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Abstract—Stereo video has become the main-stream 3D video
format in recent years due to its simplicity in data representa-
tion and acquisition. Under stereo settings, the twin problems of
video super-resolution and high-resolution disparity estimation
are intertwined. In this paper, we present a novel 3D video
conversion system that converts down-sampled stereo video to
high-resolution stereo sequences with a Bayesian framework.
In addition, we estimate the finer-resolution disparity maps
with a two-step CRF model. Our super-resolution system can
also be incorporated into the video coding process, which
can significantly lower the data amount as well as preserving
high-quality details. Experimental results demonstrate that our
system can enhance image resolution in both stereo video and
disparity map. Objective evaluation of the proposed video
coding scheme combined with super-resolution at different
compression ratios also shows competitive performance of
proposed system for video compression.

Keywords-Stereo video super-resolution; diparity refinement;
video compression;

I. INTRODUCTION

3D video has become a popular trend in the entertainment
industry in recent years, especially 3D movies. Advanced 3D
display technologies allow users to experience realistic 3D
effects at home. More and more 3D display applications can
be found in the high-end electronic products, such as 3D
LCD/LED TVs, 3D cameras, 3D camcorders, 3D laptops,
3D mobile phones, and 3D games, etc. The revolution from
2D display to 3D display has started to change many aspects
of our daily life, including entertainment, communication,
photography, and medical science. Many investigators and
investors regard this frontier technology as great potential
market in the near future. The service of providing massive
3D video content for people to watch will play an important
role, and we need new technology to broadcast the 3D
content as well as to display 3D videos with satisfactory
quality so that users can enjoy the 3D services effortlessly.

On the other hand, multi-frame super resolution, namely
estimating fine-resolution frames from a coarse-resolution
sequence shown in Fig. 1, is one of the fundamental
problems in computer vision. With the rapid advancement
of display devices, such as HDTV or 4K2K-TV, super-
resolution technique plays an extremely vital role nowa-
days, helping convert plenty of low-resolution multimedia

content into high-resolution version. Moreover, following
the popularization of mobile devices, super resolution is
indispensable in building the bridge between display devices
and digital cameras in mobile phones.

However, although super-resolution has been extensively
studied for decades, applying super-resolution to real video
sequences still remains quite challenging. Most previous
works are sensitive to their assumed models of data and
noise, which limit their approaches from practical applica-
tion. In addition, for 3D stereo video, the sub-pixel regis-
tration information required for super-resolution is tightly
coupled to the 3D structure, which also increases the com-
plexity of the problem.

Therefore, a practical super-resolution system should take
3D structure into consideration and simultaneously estimate
optical flow, noise level and blur kernel along with re-
constructing the high-resolution frame. With the gradually
maturing technique in each of these problems, it is natural
to combine all these components into a single framework
without making oversimplified assumptions.

In this paper, we present a novel 3D video conversion
system that converts down-sampled stereo video into high-
resolution stereo video sequence. In addition, we estimate
the high-resolution disparity maps with finer details. The
system first employs a stereo matching algorithm to compute
the disparity for down-sampled stereo pairs. Then, a video
super-resolution approach using the Bayesian framework is
applied. The framework alternatively reconstructs the high-
resolution frames as well as estimates the optical flow, noise
level and the blurring kernel. Once the system estimates
the fine-resolution stereo video, it combines the disparity
maps computed in different resolution with proposed two-
step conditional random field model, and generates a new
disparity map which is more accurate in either depth value
or object boundary.

Furthermore, we also propose to integrate our super-
resolution system into the video coding process by encoding
down-sampled sequence along with several high-resolution
key-frames. Our system is exploited to achieve video coding
at different compression ratios by adjusting the number of
key-frames, and the objective analysis in PSNR and SSIM
shows that this combination of super-resolution with video



Figure 1. Stereo video super resolution: the upscaled results on the right are simulated by the proposed system.

coding can efficiently lower the bitrate but still preserve
delicate details in the video.

II. RELATED WORK

Video super-resolution has been extensively studied in the
computer vision, image processing and computer graphics
communities. The methods developed over the decades differ
in their formulations, underlining prior models and the prob-
lem settings. The most representative and simplest approach
is the interpolation-based methods, which attempt to predict
intermediate unknown pixels with linear interpolation filter,
such as the bilinear filter or bicubic filter. These interpo-
lation kernels are designed for spatially smoothing which
often conflicts with real-world image property that contains
singularities, such as edges and high-frequency textured
regions. Therefore, these interpolation-based methods suffer
from various edge-related visual artifacts including ringing,
aliasing, jaggy and blurry effects.

More sophisticated methods can be found in Park et al.
[1], which provided a comprehensive technical survey of
super-resolution techniques as well as their respective limi-
tation and evaluation. Milanfar [5] introduced numerous ap-
proaches that have been successfully used in super-resolution
in recent years. One of the main-stream approaches in
multi-frames super resolution is the reconstruction-based
method, which is based on the same concept employed in the
proposed system. Tipping et al. [2] showed that estimating
the motion between images with Bayesian approach instead
of cross-validation can be more adaptive to the real-world
images, which are under unknown point spread function
blurring. Sun et al. [3] assumed that high-resolution images
hold approximately the same total variance in gradient do-
main with low-resolution one, and reconstruct the result with
modified gradient prior together with an external dataset. Liu
et al. [4] proposed to concurrently estimate the optical flow,
noise level and blur kernel in addition to reconstruct the

target high-resolution frame, which suffers from the heavy
computational load in calculating the dense flow between
video frames. In spite of the satisfactory results by using
these reconstruction-based methods, the registration infor-
mation required in super resolution often yields undesirable
artifacts due to errors in motion estimation.

Further, Bhavsar et al. [6] intended to enhance the
resolution of stereo images in both color value and dis-
parity with the multiple stereo inputs. They adopted the
reconstruction-based idea and followed the conventional
image capturing formation to formulate the stereo-image
super-resolution problem. Although their disparity results are
quite fascinating, their high-resolution color images suffer
from image blurring and unsatisfactory artifacts for the sake
of oversimplified model in noise level and blur kernel.
Zhang et al. [7] proposed a closed-loop super-resolution
method for multi-view stereo consisting of numerous low-
resolution images and a single high-resolution image. Their
method first employs a stereo matching technique and fuses
the multiple disparities into a unique depth map. Then, a
super-resolve approach that predicts the target-view image
under the guidance of the depth information is presented.
Nonetheless their results are satisfactory, the necessary high-
resolution input image is uneasy to obtain in practice, thus
limiting this approach from real-world application.

III. STEREO VIDEO SUPER-RESOLUTION WITH
BAYESIAN FRAMEWORK

Given a low-resolution stereo sequence {JL
t , J

R
t }, cap-

tured from two-fixed view named left and right, our goal
is to predict the high-resolution stereo video {ILt , IRt }. For
simplicity, we take only the left view as our modeling object
despite the other view can also be formulated in the similar
manner without excessive modification. In consideration of
computational complexity, our approach estimates the high-
resolution frame ILt only with the limited adjacency frames



Figure 2. This is the graphical model of our stereo video super resolution
problem. The observed coarse resolution images in left view go through
motion, blur and noise processes to become JL while JR is passing
one-more warped process by the corresponding disparity value.

{
JL
t−N , . . . , J

L
t , . . . , JL

t+N

}
and a single opposite-view

frame JR
t located at time t. Again, we omit the subscript t

from now for easy of exposition. As mentioned in section I,
in order to better approximate the image formation process,
our approach not only estimates the desired high-resolution
video sequence but also models the motion, noise level and
blur kernel.

We represent the motion between frames belonging to
same view with optical flow {ωL

i }, which indicates the
dense flow from target frame to the ith adjacency frame,
holding the vital registration information required in super-
resolution. Besides, noise level in our framework is depicted
as an uncertain variable owing to the outlier generated in
flow estimation, which was also estimated with Bayesian
approach and written as

{
θLi , θ

R
}

for two different sources
of reference frame, respectively. Without loss of generality,
our system also estimates the blur kernel KL as well, which
is related to the point spread function in the camera capture
process. The graphical model illustrating the stereo video
super-resolution problem can be found in Fig. 2, where S
stands for the down-sampled operator that uses the average
operator, and DL is the estimated disparity map.

IV. STEREO VIDEO SUPER-RESOLUTION VIDEO
SUPER-RESOLUTION WITH BAYESAIN FRAMEWORK

First, our approach employs a stereo matching method to
calculate the disparity DL from left view to right view. To

compromise the tradeoff between performance and execution
time, our system applies Yang’s [8] stereo matching method
to generate the required disparity map for low-resolution
stereo pair at time t.

After obtaining an initial disparity map, the stereo video
super-resolution problem can formulated in the Bayesian
MAP framework as follows:

{
IL

∗
,
{
ωL
i

∗}
,KL∗

,
{
θLi

∗}
, θR

∗}
=

argmax p
(
IL,

{
ωL
i

}
,KL, {θLi }, θR

∣∣ {JL
i

}
, JR, DL)

(1)

By the well-known Bayesian theorem, the posterior prob-
ability in eq. (1) can be decomposed into a series of
multiplication consists of likelihood and prior, which is given
in eq. (2).

p
(
IL,

{
ωL
i

}
,KL, {θLi }, θR

∣∣ {JL
i

}
, JR, DL) ∝

p
(
IL

)
p
(
KL

)
p(θR)

∏
i

p
(
ωL
i

)∏
i

p
(
θLi

)
·p
(
JL

∣∣ IL,KL, θL
)
p(JR|IL,KL, DL, θR)

·
∏
i ̸=0

p
(
JL
i

∣∣ IL,KL, ωL
i , θ

L
i

) (2)

Motivated by the success of Liu et al. [4] in single-view
video super-resolution, we solve our problem in the similar
manner, which divides the problem in eq. (2) into several
sub-problems and solves each of them alternatively with the
IRLS optimization technique.

A. High-resolution image estimation

Here we are going to show that with the initial estima-
tion of optical flow, noise level and blur kernel, eq. (2)
can be simplified to have only one unknown variable, the
high-resolution image. Some previous works [9][10] have
demonstrated the advantageous of sparse prior in preserving
the singularities, such as edges or high-frequency textured
regions, in natural images. Therefore, our system also adopts
the sparse prior to regularize our output images. Objective
function for high-resolution image can be found in eq.
(3), which follows the formulation in the afore-mentioned
graphical model in Fig. 2, where S, Fflow, K stand for the
matrix of down-sample process, motions from either optical
flow or different viewpoint and the matrix for convolution
with a point spread function , respectively.

IL
∗
= argmin θL

∥∥SKLIL − JL
∥∥+ η

∥∥∇IL∥∥
+θR

∥∥FDLSKLIL − JR
∥∥+

∑
i ̸=0

θLi

∥∥∥SKLFωL
i
IL − JL

i

∥∥∥
(3)

To solve eq. (3), we rewrite the equation to contain only
a single term in the objective function and approximate the



Manhattan norm with IRLS, which is shown in eq. (4). The
symbol G∇ represents the derivative operator.

IL
∗
= argmin


θL

θR

η
θLi


T ∥∥∥∥∥∥∥∥


JL

JR

⇀
0
JL
i

−


SKL

FDLSKL

G∇
SKLFωL

i

 IL
∥∥∥∥∥∥∥∥ ,

for i ∈ [−N, N] , i ̸= 0
(4)

In the process to find the estimate of IL, our system
automatically eliminates the flow information if it is not
adequately reliable. Namely, we evaluate the reliability of
flow ωi(x) in each position x, where ωi represents the
motion from target frame to reference frame. First, we
generate the inverse flow ω̃i(x), which describes the motion
from reference frame back to target frame. Next, a pixel x
in target frame is warped to the corresponding position x’ in
reference frame with the flow ωi(x) information. Then, we
warp x′ back to target frame with previous calculated inverse
flowω̃i(x

′) to get x′′. A simple threshold examination is
utilized here to inspect the reliability of flow ωi(x) and the
threshold value is adjusted by the upscaling factor in super-
resolution, which is usually set to 2. In short, in eq. (4)
we only take the reliable flow information to generate our
desired images.

B. Noise level estimation

In our system, we take the Gamma distribution in eq. (5)
as the prior for the noise level,

p (θi;α, β)=
βα

Γ(α)
θα−1
i e−θiβ (5)

where θi has a close form solution derived by Liu et al. [4]
under the determined estimation of high-resolution images,
optical flow and blur kernel. Equation (6) and (7) show the
solution for two different sources of reference frames, JL

i

and JR
0 , respectively.

θLi
∗
=
α+Nq − 1

β +Nqx
L

, xL =
1

Nq

Nq∑
q=1

∣∣∣(SKLFωL
i
IL − JL

i

)
(q)

∣∣∣ (6)

θR
∗
=
α+Nq − 1

β +Nqx
R

, xR =
1

Nq

Nq∑
q=1

∣∣(FDLSKLIL − JR
)
(q)

∣∣ (7)

In the above two equations, symbol q represents pixel
index while Nq stands for the total number of pixels.

C. Motion estimation

To avoid estimating the optical flow across two different
resolutions, we scale up the reference frames with the inverse
matrix of S and KL to get j̃Li that has the same resolution
as that of high-resolution image IL. Here, we apply Liu’s
method [11] to estimate the flow between J̃L

i and IL for
our super-resolution framework.

D. Blur kernel estimation

We assume that blur kernel KL can be separated into
two one-dimensional filters KL

x and KL
y , along with x-

directional and y-directional, respectively. The problem of
finding the blur kernel KL can be replaced by solving the
problem of estimating KL

x and KL
y instead. Once more,

accompanying with the fixed estimation of high-resolution
images IL, low-resolution frame JL and its noise level θL,
we derivate the objective function for estimating the blur
kernel by incorporating the sparse prior constraint in eq.
(8), which can be solved with a similar way for eq. (4).
On this spot, we only show the equation for x-direction
blur kernel for representative. In eq. (8), AL is the ma-
trix composited by IL, serving as the convolution operator
such that IL

⊗
KL = ALKL, and ML

y stands for the
convolution operator between KL

x and KL
y , which means

ML
y K

L
x = KL

x

⊗
K

L

y .

KL
x

∗
= argmin θL0

∥∥ALML
y K

L
x − JL

0

∥∥+ ξ
∥∥∇KL

x

∥∥ (8)

The initial value of noise level is computed by the
difference of respective low-resolution pairs while the high-
resolution optical flow is initially determined with upscaled
version of video frames, which uses the linear interpo-
lation filter. Further, the original blur kernel is assumed
to be standard Gaussain distribution. Thus, we deal with
these sub-problems iteratively, which has only four hyper
parameters η, α, β and ξ.

V. DISPARITY REFINEMENT WITH TWO-STEP CRF
MODEL

Besides enhancing the resolution of color image, our
framework also integrates the method for improving the
depth quality as well. Our system partitions the super-
resolution processing into finer steps in order to collect
more estimated images across different resolutions. For
example, we divide the procedure of four-time enlargement
into twice two-time upscaling tasks to estimate the middle-
resolution images. Via this, for one stereo color image pair,
we have three different disparity maps scattering from three
resolutions: coarse, middle and fine, which are labeled as
level three, two and one, respectively.

The strategy of disparity refinement combines two-step
CRF models where the former modifies the disparity values
with tree-structured CRF, using hierarchical information



Figure 3. Tree-structured conditional random field. For each node which is a segment in level l, we build the tree by connecting the edge to only single
node in level l + 1 which has maximal overlapping pixels. With such simple tree-structured, the disparity refinement problem can be solved by message
passing.

cross levels while the latter adjusts the object boundary with
a fully connected CRF based on the results of step-one.

A. Step one: Tree-structured conditional random field

Motivated by the success of Reynolds et al. [12] in
figure-ground segmentation, we first attempt to enhance the
disparity maps estimated from Yang [8] with tree-structured
conditional random field, which are depicted in Fig. 3. Given
three disparities scattered in earlier-stated three different
levels, our goal is to generate a refined single disparity map
by combining all information of neighbors and levels.

We begin with upscaling each disparity map to the highest
resolution, the resolution of desired high-resolution images,
and apply the over-segmentation technique by Liu et al. [13]
to each disparity map to obtain segments, which correspond
to nodes in our graphical model in step one. The ith segment
in level l is displayed as sli and the mean color of all pixels
in sli is depicted as ml

i. For better reflecting the information
in different disparities, we assign distinct segment numbers
for different resolutions, which also follow fine-to-coarse
manner for level 1, 2 and 3. Then, we build a tree with
node i at level l connecting to a single node j at level l+1,
where j denote the node for the region with maximal pixel
overlap with i, described in eq. (9).

j∗ = argmax

∣∣V l
i ∩ V l+1

j

∣∣∣∣V l
i

∣∣ (9)

Subsequently, we construct a forest composed of trees
whose amount is the number of segments in the coarsest
level.

To become a standard CRF model, we discretize the
value of our disparity maps into 80 labels, written
as {y1, y2, . . . , y80}, estimating the maximal possibility by
message passing in eq. (10).

p
(
y
∣∣ ml

i

)
=

1

Z(ml
i)

∏
<ij>

ψij(yi, yj)
∏
i

ϕi(yi) (10)

As general, we define node potential in eq. (11) with
truncated L1-distance, which relates to the distance between
labels and ml

i and the edge potential in eq. (12), where
λij = e−χ2

ij and χij measures the similarity between
segments using Bhattacharyya distance. In eq. (12), λij ≈ 1
in the similar segments, while λij ≈ 0 in the dissimilar
pairs.

ϕi (yi)=e−δmin(|ml
i−yi|, 10) (11)

ψij =

{
eλij ·γ , if i = j

e−λij ·γ , otherwise
(12)

Finally, we solve eq. (10) with belief propagation with the
public software [16], which is fast and exact inference due
to the simple tree structure of the proposed method, and we
assigns the segment in finest disparity level with the label of
maximal possibility, which comes out to be the initial map
of the next step.

B. Step two: Fully connected conditional random field

In multi-class image segmentation problem, Krhenbhl et
al. [14] shows that the fully connected CRF accomplishes
to model the object structure better than grid CRF in most
cases, and they proposed a highly efficient inference algo-
rithm for fully connected CRF. Motivated by the admirable
results they achieved in segmentation, we resolve our prob-
lem that refines the disparity boundary of the preceding step
in a similar manner by quantizing our disparity maps to 40
levels, and we can obtain an inference result by using the
algorithm by Krhenbhl et al. [14] in constant time.



VI. SUPER-RESOLUTION INVOLVED CODING SCHEME

In this paper, we also demonstrate the efficiency to
integrate super-resolution framework into coding processing.
We achieve this by encoding the down-sampled stereo video
with several original-resolution key-frame {IKey} whose
amount controls the ratio of compression. With the addition
information IKey, the Bayesian MAP formulation can be
modified to eq. (13).

{
IL

∗
,Ω∗,KL∗

,Θ∗
}
=

argmax p
(
IL,Ω,KL,Θ

∣∣ {JL
i

}
, JR, DL, IKey)

,Ω =
{
ωKey,

{
ωL
i

}}
,Θ =

{
θKey,

{
θLi

}
, θR

} (13)

which can be modified into eq. (14) with Bayesian theo-
rem.

p
(
IL,Ω,KL,Θ

∣∣ {JL
i

}
, JR, IKey)

∝ p
(
IL

)
p
(
KL

) ∏
ω∈Ω

p (ω)
∏
θ∈Θ

p (θ)

p
(
JL

∣∣ IL,KL, θL
)
p
(
JR

∣∣ IL,KL, DL, θR
)

p
(
IKey

∣∣ IL, ωKey, θKey
)∏
i ̸=0

p(JL
i |IL,KL, ωL

i , θ
L
i )

,Ω =
{
ωKey,

{
ωL
i

}}
,Θ =

{
θKey,

{
θLi

}
, θR

}
(14)

We solve eq. (14) with the similar scheme used in section
‡V by dividing this problem into several sub-problems and
we only show the final objective function here. First, the
equation dealing with high-resolution images can be changed
into eq. (15), which takes the message of key-frame into
consideration.

IL
∗
= argmin θL

∥∥SKLIL − JL
∥∥+ θR

∥∥FDLSKLIL − JR
∥∥

+θKey
∥∥FωKeyIL − IKey

∥∥+ η
∥∥∇IL∥∥

+
∑
i ̸=0

θLi

∥∥∥SKLFωL
i
IL − JL

i

∥∥∥
(15)

The noise level of key-frame can be calculated with close
form solution again in eq. (16) under the Gamma distribution
prior of θKey .

θKey∗ =
α+Nq − 1

β +Nqx
Key

, xKey =
1

Nq

Nq∑
q=1

∣∣(FωKeyIL − IKey)(q)
∣∣ (16)

The high-resolution optical flow can be computed directly
by estimating the fine-resolution image pair IL and key-
frame IKey without applying linear interpolation operator
for upscaling, which often lower the accuracy of optical flow.
Therefore, with slight adjustment, our super-resolution can

be incorporated into the video compression process, which
is efficient in lowering the transmission bitrate together with
improvement in video quality.

VII. EXPERIMENTAL RESULTS

We conduct several experiments to evaluate the efficiency
of the proposed method described in section III, IV and V,
respectively.

A. Stereo video super-resolution

We use the 3D video dataset Bookarrival downloaded
from the website http://sp.cs.tut.fi/mobile3dtv/stereo-video/
for experiments. In average, upscaling a single frame for four
times from size (256,192) to (1024, 968) with four forward
adjacency frames and four backward adjacency frames takes
about half hour on the computer equipped with i5-2500 CPU
@ 3.30GHz and 16.0GB memory. Moreover, we empirically
set our parameter η, α, β and ξ mentioned in section ‡V
to be 0.01, 0.1, 0.1 and 0.01, respectively, across all the
experiments.

Because most super-resolution approaches did not release
executable code for reproducing their results, we only com-
pare to those methods with computer programs for fair
comparison on our own stereo datasets. We choose the
method of Shan et al. [15], which is one of the most
competitive approaches recently as well as the classical
bicubic linear interpolation approach.

Fig. 4 shows the result of two selected frames in Bookar-
rival sequence which totally has 100 frames, and the average
PSNR and SSIM values of all sequence are placed in Table I.
Without any doubt, the proposed system can generate better
results than other approaches, which support by the highest
values in both PSNR and SSIM. For better comparison, the
zoom-in version of Fig. 4 can be found in Fig. 5. Limited by
the property of interpolation, bicubic interpolation tends to
provide smooth results which reflect to their SSIM scores.
On the other hand, although the better contrast reached by
Shan et al. [15], the over-emphasized edge make it less
consistent to the ground-truth appearance, such as the man’s
shirt in the first column of Fig. 5 is obviously over-enhanced.
Furthermore, their results sometimes are accompanied with
several undesired artifact, which can clearly be seen in the
outline of the sticker written “FFI” appeared in the second
column of Fig. 5.

B. Disparity refinement

As mentioned in section IV, we take the super-resolution
task in progressive manner by dividing the four-time enlarge-
ment into twice double-size upscaling tasks to include the
middle level estimation. In Fig. 6, the above two columns are
the disparity generated by Yang [8] from different resolution
stereo pairs in two selected frames: fine, middle and coarse
from left to right sequentially. The disadvantage of low-
resolution disparity is the coarse and imprecise boundary



Figure 4. This is the comparison of our video super-resolution framework in four times enlargement with Bicubic and Shan et al. [15] Referring to
Ground truth, the results generated by Bicubic tends to be blurring while the contrast in the estimated images of Shan et al. is so heavy that is slightly
inconsistent to the original images. This compared figure is better seen in screen.

Figure 5. This is the zoom in version of Fig. 4, where we can find that the results of Shan et al. [15] suffer from the ringing artifacts, such as the
boundary of the man in first column and the outline of the green sticker in the second column.

of object, while the drawback in high-resolution disparity
is their increasing matching error due to the limitation of
stereo-matching method.

The outcome of our first step in two-step disparity refine-
ment is demonstrated in Fig. 6 (d), which strives to correct
the value referring to all the disparities in levels with the
tree-structured CRF. We state several apparent errors in the
initial disparity map in Fig. 6 (a), (b) and (c), computed
by Yang with red rectangle. After applying the step one

refinement algorithm, the disparity values become more
faithful that those red rectangle regions are all corrected.
Then, we put the results in (d) to the fully connected
conditional random field model introduced in section IV
for adjusting the boundary of subject and then the results
depicted in Fig. 6(e), which are successful in describing the
outline of an object. Fig. 6 (f) depicts the corresponding
color images computed by our two-step CRF model in
measuring the similarity of either segments or pixels.



Figure 6. We shows the disparity refinement process of the two selected frames same in Fig. 4. From (a) to (c) are the disparities in level 1, 2 and 3
which are from coarse, middle to fine resolution respectively. The results (d) shows the step one estimation, namely tree-structured CRF, which targets for
correcting the disparity error where stating as red rectangle. Our step 2 results of full connected CRF shown in (e), attempting to refine the boundary of
objects stating with green rectangle. Then, (f) shows the corresponding color images used in both CRF model for measuring the similarity between either
segments or pixels.

C. Results for super-resolution involved coding process

Finally, we test our super-resolution involved coding sys-
tem with different amount of key-frame for distinct compres-
sion ratio. Our coding process encodes two sequences, one
is down-sampled video, which we use either factor 0.5 or
factor 0.25 for experiments, while the other is the video con-

taining original resolution frames whose total frame numbers
ranging from 0 to 50 in step 5 for our 100 frames dataset.
We use MATLAB built-in MPEG-4 compression method
with frame rate 30 fps and quality 100 to compress both
sequences. Fig. 7 shows the objective score of the super-
resolution involved coding process with PSNR and SSIM.



Figure 7. We test our super-resolution involved coding system with two different scale, 2X and 4X whose PSNR and SSIM value is shown here. Above
figure represents the PSNR and SSIM value of scale two while the below represents the score of scale four. Both experiments prove that proposed method
can lower lots bitrate but preserve certain quality values.

The horizontal direction indicates the different numbers of
key-frames and the corresponding bit-rates after MPEG-4
compression, while the vertical shows the analysis values.

In fig. 7, the rightest point means the original classical
MPEG-4 compression method, which has been shown to
be quite successful in video coding. However, the proposed
coding scheme can lower quarter bit-rate in scale of 0.5 and
0.25 with the PSNR value as high as 43.3342 and 41.5704
respectively.

Furthermore, in the scale 0.5 down-sampled stereo video,
for the extremely case which contains 20 key-frames, the
proposed method can lower the bit-rate up to 6.8 times
with the PSNR value 40.4925. On the other hands, for the
scale 0.25 down-sampled video, the extremely case which
contains 10 key-frame can lower the bit-rate up to 30 times
with the PSNR value 37.9005. This experiment shows that
the proposed super-resolution involved coding scheme can
dramatically lower the bitrate up to 30 times without losing
too much image quality.

VIII. CONCLUSION

In this paper, we proposed a Bayesian framework to
solve the stereo video super-resolution problem together
with estimating the optical flow, noise level and blur kernel
for improving the stereo video quality and make it suitable
for real-world sequences. After obtaining high-resolution
stereo video, we apply our two-step CRF model to refine
a disparity which can better describe the 3D scene in both

depth value and object boundary. Moreover, the most im-
portant contribution this paper achieved is that we show that
the super-resolution involved coding process together with
standard MPEG-4 compression approach can dramatically
minimize the transmission bitrate without losing too much
image quality.

Although the proposed method can provide much better
compression ratio, our system has lots of zoom for im-
provement in order to make it into practical use. Our future
work will focus on the speed-up aspect by using the popular
GPGPU platform as well as the optimization of our system
to be more reliable from noise and outlier generated in
optical flow and stereo matching.
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