel-
wise SS. Therefore, we can iteratively apply noise estimation
by ICA and speech extraction by SS (see Fig. 4). Also,
the advantage of the proposed structure is that ICA has the
possibility of adaptively estimating the distorted wavefront of
a speech signal to some extent even after SS, because ICA
is a blind signal identification method that does not require
knowledge of the target signal direction. Details of this issue
will be discussed in Sect. III-C. Hereafter, we refer to this
proposed BSSA as iterative BSSA.

We conduct iterative BSSA in the following manner, where
the superscript [i] represents the value in the ith iteration of
SS (initially i = 0).

(I) The observed signal vector of the K-channel array
in the time-frequency domain, x[0](f, τ), is given by

x[0](f, τ) = h(f)s(f, τ) + n(f, τ), (14)

where h(f) = [h1(f), h2(f) . . . , hK(f)]T is a col-
umn vector of the transfer functions from the target
signal position to each microphone, s(f, τ) is the
target speech signal, and n(f, τ) is a column vector
of the additive noise.



(II) Next, we perform signal separation using ICA as [13]

o[i](f, τ) =W
[i]
ICA(f)x

[i](f, τ), (15)

W
[i][p+1]
ICA (f) =µ[I − ⟨φ(o[i](f, τ))(o[i](f, τ))H⟩τ ]

·W [i][p]
ICA (f) +W

[i][p]
ICA (f), (16)

where W
[i][p]
ICA (f) is a demixing matrix, µ is the step-

size parameter, [p] is used to express the value of the
pth step in the ICA iterations, I is the identity matrix,
⟨·⟩τ denotes a time-averaging operator, and φ(·) is
an appropriate nonlinear vector function. Then, we
construct a noise-only vector,

o
[i]
noise(f, τ) =[o

[i]
1 (f, τ), . . . , o

[i]
U−1, 0,

o
[i]
U+1(f, τ), . . . , o

[i]
K(f, τ)]T, (17)

where U is the signal number for speech, and we
apply the projection back operation to remove the
ambiguity of the amplitude and construct the esti-
mated noise signal, z[i](f, τ), as

z[i](f, τ) = W
[i]
ICA(f)

−1o
[i]
noise(f, τ). (18)

(III) Next, we perform SS independently in each in-
put channel and derive the multiple target-speech-
enhanced signals. This procedure can be given by

x
[i+1]
k (f, τ) =
√
|x[i]

k (f, τ)|2 − β|z[i]k (f, τ)|2 exp(j arg(x[i]
k (f, τ)))

(if |x[i]
k (f, τ)|2 > β|z[i]k (f, τ)|2),

ηx
[i]
k (f, τ) (otherwise),

(19)

where x
[i+1]
k (f, τ) is the target-speech-enhanced sig-

nal obtained by SS at a specific channel k. Then
we return to step (II) with x[i+1](f, τ). When we
obtain sufficient noise reduction performance, go to
step (IV).

(IV) Finally, we obtain the resultant target-speech-
enhanced signal by applying DS to x[∗](f, τ), where
∗ is the number of iterations after which sufficient
noise reduction performance is obtained. This proce-
dure can be expressed by

y(f, τ) = wT
DS(f)x

[∗](f, τ), (20)

wDS(f) = [w
(DS)
1 (f), . . . , w

(DS)
K (f)], (21)

w
(DS)
k (f) =

1

K
exp(−2j(f/N)fsdk sin θU/c),

(22)

θU = sin−1

arg

( [
W

[∗]
ICA(f)−1

]
kU[

W
[∗]
ICA(f)−1

]
k′U

)
2πfsc−1(dk − dk′)

, (23)

where y(f, τ) is the final output signal of iterative
BSSA, wDS is the filter coefficient vector of DS, N
is the DFT size, fs is the sampling frequency, dk is
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Fig. 3. Block diagram of conventional BSSA [17].

the microphone position, c is the sound velocity, and
θU is the estimated direction of arrival of the target
speech. Moreover, [A]lj represents the entry of A in
the lth row and jth column.

C. Accuracy of wavefront estimated by ICA after SS

In this subsection, we discuss the accuracy of the estimated
noise signal in each iteration of iterative BSSA. In actual
environments, not only point-source noise but also non-point-
source (e.g., diffuse) noise often exists. It is known that ICA
is proficient in noise estimation rather than speech estimation
under such a noise condition [17]. This is because the target
speech can be regarded as a point-source signal (thus, the
wavefront is static in each subband) and ICA acts as an
effective blocking filter of the speech wavefront even in a time-
invariant manner, resulting in good noise estimation. However,
in iterative BSSA, we should address the inherent question of
whether the distorted speech wavefront after nonlinear noise
reduction such as SS can be blocked by ICA or not; thus, the
speech component after channel-wise SS can become a point
source again or not.

Hereafter, we quantify the degree of point-source-likeness
for SS-applied speech signals. For convenience of discussion,
a simple two-channel array model is assumed. First, we define
the speech component in each channel after channel-wise SS
as

ŝ1(f, τ) = h1(f)s(f, τ) + ∆s1(f, τ), (24)
ŝ2(f, τ) = h2(f)s(f, τ) + ∆s2(f, τ), (25)

where s(f, τ) is the original point-source speech signal,
ŝk(f, τ) is the speech component after channel-wise SS at the
kth channel, and ∆sk(f, τ) is the speech component distorted
by channel-wise SS. Also, we assume that s(f, τ), ∆s1(f, τ),
and ∆s2(f, τ) are uncorrelated with each other. Obviously,
ŝ1(f, τ) and ŝ2(f, τ) can be regarded as being generated by a
point source if ∆s1(f, τ) and ∆s2(f, τ) are zero, i.e., a valid
static blocking filter can be obtained by ICA as

[W ICA(f)]11ŝ1(f, τ) + [W ICA(f)]12ŝ2(f, τ)

= ([W ICA(f)]11h1(f) + [W ICA(f)]12h2(f))s(f, τ)

= 0, (26)

where we assume U = 1 and, e.g., [W ICA(f)]11 = h2(f)
and [W ICA(f)]12 = −h1(f). However, if ∆s1(f, τ) and
∆s2(f, τ) become nonzero as a result of SS, ICA does not
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have a valid speech blocking filter with a static (time-invariant)
form.

Second, the cosine distance between speech power spectra
|ŝ1(f, τ)|2 and |ŝ2(f, τ)|2 is introduced in each frequency
subband to indicate the degree of point-source-likeness, as

COS(f) =

∑
τ |ŝ1(f, τ)|2|ŝ2(f, τ)|2√∑

τ |ŝ1(f, τ)|4
√∑

τ |ŝ2(f, τ)|4
. (27)

From (27), the cosine distance reaches its maximum value of
unity if and only if ∆s1(f, τ) = ∆s2(f, τ) = 0, regardless of
the values of h1(f) and h2(f), meaning that the SS-applied
speech signals ŝ1(f, τ) and ŝ2(f, τ) can be assumed to be
produced by the point source. The value of COS(f) decreases
with increasing magnitudes of ∆s1(f, τ) and ∆s2(f, τ) as
well as the difference between h1(f) and h2(f); this indicates
the non-point-source state.

Third, we evaluate the degree of point-source-likeness in
each iteration of iterative BSSA by using COS(f). We statisti-
cally estimate the distorted speech component of the enhanced
signal in each iteration. Here, we assume that the original
speech power spectrum |s(f, τ)|2 obeys a gamma distribution
with a shape parameter of 0.1 (this is a typical value for
speech) as

|s(f, τ)|2 ∼ x−0.9

Γ(0.1)θ0.1s

exp(−x/θs), (28)

where θs is the speech scale parameter. Regarding the amount
of noise to be subtracted, the 1st-order moment of the noise
power spectra is equal to θnαn when the number of iterations,
i, equals zero. Also, the value of αn does not change in each
iteration when we use the specific parameters β and η that
satisfy the musical-noise-free condition because the kurtosis
ratio does not change in each iteration. If we perform SS only
once, the rate of noise decrease is given by

M(αn, β, η, 1)/αn, (29)

and thus, the amount of residual noise after the ith iteration
is given by

µ
[i]
1 = θnαn {M(αn, β, η, 1)/αn}i

= θnMi(αn, β, η, 1)α
1−i
n . (30)

Next, we assume that speech and noise are disjoint, i.e.,
there are no overlaps in the time-frequency domain, and that
speech distortion is caused by subtracting the average noise

from the pure speech component. Thus, the speech component
|ŝ[i+1]

k (f, τ)|2 at the kth channel after the ith iteration is
represented by subtracting the amount of residual noise (30)
as

|ŝ[i+1]
k (f, τ)|2 =
|ŝ[i]k (f, τ)|2 − βθnMi(αn, β, η, 1)α

1−i
n

(if |ŝ[i]k (f, τ)|2 > βθnMi(αn, β, η, 1)α
1−i
n ),

η2|ŝ[i]k (f, τ)|2 (otherwise).

(31)

Here, we define the input SNR as the average of both channel
SNRs,

ISNR(f) =
1

2

(
0.1|h1(f)|2θs

αnθn
+

0.1|h2(f)|2θs
αnθn

)
=

0.1θs
2αnθn

(|h1(f)|2 + |h2(f)|2). (32)

If we normalize the speech scale parameter θs to unity, from
(32), the noise scale parameter θn is given by

θn =
0.1(|h1(f)|2 + |h2(f)|2)

2αnISNR(f)
, (33)

and using (33), we can reformulate (31) as

|ŝ[i+1]
k (f, τ)|2 =
|ŝ[i]k (f, τ)|2−β 0.1(|h1(f)|2+|h2(f)|2)

2ISNR(f) Mi(αn, β, η, 1)α
−i
n

(if |ŝ[i]k (f, τ)|2>β 0.1(|h1(f)|2+|h2(f)|2)
2ISNR(f) Mi(αn, β, η, 1)α

−i
n ),

η2|ŝ[i]k (f, τ)|2 (otherwise).

(34)

Furthermore, we define the transfer function ratio (TFR) as

TFR(f) = |h1(f)/h2(f)|2, (35)

and if we normalize |h1(f)|2 to unity in each frequency
subband, |h1(f)|2+ |h2(f)|2 becomes 1+1/TFR(f). Finally,
we express (34) in terms of the input SNR ISNR(f) and the
transfer function ratio TFR(f) as

|ŝ[i+1]
k (f, τ)|2 =
|ŝ[i]k (f, τ)|2−β 0.1(1+1/TFR(f))

2ISNR(f) Mi(αn, β, η, 1)α
−i
n

(if |ŝ[i]k (f, τ)|2>β 0.1(1+1/TFR(f))
2ISNR(f) Mi(αn, β, η, 1)α

−i
n ),

η2|ŝ[i]k (f, τ)|2 (otherwise).
(36)
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As can be seen, the speech component is subjected to greater
subtraction and distortion as ISNR(f) and/or TFR(f) de-
crease.

Figure 5 shows the relation between the TFR and the
corresponding value of COS(f) calculated by (27) and (36).
In Fig. 5, we plot the average of COS(f) over the whole
frequency subbands. The noise shape parameter αn is set to 0.2
with the assumption of super-Gaussian noise (this corresponds
to the real noises used in Sect. V), the input SNR is set
to 10 dB, 5 dB, or 0 dB, and the noise scale parameter θn
is uniquely determined by (33) and the previous parameter
settings. The TFR is set from 0.4 to 1.0 (|h1(f)| is fixed
to 1.0). Note that the TFR is highly correlated to the room
reverberation and the interelement spacing of the microphone
array; we determined the range of the TFR by simulating
a typical moderately reverberant room and the array with
2.15 cm interelement spacing used in Sect. V (see the example
of the TFR in Fig. 6). For the internal parameters used in
iterative BSSA in this simulation, β and η are 8.5 and 0.9,
respectively, which satisfy the musical-noise-free condition.
In addition, the smallest value on the horizontal axis is 3 dB
in Fig. 5 because DS is still performed even when i = 0.

From Figs. 5(a) and (b), which correspond to relatively high
input SNRs, we can confirm that the degree of point-source-
likeness, i.e., COS(f), is almost maintained when the TFR
is close to 1 even if the speech components are distorted by
iterative BSSA. Also, it is worth mentioning that the degree
of point-source-likeness is still above 0.9 even when the TFR
is decreased to 0.4 and i is increased to 6. This means that
almost 90% of the speech components can be regarded as a
point source and thus can be blocked by ICA. In contrast, from
Fig. 5(c), which shows the case of a low input SNR, when the
TFR is dropped to 0.4 and i is more than 3, the degree of
point-source-likeness is lower than 0.6. Thus, less than 60%
of the speech components can be regarded as a point source.
However, this is a worst-case scenario; actually when the TFR
is dropped to 0.4 and i is more than 3, the degree of point-
source-likeness is lower than 0.6. Thus, more than 40% of the
speech components cannot be regarded as a point source, and
this leads to poor noise estimation.
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Fig. 6. Typical examples of TFR(f) (|h1(f)/h2(f)|2) in each frequency
subband, where solid and broken lines are different combinations of micro-
phones.

IV. IMPROVEMENT SCHEME FOR POOR NOISE ESTIMATION

A. Channel selection in ICA

In this subsection, we propose a channel selection strategy
in ICA for achieving high accuracy of noise estimation.
As mentioned previously, speech distortion is subjected to
ISNR(f) and TFR(f), and the accuracy of noise estimation
is degraded along with its speech distortion. Figure 6 shows a
typical example of the TFR. From Fig. 6, we can confirm that
the TFRs in different combinations of microphones are not
the same in each frequency subband; in a specific frequency,
one microphone pair has higher TFR(f) than another pair, and
vice versa in another frequency. Thus, we are able to select the
appropriate combination of the microphones to obtain higher
TFR.

Therefore, we introduce the channel selection method into
ICA in each frequency subband, where we automatically
choose less varied inputs to maintain high accuracy of noise
estimation. Hereafter, we describe the detail of the channel
selection method. First, we calculate the average power of the
observed signal xk(f, τ) at the kth channel as

Eτ [|xk(f, τ)|2]=Eτ [|s(f, τ)|2]|hk(f)|2+Eτ [|nk(f, τ)|2].
(37)

Here, Eτ [|s(f, τ)|2] is a constant, and if we assume the diffuse
noise field, Eτ [|nk(f, τ)|2] is also a constant. Thus, we can
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Fig. 7. Kurtosis ratio obtained from experiment for traffic noise under 10-dB NRR condition.
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Fig. 8. Cepstral distortion obtained from experiment for traffic noise under 10-dB NRR condition.

estimate the relative order of |hk(f)|2 by comparing (37) for
every k.

Next, we sort Eτ [|xk(f, τ)|2] in descending order and select
the channels k corresponding to high amplitude of |hk(f)|2
satisfying the following condition:

max
k

Eτ [|xk(f, τ)|2] · ξ ≤ Eτ [|xk(f, τ)|2], (38)

where ξ(< 1) is the threshold for the selection.
Finally, we perform noise estimation based on ICA using

the selected channels in each frequency subband, and we apply
the projection back operation to remove the ambiguity of the
amplitude and construct the estimated noise signal.

B. Time-variant noise PSD estimator

In the previous section, we reveal that the speech compo-
nents cannot be regarded as a point source, and this leads to
poor noise estimation in iterative BSSA. To solve this problem,
we introduce a time-variant noise PSD estimator [15] instead
of ICA for improvement of the noise estimation accuracy.
This method has been developed for future high-end binaural
hearing aids and performs a prediction on the left noisy signal
from the right noisy signal via an Wiener filter, followed by
an auto-PSD of the difference between the left noisy signal
and the prediction. By applying the noise PSD estimated from
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Fig. 9. Kurtosis ratio obtained from experiment for railway station noise under 10-dB NRR condition.

C
ep

st
ra

l 
d
is

to
rt

io
n
 [

d
B

]

5

4

3

2

1

0

C
ep

st
ra

l 
d
is

to
rt

io
n
 [

d
B

]

5

4

3

2

1

0
-5 dB 0 dB 5 dB 10 dB -5 dB 0 dB 5 dB 10 dB

(a) 4-microphone case (b) 3-microphone case

C
ep

st
ra

l 
d
is

to
rt

io
n
 [

d
B

]

5

4

3

2

1

0

(c) 2-microphone case

-5 dB 0 dB 5 dB 10 dB

MMSE-STSA estimator (commonly used speech enhancement method)

Iterative spectral subtraction (single channel musical-noise-free speech enhancement method)

BSSA (conventional blind speech extraction method)

Iterative BSSA using ICA

Iterative BSSA with channel selection using ICA

Iterative BSSA using time-variant nonlinear noise estimator

Iterative BSSA with channel selection using time-variant nonlinear noise estimator

6

6 6

Fig. 10. Cepstral distortion obtained from experiment for railway station noise under 10-dB NRR condition.

this estimator to (19), we can perform the speech extraction.
The procedure of this noise PSD estimator is described in
Appendix.

V. EXPERIMENT IN REAL WORLD

A. Experimental conditions

We conducted objective and subjective evaluation experi-
ments to confirm the validity of the proposed methods under
the diffuse and nonstationary noise condition. The size of the
experimental room was 4.2×3.5×3.0 m3 and the reverberation
time was approximately 200 ms. We used a two-, three- or
four-element microphone array with an interelement spacing
of 2.15 cm, and the direction of the target speech was set to
be normal to the array. All the signals used in this experiment

were sampled at 16 kHz with 16-bit accuracy. The FFT size
was 1024, and the frame shift length was 256. We use 10
speakers (5 males and 5 females) as sources of the original
target speech signal. The input SNR was -5, 0, 5, and 10 dB.

B. Objective evaluation

We conducted an objective experiment evaluation under the
same NRR condition. Figures 7, 8, 9, and 10 show the kurtosis
ratio and cepstral distortion obtaind from the experiments
with real traffic noise and railway station noise, where we
evaluate 10-dB NRR (i.e., output SNRs = 5, 10, 15, and
20 dB) signals processed by three conventional methods,
namely, the minimum mean-square error (MMSE) short-time
spectral amplitude (STSA) estimator [21], simple combination
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Fig. 11. Subjective evaluation results for (a) traffic noise and (b) railway station noise.

of BSSA and musical-noise-free iterative spectral subtraction,
and our proposed methods, iterative BSSA (using ICA or
time-variant noise estimator with/without channel selection),
respectively. Here, we did not apply the channel selection
method to the two-microphone case because ICA or time-
variant noise estimation need at least two-channel signals.
Also, we applied minimum statistics noise PSD estimator [5]
to the MMSE STSA estimator and musical-noise-free iterative
spectral subtraction, and we use the decision-directed approach
for a priori SNR estimation in the MMSE STSA estimator.
From Figs. 7 and 9, we can confirm that iterative BSSA
methods outperform the MMSE STSA estimator and the
conventional BSSA in the kurtosis ratio. In particular, the
kurtosis ratios of the proposed methods are mostly close
to 1.0. This means that the proposed iterative methods did
not generate any musical noise. However, iterative BSSA
methods leads to greater speech distortion compared with the
conventional BSSA (see Figs. 8 and 10). Therefore, a trade-
off exists between the amount of musical noise generation
and speech distortion in the conventional BSSA and iterative
BSSA methods.

C. Subjective evaluation

Since we found the above-mentioned trade-off, we next
conducted a subjective evaluation for setting the performance
competition. In the evaluation, we presented a pair of 10-dB
NRR signals processed by the conventional BSSA and four
our proposed iterative BSSAs (using ICA or time-variant noise
estimator with/without channel selection) in random order to
10 examinees, who selected which signal they preferred from
the viewpoint of total sound quality, e.g., less musical noise,
less speech distortion, etc.

The result of experiment is shown in Fig. 11 for (a) traffic
noise and (b) railway station noise. It is found that the output

signals of some iterative BSSAs are preferred to that of the
conventional BSSA, indicating the higher sound quality of the
proposed method in terms of human perception. This result is
plausible because humans are often more sensitive to musical
noise than to speech distortion as indicated in past studies,
e.g., [22].

VI. CONCLUSION

In this paper, we first proposed iterative BSSA using a new
BSSA structure, which generates almost no musical noise even
with increasing noise reduction performance. Our theoretical
analysis indicates that the accuracy of noise estimation is
degraded along with its speech distortion. Next, we conducted
a channel selection strategy in ICA for achieving high accuracy
of noise estimation. From the evaluation experiments, it was
shown that there is a trade-off between the amount of musical
noise generation and speech distortion in both the conventional
BSSA and iterative BSSA. However, in a subjective preference
test, iterative BSSA obtained a higher preference score than
the conventional BSSA. Thus, iterative BSSA is advantageous
to the conventional BSSA in terms of sound quality.

APPENDIX

This appendix provides a brief review of the time-variant
nonlinear noise estimator. For more detailed information,
Ref. [15] can be available.

Let xL(f, τ) and xR(f, τ) be noisy signals received at
the left and right microphones in the time-frequency domain,
defined as

xL(f, τ) = hL(f)s(f, τ) + nL(f, τ), (39)
xR(f, τ) = hR(f)s(f, τ) + nR(f, τ), (40)

where hL(f) and hR(f) are the left and right transfer func-
tions, respectively. Next, the left and right auto-power spectral



densities, ΓLL(f) and ΓRR(f), can be expressed as follows:

ΓLL(f, τ) = |HL(f)|2ΓSS(f, τ) + ΓNN(f, τ), (41)

ΓRR(f, τ) = |HR(f)|2ΓSS(f, τ) + ΓNN(f, τ), (42)

where ΓSS(f, τ) is the power spectral density of the target
speech signal, and ΓNN(f, τ) is the power spectral density of
the noise signal. In this paper, we assume that the left and right
noise power spectral densities are approximately the same, i.e.,
ΓNLNL(f, τ) ≃ ΓNRNR(f, τ) ≃ ΓNN(f, τ).

Next, we consider the Wiener solution between the left and
right transfer functions, which is defined as

HW(f, τ) =
ΓLR(f, τ)

ΓRR(f, τ)
, (43)

where ΓLR(f) is the cross-power spectral density between
the left and the right noisy signals. The cross-power spectral
density expression then becomes

ΓLR(f, τ) = ΓSS(f, τ)HL(f)H
∗
R(f). (44)

Therefore, substituting (44) into (43) yields

HW(f, τ) =
ΓSS(f, τ)HL(f)H

∗
R(f)

ΓRR(f, τ)
. (45)

Furthermore, using (41) and (42), the squared magnitude
response of the Wiener solution in (45) can be also expressed
as

|HW(f, τ)|2= (ΓLL(f, τ)−ΓNN(f, τ))(ΓRR(f, τ)−ΓNN(f, τ))

Γ2
RR(f, τ)

.

(46)

Equation (46) is rearranged into a quadratic equation as in the
following:

Γ2
NN(f, τ)− ΓNN(f, τ) (ΓLL(f, τ) + ΓRR(f, τ))

+ ΓEE(f, τ)ΓRR(f, τ) = 0, (47)

where

ΓEE(f, τ) = ΓLL(f, τ)− ΓRR(f, τ)|HW(f)|2. (48)

Consequently, the noise power spectral density ΓNN(f) can be
estimated by solving the quadratic equation in (47) as follows:

ΓNN(f, τ) =
1

2
(ΓLL(f, τ) + ΓRR(f, τ))− ΓLRavg(f, τ),

(49)

ΓLRavg(f, τ) =
1

2
{(ΓLL(f, τ) + ΓRR(f, τ))

2

− 4ΓEE(f, τ)ΓRR(f, τ)}0.5. (50)
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