
Compressing JPEG Compressed Image Using
Reversible Data Hiding Technique

Sang-ug Kang∗, Xiaochao Qu†, and Hyoung Joong Kim‡
∗Department of Computer Science, Sangmyung University, Seoul, 157-715 Korea

E-mail: sukang@smu.ac.kr
†Graduate School of Information Security, Korea University, Seoul, 136-701 Korea

E-mail: quxiaochao@gmail.com
†Graduate School of Information Security, Korea University, Seoul, 136-701 Korea

E-mail: khj-@korea.ac.kr

1 Abstract—Since the concept of reversible data hiding tech-
nique was introduced, many researchers have applied it for au-
thentication of uncompressed images. In this paper, an algorithm
is introduced to compress JPEG files again without any loss
in image quality. The proposed method can modify an entire
segment of VLC codeword sequence to embed a bit of data.
The modified codewords may destroy the correlation, or the
smoothness, between neighboring pixels of the recovered image.
The data extractor utilizes the smoothness change to know the
hidden data. For this, a novel smoothness measurement function
which uses both inter- and intra-MAD values is proposed. When
the smoothness change is small, two consecutive segments are
concatenated to extract correct data with higher smoothness
sensitivity. As a result, compression ratio or embedding capacity
is increased in most natural images.

I. INTRODUCTION

Reversible data hiding techniques embed message into an
image and guarantee perfect extraction of the hidden message
and recovery of the original image without any loss. The
techniques have been evolved into two categories. Those
applicable to original or uncompressed images fall in the first
category (Category I), and those applicable to compressed
images are considered to be the second one (Category II).
In Category I, outstanding reversible watermarking algorithms
have been advanced including integer transform [1], lossless
compression [3], difference expansion [4], [7], [9], [11],
histogram modification [8], prediction expansion [10], and
accurate sorting and prediction [5] methods. The important
aim of advancement is to minimize the difference between
the original and cover image while maximizing data hiding
capacity.

Since reversible data hiding techniques usually rely on
redundancy in the cover image, it has been believed, theo-
retically, that reversible data hiding into random-look data is
impossible. However, Category 2 techniques are more useful
by considering the real world situation, in which most digital
images are generated in compressed formats from various
digital devices. Fridrich et al. [14] and Liu et al. [15] hide
data directly into the bitstreams of JPEG and MPEG-2 files,
respectively, using a code mapping method. For a H.264/AVC

1This work was supported by the National Research Foundation of Kore-
a(NRF) grant funded by the Korea government(MEST) (No. 2012015587).

Fig. 1. Data hiding and extraction process of Category II techniques

bitstream, intra prediction mode modification method is pro-
posed for lossless data hiding. One of the major objectives
of these algorithms is their data hiding capacity. In a way of
thinking, data hiding techniques in Category II are identical
to data compression ones if a part of compressed bitstream is
hidden in the rest part of bitstream by reducing the entire file
size by the amount corresponding to the capacity of algorithm.

Recently, Mobasseri et al. [2] exploit the redundancy in
the entropy coded portion in a JPEG compressed bitstream
to reversibly hide data by nearly preserving the file size.
They observe that most commercial JPEG encoders use typical
Huffman tables in the standard [13] and many of VLCs are
not used for encoding a natural image due to the absence of
customized entropy coding step. A used VLC is mapped to
an unused one when a 1 is embedded and it is not mapped
to embed a 0. Qian et al. [12] modify the approach in [2] to
keep the JPEG file size and image quality the same after data
hiding. Used VLCs are directly mapped to unused VLCs with
the same code length.

Also Kim [6] hides data into JPEG compressed data making
valid VLCs invalid and natural images unnatural. Symbol
probability of JPEG output is almost uniform and random.
Therefore, further entropy coding is almost impossible. How-
ever, since the method does not rely on the entropy coding,
further compression, or data hiding, is possible by using the
spatial information of the recovered image of JPEG bitstream.
Kim et al. [6] show that one bit can be hidden in a 1024-
bit segment of JPEG bitstream using content-aware code
modification method. For the recovery of bitstream and data
extraction illustrated in Figure 1, the method uses a measure
called mean absolute difference (MAD) values computed with

pixel values of a compressed image. The data extractor should
know if the recovered image is a part of the image by
using MAD values to extract a hidden data. In this paper,
a new measurement function and data extraction method are
introduced to achieve further compression, or data hiding
capacity, and the result is compared with [2], [12] and [6].

The code mapping methods hide data only into the entropy
coded portion shown in Figure 2 and the header portion, in-
cluding auxiliary information for JEPG decoding, is modified
to reflect the VLC codeword change due to the code mapping.
The entropy coded portion contains many VLCs that are called
as ”used VLC”. In the meantime, another group of VLCs are
defined in JPEG header portion but those do not appear in
the entropy coded portion that are called as ”unused VLC”.
The unused VLCs do not exist if a JPEG encoder generates
Huffman Tables optimized to a specific image contained in
the bitstream. Since many JPEG encoder products skip this
optimization step by simply using example Huffman tables
provided in the standard, the code mapping methods utilize
the unused VLC code space which occupies more than 50% of
totally 162 VLCs in Table K. 5 & K. 6 in [13]. Qualified VLC
pairs of (used VLC, unused VLC) are searched by building
the Huffman code tree and those are used for code mapping.
To embed a 0, a used VLC is not changed. To embed a 1,
a used VLC is mapped to the unused VLC in the pair. The
pairing strategy is different each other in [2] and [12]. In [2],
a pair is generated if any 1-bit flip of a used VLC matches
with an unused VLC. The run/size is modified in the JPEG
header to avoid decoding synchronization and visual quality
degradation because a mapping frequently causes run/size
mismatch between the original VLC and the mapped VLC.
In [12], a pair is established if there exists at least one unused
VLC with the same code length as the used one. The run/size
of mapped VLC is changed to the same value of the original’s
run/size for the purpose of synchronization in a decoder. This
duplicated run/size value in the file header, unlike any other
Huffman table, tells a data extractor all the VLC pairs so that
the extractor can extract the hidden data and recover the image
without any loss. The pair can be one to many for multiple-bit
hiding.

However, the code mapping techniques are not applicable
if a JPEG encoder is designed to maximize compression
performance with customized Huffman tables which is rec-
ommended by the standard [13]. Even though code mapping
techniques modify the entropy coded portion like in [6], the
content-aware code modification approach works regardless
of the Huffman table type, customized or typical. Also both
different techniques can be used to a JPEG bitstream simulta-
neously because the two approaches are orthogonal each other.
Throughout the paper, 512 × 512 grayscale images are used
for computational convenience.

II. DATA HIDING ALGORITHM

Note that this algorithm does not use probability or entropy
theory for further compression. Instead it utilizes recovered
image itself. A correctly recovered image looks natural and its

Fig. 2. Binary JPEG bit stream divided into n segments with length L.

neighboring pixels have strong correlation in spatial domain.
The method exploits this correlation for compression as did
in [6].

Assume that JPEG binary stream to be recompressed is
shown in Figure 2. Exact JPEG stream format is somewhat
different from Figure 2, but for laconic explanation purpose,
its model is simplified as such. The proposed method uses not
the JPEG header portion but the entropy coded portion. The
entropy coded portion is divided into many segments with
fixed length L. The segment length L is decided such that
each segment Xk contains bitstream portion corresponding
to at least one JPEG block. There are more than one VLC
codeword representing quantized DCT coefficients and End-
of-block (EOB) in each block. Data embedding is carried out
into the segments in the entropy coded portion. Data hiding
scheme is given as follows:

Yk+1 = Xk+1 ⊕ bk · u for k = 1, 2, · · · ,m, (1)

where Xk is the k-th segment, Yk is the modified segment of
Xk, and bk is the k-th bit to be embedded. Unit vector u is
a string of L ones. The symbol ⊕ denotes a bit-wise XOR
(exclusive OR). To embed 0, set Yk as Xk, and to embed 1,
set Yk as X̄k, where X̄k is a bit-wise complement of Xk. At
the data hiding stage, the first segment X1 is not used for
data embedding since this one has to be used as a reference
image at the data extraction stage. As a result, Y1 is simply
X1. Other segments are modified according to Equation 1.

The segment size L should not be too short or long. The
data extractor can not work with too short L and the data
embedding capacity becomes lower if L gets longer. The data
hider should find a proper L through the method of trial and
error using the extraction algorithm which will be explained
in the next section. Therefore it is hard for the hider to find
the exact minimum value of L. Instead the term of ”optimum
L” is used to denote that the L is not guaranteed minimum
but nearly minimum while assuring the data extraction.

III. DATA EXTRACTION ALGORITHM

Recovering algorithm is also quite simple as shown in
Figure 3. We recover the first a few 8 × 8 JPEG blocks by
decoding Y1. Since Y1 is X1, constructing these blocks is
done easily. Recovering of the other blocks in segments Yk

for k = 2, 3, · · · , n comprises of two phases: a codeword
validity phase and a smoothness check phase. In the first
phase, we decode Yk under the assumption that Yk is Xk.
If the JPEG decoding stops due to an invalid codeword or
too many coefficients more than 64, it is obvious that bk−1

TABLE I
THE SUCCESS RATIO OF JPEG CODEWORD VALIDITY PHASE OF X̄k

image L no. of no. of no. of success
(Q factor) segments success failure ratio (%)

Lena
512 306 276 30 90.2

1024 152 122 30 80.26
(50) 2048 76 47 29 61.84

4096 37 16 21 43.24

Baboon
512 693 611 82 88.2

1024 346 251 95 72.5
(50) 2048 172 93 79 54.1

4096 85 22 63 25.9

Barbara
512 459 406 53 88.5

1024 229 172 57 75.1
(50) 2048 114 55 59 48.3

4096 56 14 42 25.0

F16
512 340 302 38 88.8

1024 169 136 33 80.5
(50) 2048 84 55 29 65.5

4096 41 16 25 39.0

is 1 and Yk is X̄k. On the other hand, in case of successful
JPEG decoding of Yk, we need to do the codeword validity
phase again for Ȳk. If the decoding stops, bk−1 is 0 and Yk

is Xk. When both cases are successful in the first phase,
we have to decide which one is truly decoded and which
one is luckily decoded. Not surprisingly, many flipped JPEG
bitstreams are decoded because the typical Huffman tables
in [13] encompasses many codewords and a variable length
codeword has higher matching possibility than fixed length
one because a codeword can be interpreted as many. To verify
this, we flip all the segments, which is equivalent to embedding
bk = 1 into all the segments, and try to decode them. The
simulation result is depicted in Table I. If a segment passes the
codeword validity phase, it is called as ”success” and otherwise
”failure”. The success ratio is quite high when L is small and
it decreases as L increases. With a small L, more data can be
hidden, but it is hard to take advantage of the simplicity and
clarity of data extraction using the codeword validity phase.
Also note that the success ratio is not dependent on image
types.

The truly or luckily can be decided by using characteristics
of images in an automatic manner which is the smooth-
ness check phase. Natural images have strong correlation
between neighboring pixels. If the JPEG decoding of Yk

is truly successful, the recovered image blocks will have
strong correlation between blocks. In other words, the blocks
are smoothly connected. However, if the JPEG decoding is
luckily successful, the blocks are not strongly correlated each
other. The phrase ”luckily successful” means that the flipped
JPEG bitstream is decoded by chance and the recovered
image blocks look unnatural, meaningless, and inconsistent
with neighboring blocks. To make automatic decision without
human visual inspection, we introduce a smoothness measure
Mk, which will be discussed in detail later on. Since Mk is
designed to be smaller for truly successful images, we can
extract the embedded data by comparing two Mks of Yk and
Ȳk. If Mk of Yk is less than Mk of Ȳk, then bk−1 = 0 and
vice versa. The overall recovery process is portrayed in Figure

Fig. 3. Flowchart of the data extraction process.

(a) Inter MAD, M̃k (b) Intra MAD, M̂k

Fig. 4. Pixels associated with MAD calculation.

3.
Assume that X2 contains two complete JPEG blocks and

one incomplete block, and X3 has one incomplete, three
complete and one incomplete blocks in sequence as shown
in Figure 2. Note that a complete block starts with quantized
DCT coefficient C1 and ends with an EOB. In X2, last block
contains C1, but following coefficients and EOB belong to X3.
Thus, last block is called incomplete and it is included in two
segments. Coefficients of incomplete block in X2 are used for
X2 data extraction in the codeword validity phase, but not in
the smoothness check phase. In the smoothness check phase,
only complete blocks in X2 are used for X2 data extraction
and coefficients of an incomplete block in X2 are decoded
together with the following ones of an incomplete block in
X3 for X3 data extraction. The coefficients of an incomplete
block in X2 is modified according to the X2 recovery decision
before X3 data extraction. Those are used for both codeword
validity and smoothness check phases of X3 together with the
coefficients of an incomplete block in X3. And other three
complete blocks in X3 are processed continuously.

A. Smoothness Measurement Functions

A Mk value is calculated based on mean absolute difference
(MAD). In the paper, the combination of two different MAD
functions is used as a decision measure. First one is called
as inter-MAD. The inter-MAD value, M̃k, is computed using
pixels which are placed between currently decoded blocks and
the previously decoded neighboring blocks. In [6], only this
M̃k is used. It is computed as follows:

M̃k =

∑p
i=1 |ai − a

′

i|
p

(2)

where p is the number of pixel pairs. The relevant pixels ai
and a′i, marked with square, are placed along the thick line
as shown in Figure 4(a). The pixel element a′i belongs to

the currently JPEG decoded blocks, and ai belongs to the
previously decoded blocks which are called reference blocks.
The pixels ai and a′i face each other along the border.

The second one is called as intra-MAD. The value, M̂k,
is computed using pixels which are placed between currently
decoded blocks as shown in Figure 4(b). If there is only one
single block in the segment, the intra-MAD value cannot be
computed. M̂k is computed as follows:

M̂k =

∑q
i=1 |bi − b

′

i|
q

(3)

where q is the number of pixel pairs. The relevant pixels bi
and b′i, marked with triangle, are placed along the dotted thick
line as shown in Figure 4.

Mk =
M̃k + M̂k

2
(4)

A MAD function is used in the smoothness check phase to
differentiate a truly recovered image from a luckily recovered
one. To illustrate the performance of Mk, the histograms of
Mk at various L on Lena image are shown in Figure 5.
MAD values in left side of the graph are from truly recovered
images and those in right side are from luckily recovered ones,
which passed the first phase. The performance of a MAD
function is considered to be high when MADd is large, where
MADd is the distance subtracting the maximum MAD value
of truly recovered images from the minimum one of luckily
ones. In Figure 5, it is apparent that MADd increases as L
increases such as MADd = 15 at L = 512, MADd = 29 at
L = 1024, MADd = 63 at L = 2048, and MADd = 109
at L = 4096. If MADd is greater than 0, data extraction
is guaranteed for the image. This analysis can be done by a
data hider to decide L. That’s why the hider does not have
to send a threshold information as in [6] and the extractor
can still extract the hidden data without ambiguity. Note that
the condition MADd > 0 is not a necessary condition but
a sufficient one for a data hider to safely embed data. So
it is possible to embed data even when MADd ≤ 0. The
performance of proposed MAD function is compared with the
one in [6] as shown in Figure 6. The combination of inter and
intra MAD outperforms M̃k over wide range of segment sizes
by showing that MADd of Mk is larger than MADd of M̃k

in most cases.

B. Segment Concatenation

The motivation of segment concatenation is that longer
segment size provides more information to decide what the
hidden data is. In a segment Xk, a data hider can not embed
data if the decision rule Mk(Xk) < Mk(X̄k) is violated. If
there exists at least one violating segment in the whole entropy
coded portion, then the data hider should make L larger to
avoid such a situation. Sometimes, however, the data hider can
hide data with the same L size by merging two consecutive
segments and extracting two bits simultaneously at the data
extractor. Assume that a data extractor is handling Yk and the
decision rule is violated in that segment. Then a data extractor

(a) L=512

(b) L=1024

(c) L=2048

(d) L=4096

Fig. 5. The histograms of Mk at various L for Lena image.

extracts bk−1 = 1 at the condition Mk(Yk) ≥ Mk(Ȳk) even
though bk−1 = 0 is embedded. Apparently this is an erroneous
situation. However, the reversing of Mk(Xk) and Mk(X̄k) can
be sometimes overcome using segment concatenation method
especially when the reversing is small.

The segment concatenation starts when a segment meets
the condition |Mk(Yk) − Mk(Ȳk)| < T1, where T1 is a
threshold value. Two consecutive segments Yk and Yk+1 are
concatenated. First, the codeword validity is checked for the
combination of two segments, YkYk+1, YkȲk+1, ȲkYk+1 and
ȲkȲk+1. If a combination fails, then the MAD value of
corresponding combination is set to a large value so that it
can not be the minimum value in the upcoming MAD com-

(a) Lena (b) Baboon

(c) Barbara (d) F16

Fig. 6. The comparison of MADd of MAD functions at various L on four
test images

parison. Second, the smoothness is checked. Mk(YkYk+1),
Mk(YkȲk+1), Mk(ȲkYk+1) and Mk(ȲkȲk+1) are calculated
and the smallest is picked. If Mk(YkYk+1) is the smallest,
the extracted data bk−1bk is 00. Similarly, 01, 10 and 11 are
extracted when Mk(YkȲk+1), Mk(ȲkYk+1) and Mk(ȲkȲk+1)
are the minimum, respectively. The segment concatenation can
be extended theoretically to many segments, but we found that
there is no significant improvement.

C. Data Hiding Capacity

It is clear that more data can be hidden when the segment
size is small. The data hider decides the L size according to
a certain criterion or the performance of the data extractor.

Assume that the hider decides L such that MADd is always
greater than 0. It is simple, but L is somewhat long. For
example, the size of JPEG compressed Lena image used
in this paper is 157,557 bits excluding the JPEG header
portion, compressed from the original size 2,097,152 bits. With
L = 512, decided by referring to Figure 6(a), the number of
segments is 306 as in Table I so that 305-bit long message
can be embedded in the JPEG compressed stream. Assume
that the message is detached from the JPEG stream itself,
then 157,557 bit-long stream is decreased to 157,252 showing
0.19% lossless compression ratio. In case of Baboon image,
the proper L size turns out to be 2048 bits as shown in
Figure 6(b) and the total number of segments are 172. So
the JPEG stream size 355,504 bits can be reduced to 355,333
bits, compressed 0.05%. Of course MADd is greater than 0 at
L = 1500 and it can be also used as a proper L. At L = 256
for Lena image, theoretically the compression ratio is expected
to increase to 0.38%, but MADd is -5. In this case, successful
data extraction is not guaranteed. It does not mean, however,
that data extraction is impossible because the overlapping of
MAD histograms can be caused by MAD values calculated
from different segments. Roughly, as seen in Figure 6, this
approach works well at L = 2048 for most natural images at

TABLE II
THE OPTIMUM SEGMENT SIZE OF DIFFERENT IMAGES WHEN SEGMENT
CONCATENATION IS NOT USED AND THE HISTOGRAM OVERLAPPING IS

ALLOWED

image Lena Baboon Barbara F16
Optimum L 280 380 360 280

Capacity 561(0.36) 934(0.26) 654(0.28) 636(0.36)(comp. ratio (%))

JPEG quality factor 50.
The overlapping, MADd ≤ 0, is allowed if it is guaranteed

that Mk of truly recovered image is less than that of luckily
one in the same segment. With this approach, the L size can be
reduced and the capacity is improved as enumerated in Table
II. For example, Lena image allows L = 280, showing 0.36%
compression, and the L information is sent to the extractor.
Other images permit different L sizes. Note that the optimum
L value is proportional to textual complexity of an image.

In [6], a threshold value of MAD, Mth, is sent to a data
extractor. If Mk of truly recovered image is less than Mth,
then the current block is truly recovered image and bk−1 = 0.
When both Mth and L are sent, the extracting complexity is
reduced because bk is extracted if either Mk(Yk) or Mk(Ȳk)
is computed and compared with Mth. Only one global Mth

is needed to be sent when global MAD histogram method is
used. On the other hand, many Mths, one Mth per segment,
should be sent when overlapped histogram is allowed.

The proposed algorithm includes the segment concatenation
method. Needless to say, the capacity is maximized in this case
and the comparisons with existing algorithms are performed.

D. Experimental Results

The proposed algorithm preserves file size and hides data
in a JPEG bitstream like in [2], [12] and [6]. Those are
comparable with each other in terms of data hiding capacity.
For the purpose of fair comparison, the same test images are
chosen, except synthetic images, and the same JPEG quality
factors are used for JPEG compression using typical Huffman
Tables in [13]. The results are shown in Table III. Different
quality factor results in different number of VLCs and different
size of entropy coded portion. The changes due to quality
factor variation directly effect the embedding capacity. By
comparing to Kim’s method, the proposed algorithm always
results in better performance caused by improved smoothness
check functions and decision strategy. The results compared
with [12] show that the proposed one has higher data hiding
capacity on average as shown in Table IV. However, for some
images like Baboon and Splash, the result is somewhat poorer
than [12]. This is due to the use of image’s smoothness in
the process of data hiding. Note, however, that both methods
are compatible with each other, meaning that more data can
be hidden by using two methods simultaneously. Besides,
the proposed algorithm is fully standard compatible because
optimized Huffman Tables and VLC codewords can be used.
The use of optimum Huffman tables is known to give 2-6%
extra savings in file size.

TABLE III
DATA EMBEDDING CAPACITY (IN BITS) VS. JPEG QUALITY FACTORS.

Image Method 10 20 30 40 50 60 70 80 90

Baboon

[2] 792 2035 1071 1342 820 887 953 317 195
[12] 2398 1395 1047 1100 630 1081 1178 306 618
[6] 287 384 423 341 394 271 266 120 56

Proposed 502 921 979 1027 1015 627 804 201 286

Boat

[2] 476 350 457 355 439 514 231 270 528
[12] 975 596 394 541 587 645 513 792 942
[6] 248 293 217 259 348 399 357 247 80

Proposed 338 536 545 732 566 649 844 747 711

Bridge

[2] 719 554 469 583 683 244 283 161 188
[12] 1832 519 305 804 878 497 425 584 455
[6] 173 293 256 347 320 307 365 183 78

Proposed 372 654 610 733 920 1232 628 928 880

Elaine

[2] 111 130 139 200 249 79 92 146 339
[12] 347 270 445 398 465 291 408 535 848
[6] 181 328 365 344 330 394 272 236 79

Proposed 249 411 609 689 720 899 981 1336 1122

F16

[2] 545 400 310 367 401 298 259 210 222
[12] 751 780 980 624 787 873 526 549 318
[6] 171 256 215 255 217 248 293 147 84

Proposed 328 467 642 697 874 906 1022 1286 1337

Lena

[2] 263 197 235 259 317 94 99 86 152
[12] 552 310 480 261 359 152 248 320 416
[6] 201 300 228 272 314 258 311 140 141

Proposed 319 392 498 598 749 824 1040 940 776

Peppers

[2] 350 247 338 242 278 357 164 144 378
[12] 522 298 485 351 398 465 372 333 634
[6] 205 300 287 277 269 267 226 245 95

Proposed 309 451 500 604 703 815 988 740 120

Splash

[2] 284 369 261 296 378 547 383 359 296
[12] 545 316 765 842 893 1058 702 691 605
[6] 161 167 216 265 312 294 254 330 68

Proposed 161 292 435 426 503 492 893 927 1083

Tiffany

[2] 226 348 222 310 332 391 534 332 279
[12] 836 820 507 638 468 430 625 629 339
[6] 188 267 346 419 366 244 299 228 102

Proposed 265 402 416 504 588 688 601 611 931

TABLE IV
COMPARISON OF AVERAGE EMBEDDING CAPACITY (IN BITS) OF

ALGORITHMS

Image Qian Kim Proposed Improved Rate
Baboon 1083.70 282.44 706.88 -34.77

Boat 665.00 272.00 629.78 -5.30
Bridge 699.89 258.00 773.00 10.45
Elain 445.22 281.00 779.56 75.10
F16 687.67 209.55 839.89 22.14
Lena 344.22 240.56 681.78 98.07

Peppers 428.67 241.22 772.00 80.09
Splash 713.00 229.67 579.11 -18.78
Tiffany 588.00 273.22 556.22 -5.40

Total bits 5655.37 2287.66 6318.22 11.72

IV. CONCLUSION

Compressing compressed image technique is described and
analyzed in terms of a smoothness check function, segment
concatenation and data hiding capacity. The smoothness check
function is used to recognize if a recovered image is natural or
synthetic. It tells that more understanding on natural images
can enhance the overall performance. By introducing inter
MAD in addition to intra MAD, the smoothness is checked
with higher precision. Since the proposed method embeds
data into fixed length segments at regular interval, more data

can be hidden with shorter L. With segment concatenation
method, it is possible to get more information on smoothness
check. The proposed algorithm makes images re-compressed
independently on their formats and the same idea can be
applied to motion pictures and other multimedia formats.

REFERENCES

[1] A. M. Alattar, ”Reversible watermark using the difference expansion of
a generalized integer transform,”IEEE Trans. on Image Processing, vol.
13, no. 8, pp. 1147-1156, 2004.

[2] B. G. Mobasseri, R. J. Berger, M. P. Marcinak and Y. J. Naikraikar, ”Data
embedding in JPEG bitstream by code mapping,” IEEE Trans. Image
Processing, vol. 19, no.4, Apr. 2010.

[3] M. U. Celik, G. Sharma, A. M. Tekalp, and E. Saber, ”Lossless
generalized-lsb data embedding,” IEEE Trans. on Image Processing, vol.
14, pp. 253-266, 2005

[4] L. Kamstra and H. Heijmans, ”Reversible data embedding into images
using wavelet techniques and sorting,” IEEE Trans. on Image Processing,
vol. 14, no. 12, pp. 2082-2090, Dec. 2005.

[5] S. Kang, H. J. Hwang and H. J. Kim, ”Reversible watermarking using an
accurate predictor and sorter based on payload balancing,” ETRI Journal,
vol. 34 pp.410-420, Jun. 2012.

[6] H. J. Kim, Apparatus and method for image compression using lossless
data hiding scheme, Korea Patent Application No. 10-2013-0001285,
2013

[7] H. J. Kim, V. Sachnev, Y. Q. Shi, J. Nam, and H. G. Choo, ”A novel
difference expansion transform for reversible data hiding,” IEEE Trans.
on Information Forensics and Security, vol. 3, no. 3, pp. 456-465, 2008

[8] Z. Ni, Y. Q. Shi, N. Ansari, and W. Su, ”Reversible data hiding,” IEEE
Trans. on Circuits and Systems for Video Technology, vol. 16, no. 3, pp.
354-362, 2006.

[9] V. Sachnev, H. J. Kim, J. Nam, S. Suresh, and Y.-Q. Shi, ”Reversible
watermarking algorithm using sorting and prediction,” IEEE Trans. on
Circuits and Systems for Video Technology, 2009, 19, pp. 989-999

[10] D. M. Thodi and J. J. Rodriguez, ”Expansion embedding techniques for
reversible watermarking,” IEEE Trans. on Image Processing, vol. 16, no.
3, pp. 721-730, 2007.

[11] J. Tian, ”Reversible data embedding using a difference expansion,” IEEE
Trans. on Circuits and Systems for Video Technology, vol.13, no. 8, pp.
890-896, 2003.

[12] Z. Qian, X. Zhang, ”Lossless data hiding in JPEG bitstream,” Journal
of Systems and Software, vol.85, no. 2, pp. 309-313, Feb. 2012.

[13] Int. Telecommunication Union, CCITT Recommendation T.81, Informa-
tion Technology - Digital Compression and Coding of Continuou-stone
Still Images - Requirements and Guidelines 1992.

[14] J. Fridrich, M. Goljan, Q. Chen, and V. Pathak, ”Lossless data embed-
ding with file size preservation,” Proc. El SPIE, Security and Watermark-
ing of Multimedia Contents, San Jose, 2004, vol. 5306, pp. 354-365.

[15] H. Liu, F. Shao, and J. Huang, ”A MPEG-2 video watermarking
algorithm with compensation in bit stream,” Proc. DRMTICS, 2005, pp.
123-134.

