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Abstract— A good time-frequency (TF) analysis method 
should have the advantages of high clarity and no cross term. 
However, there is always a trade-off between the two goals. In 
this paper, we propose a new TF analysis method, which is called 
the generalized polynomial Wigner spectrogram (GPWS). It 
combines the generalized spectrogram (GS) and the polynomial 
Wigner-Ville distribution (PWVD). The PWVD has a good 
performance for analyzing the instantaneous frequency of a high 
order exponential function. However, it has the cross term 
problem in the multiple component case. By contrast, the GS can 
avoid the cross term problem, but its clarity is not enough. The 
proposed GPWS can combine the advantages of the PWVD and 
the GS. It can achieve the goals of high clarity, no cross term, and 
less computation time simultaneously. We also perform 
simulations to show that the proposed GPWS has better 
resolution than other TF analysis methods.                   
 

I. INTRODUCTION 
Time-frequency (TF) analysis [1-17] is useful for adaptive 

signal processing. With it, one can observe the signal variation 
in both the time and the frequency domains and estimate the 
instantaneous frequency of the signal. Some popular TF 
analysis methods are described as follows.                

The well-known short-time Fourier transform (STFT) [1-3] 
is defined as:  

            ( ) ( )2( , ) j f
xSTFT t f w t e x dπ ττ τ τ
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It is the simplest T-F analysis method. Specially, when w(t) is 
a Gaussian function, it becomes the Gabor transform [4]  
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where  is the standard deviation of the Gaussian window. The 
STFT is easy to implement. With the STFT, the instantaneous 
frequency of a signal can be observed and there is no cross term 
problem. However, the TF map of the STFT has poor clarity. 
Furthermore, due to the Heisenberg uncertainty principle [5], it 
is hard to make the TF map of the STFT have high resolutions in 
both the time domain and the frequency domain simultaneously. 
For example, a broader window size will make the frequency 
resolution higher but causes a worse time resolution.           

To solve the trade-off problem the generalized spectrogram 
is proposed [6][7]. The conventional spectrogram is:  
                          SPx(t, f ) = |STFTx(t, f )|2. (3)      
It is the square of the STFT magnitude. In [6][7], it is 
generalized into the generalized spectrogram: 
 

         SPx(t, f ) = 
1, ( , )x WSTFT t f

2, ( , )x WSTFT t f     (4) 

where 
1, ( , )x WSTFT t f  means the STFT using the window of 

W1(t). Since the STFT has a good time resolution when the 
window is narrower and has a good frequency resolution when 
the window is wider, if one chooses W1(t) as a narrower window 
and W2(t) as a wider window, then SPx(t, f) has higher 
resolutions in both the time and the frequency domain.  

Although the TF map of the generalized spectrogram is 
clearer than that of the STFT, some TF analysis methods, such 
as the Wigner distribution function and Cohen’s class 
distributions, have even higher clarity than the generalized 
spectrogram.              

The Wigner distribution function (WDF) [8][9] is defined as: 

 . (5) 

The WDF has many good mathematical properties and its TF 
map has very high clarity. However, it suffers from severe cross 
term problems. If x(t) consists of multiple components or a 
higher order phase component, then, due to the autocorrelation 
operation, the cross term occurs.             

Cohen’s class distribution [10][11] is a generalization of the 
WDF:  
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where Ax(η, τ) is the ambiguity function:  
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The clarity of Cohen’s class distribution is near to that of the 
WDF. Moreover, if Φ(η, τ) is a lowpass mask, the cross term 
can be attenuated. However, Cohen’s class distribution requires 
a lot of computation time. Moreover, there is a trade-off about 
designing the pass region of Φ(η, τ). If the pass region is narrow, 
more cross terms can be removed but the clarities of auto terms 
are reduced. If the pass region is width, auto terms have higher 
clarity but the ability of cross term removing is reduced.      

The polynomial Wigner-Ville distribution (PWVD) [12-14] is 
also a generalization of the WDF. The qth order PWVD is 
defined as 
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where q should be an even integer. When q = 2 and d1 = d-1 = 0.5, 
it becomes the WDF. The PWVD can effectively reduce the 

σ

2( , ) ( ) ( )
2 2

j f
xW t f x t x t e dπττ τ τ

∞ ∗ −

−∞
= + −∫



 

cross term for the signal with a higher order phase. That is, if the 
input signal has the form of  
                       C⋅exp[j(akt k + ak−1t k−1 + … + a0)],   (9) 
then, using the (2k)th-order PWVD, the cross term can be 
removed. However, as the simulation in Fig. 1(d), the PWVD 
cannot remove the cross term in the multiple component case.    

In Table I, we make a summary for the TF analysis 
methods, their clarities, and whether they can avoid cross-term 
problems.                

In this paper, we propose a new time frequency analysis 
method, which is called the generalized polynomial Wigner 
spectrogram (GPWS). Its TF map has very high clarity along 
both the time and the frequency axes. Moreover, it can avoid the 
cross term problem in both the higher order phase case and the 
multiple component case. Simulations show that the proposed 
GPWS has better performances than existing methods for 
analyzing the time-frequency distributions of signals.             

II. GENERALIZED POLYNOMIAL WIGNER SPECTROGRAM 

A. Definition 
The existing TF analysis methods can be classified into two 

types. The first type is the windowed spectrum analysis 
method, which includes the STFT and the generalized 
spectrogram. These methods are based on the Fourier 
transform (FT) of the input signal multiplied by a window. The 
second type is the quadratic TF analysis method, which 
includes the WDF, Cohen’s class distribution, and the PWVD. 
These methods are based on the FT of auto correlation 
functions [9]. As in Table I, the windowed spectrum analysis 
method can avoid the cross term and the quadratic TF analysis 
method has very high clarity.  

Among windowed spectrum analysis methods, the 
generalized spectrogram has the best performance, since it has 
acceptable clarities along both t-axis and f-axis. Among 
quadratic TF analysis methods, the PWVD has the best 
performance, since it can well analyze the TF distribution of a 
signal even if it has a higher order phase. Therefore, we 
propose a new class of TF analysis methods, which is a hybrid 
of the generalized spectrogram and the PWDF. We call it the 
generalized polynomial Wigner spectrogram (GPWS):              

 ( , ) (x xC t f p SP= (t, f ) , ( , ) )xPWVD t f  (10) 
where  is any function with two variables and SPx(t, f) 
and PWVDx(t, f) are defined as in (4) and (8), respectively.  

If p(x, y) in (10) is chosen properly such that 
                      p(x, y) = 0    when min(x, y) = 0,              (11) 
then the resultant GPWS can effectively avoid the cross-term 
problem while maintaining the clarity as good as that of the 
PWVD. For example, one can choose p(x, y) = xy. Then  
                    ( , )x xC t f SP= (t, f ) ( , )xPWVD t f . (12) 
More general, p(x, y) can be chosen as xαyβ. Then the GPWS 
becomes         
                    ( , )x xC t f SPα= ( , ) ( , )xt f PWVD t fβ .       (13)  
Alternatively, we can add a thresholding operation and define 
the GPWS as:   

TABLE   I 
SUMMARY OF TIME-FREQUENCY (TF) ANALYSIS METHODS. WE USE ‘O’, ‘∆’, 
AND ‘×’ TO SHOW WHETHER A TF ANALYSIS METHOD HAS THE ADVANTAGES 

OF HIGH CLARITIES AND AVOIDING CROSS TERMS.    

TF analysis 
Methods 

High clarity 
along t-axis 

High clarity 
along f-axis 

Avoiding the 
cross-term in 

the high-
order phase 

case 

Avoiding the 
cross-term in 
the multiple 
component 

case 
STFT (narrow 

window) ∆ × O O 
STFT (wider 

window) × ∆ O O 
Generalized 
Spectrogram ∆ ∆ O O 

Wigner 
distribution  O O × × 

Cohen’s class 
distribution  O O ∆ ∆ 

PWVD O O O × 
Proposed 
GPWS O O O O 

 
              ( , ) [x xC t f thr SPα= ( , )] ( , )xt f PWVD t fβ        (14) 
where             
       ( )thr x x= − ∆   if x > ∆,   ( ) 0thr x =   if x ≤ ∆.         (15) 
Note that, in (12)-(14), the multiplication operation is applied. 
If Z = XY, then Z is nonzero only when both X and Y are 
nonzero. Therefore, if PWVDx(t, f) has a cross term at (t1, f1), 
although PWVDx(t1, f1) is nonzero, since SPx(t1, f1) = 0, Cx(t1, f1) 
is also equal to 0 and the cross term problem can be solved. On 
the other hand, due to the limitation of clarity, SPx(t2, f2) may 
be nonzero if f2 is near to but not equal to the instantaneous 
frequency at t = t2. However, since the PWVD has a very high 
clarity and PWVDx(t2, f2) ≅ 0, Cx(t2, f2) is also near to zero. 
Therefore, the proposed GPWS can both avoid the cross term 
problem and have a very high clarity.  

Note that one can also use the logic operation and the 
minimum operation to define the GPWS. For example   
       1( , ) min{x xC t f A SP= }2( , ), ( , )xt f A PWVD t f  (16) 
or 
     ( , )x xC t f SPα= {( , ) ( , ) [x xt f PWVD t f SPβ ⋅ 1( , ) ]t f > ∆     

                     }2& ( , )xPWVD t f > ∆   .          (17)         

B. Implementation 
It seems that the proposed GPWS is a hybrid of the 

generalized spectrogram and the PWVD and hence the 
computation loading is increased. In fact, the proposed GPWS 
can be implemented in very efficient ways.    

Note that, when computing Z = XY, if X = 0, then no matter 
what the value of Y is, Z is equal to zero. Therefore, if the 
generalized spectrogram of a signal is zero or near to zero at a 
location, then we do not have to calculate the PWVD of the 
signal at this location.          

For example, if the GPWS is defined as in (14), we can 
first compute the generalized spectrogram SPx(t, f). Then we 

( , )p x y



 

only have to compute the PWVD in the location where SPx(t, f) 
> ∆. Its implementation process is as follows:               

(Step 1) First, we compute the STFT of x(t) using a narrow 
window, such as the Gaussian function with a large value of σ1:     

         ( ) ( )
2

1

1
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∞ − − −
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Note that the support of x(t)exp[−σ1π(t−τ)2] is very narrow when 
σ1 is large. The FT of a narrow support signal can be 
implemented by many efficient algorithms, such as the pruned 
fast Fourier transform (pruned FFT) algorithm [18][19].   

(Step 2) Then, we calculate the STFT of the input signal x(t) 
using a wider window:   
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where σ2 is a small value to make the window wider. Since     
                   ( )
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and X(f) = FT[x(t)]. Therefore, to compute (19), we can first 
compute X(f). Then, since the support of X(τ)exp[−π(t−τ)2/σ2] is 
narrow, one can also use the efficient pruned FFT algorithm 
[18][19] to compute (21). Therefore, as Step 1, Step 2 can also 
be implemented in a very efficient way.        

(Step 3) Then, use (4) to compute the generalized spectrogram 
from and use (15) to find the value of thr[SPx

α(t, f)].                        

(Step 4) Then, we calculate PWVDx(t, f). Since PWVDx(t, f) 
should be calculated only when thr[SPx

α(t, f)] ≠ 0, this step can 
again be implemented efficiently by the pruned FFT algorithm.  

(Step 5) After multiplying |PWVDx(t, f)| by thr[SPx
α(t, f)], the 

GPWS of the input signal is obtained.     

III. SIMULATIONS 
In this section, we compare the performances of the 

proposed GPWS and the existing TF analysis methods.    
In Fig. 1, the input is a real signal that has a cubic phase:  

                          3( ) 2cos(( 5) 4 )x t t tπ= − + .                 (22) 
It can be viewed as a combination of two exponential 
components, i.e., x(t) = exp[j(t −5)3 + j4πt] + exp[−j(t −5)3 − 
j4πt]. In Fig. 2, the input is an exponential function whose 
phase is a 4th order polynomial:  
                     4 2( ) exp( ( 5) 5 ( 5) )x t j t j tπ= − − − .        (23)        

From Figs. 1 and 2, one can see that the proposed GPWS 
has better TF analysis performance than other TF analysis 
methods. The Gabor transform has limited clarity. The WDF 
and Cohen’s class distribution have obvious cross-term 
problems. The PWVD has high clarity, but it suffers from the 
cross term problem especially in the multiple component case. 
The generalized spectrogram has no cross term problem, but 
its clarity is not high enough. When using the proposed GPWS, 
from Figs. 1(f) and 2(f), we can see that the TF maps are very 
clear and there is no cross term problem.   

IV. CONCLUSION 
In this paper, a very effective TF analysis method, which is 

called the generalized polynomial Wigner spectrogram (GPWS), 
is proposed. It combines the advantages of the windowed 
spectrum analysis method and the quadratic TF analysis 
methods and can achieve all of the four goals listed in Table I 
(high clarities along both t-axis and f-axis and no cross term in 
both the higher order phase case and the multiple component 
case). Moreover, with the pruned FFT algorithm, it can be 
implemented in a very efficient way. Simulations show that the 
proposed GPWS can precisely analyze the TF distribution of 
time-variant signals and multiple component signals.  
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Fig. 2  Time-frequency analysis for a signal whose phase is a 4th order polynomial. 4 2( ) exp( ( 5) 5 ( 5) )x t j t j tπ= − − − . (a) GT 
with σ = 2.5. (b) WDF. (c) Cohen’s class distribution. (d) 8th-order PWVD. (e) Generalized spectrogram. (f) Proposed GPWS. 
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Fig. 1  Time-frequency analysis for 3( ) 2cos(( 5) 4 )x t t tπ= − + . (a) GT with σ  =0.5. (b) WDF. (c) Cohen’s class distribution. 
(d) 8th-order PWVD. (e) Generalized spectrogram. (f) Proposed GPWS.           


