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Abstract—In this paper, we present a new algorithm for sparse
adaptive filtering, drawing from the ideas of a greedy compressed
sensing recovery technique called the iterative hard thresholding
(IHT) and the concepts of affine projection. While usage of
affine projection makes it robust against colored input, the
use of IHT provides a remarkable improvement in convergence
speed over the existing sparse adaptive algorithms. Further, the
gains in performance are achieved with very little increase in
computational complexity.
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I. INTRODUCTION

Compressed sensing or compressive sampling (CS)[1] is
a powerful technique to represent signals at a sub-Nyquist
sampling rate while retaining the capacity of perfect (or near
perfect) reconstruction of the signal, provided the signal is
known to be sparse in some domain. In last few years, the
CS technique has attracted considerable attention from across
a wide array of fields like applied mathematics, statistics, and
engineering, including signal processing areas like MR imag-
ing, speech processing, analog to digital conversion etc. The
framework of CS essentially leads to finding sparse solution
of a set of under-determined linear equations. This makes it
a potential tool for estimation of sparse signals and systems
which are often encountered in many important practical
applications like network and acoustic echo cancellers [2]-[4]
where the acoustic echo path largely remains inactive due to
bulk delay, HDTV where clusters of dominant echoes arrive
after long periods of silence [5], wireless multipath channels
which, on most of the occasions, have only a few clusters of
significant paths [6], and acoustic channels in shallow under-
water communication where the various multipath components
caused by reflections off the sea surface and sea bed have long
intermediate delays [7].
A potential challenge in the usage of the CS technique

for sparse system identification, however, comes from the
fact that the CS method is essentially an offline and batch-
based procedure, while the algorithm for identifying the
system needs to be adaptive and thus online, as the system
parameters including its sparsity level usually vary with time.
Last few years have, however, seen several efforts to combat
this challenge and several sparse adaptive filters based on
the CS recovery concepts have been proposed. In this paper,
we present a new algorithm for sparse system identification,

drawing from the concepts of a recently proposed greedy
CS recovery technique called the Iterative Hard Thresholding
(IHT) algorithm [10]. A new sparse adaptive filter is presented
towards this by combining the IHT concepts with the ideas of
affine projection [11]. While usage of affine projection makes
it robust against colored input, the use of IHT provides a re-
markable improvement in convergence speed over the existing,
popular sparse adaptive filters like the PNLMS [26] algorithm.
Further, the above gains in performance are achieved with very
little increase in computational complexity.

II. BRIEF OVERVIEW OF COMPRESSED SENSING AND THE
IHT ALGORITHM

Let a real valued, bandlimited signal be sampled following
Nyquist sampling rate condition and over a finite obser-
vation interval, generating the N × 1 signal vector u =
(u1, u2, · · · , uN)T . The vector u is known to be sparse in
some transform domain. More specifically, if Ψ be the N×N
transform matrix (usually unitary) and x ∈ R

N be the
transform coefficient vector, i.e., u = Ψx, then x is known a
priori to be K sparse, meaning a maximum of K no of terms
in x can be non-zero. According to the CS theory, it is then
possible to replace the N samples ui, i = 1, 2, · · · , N by a
set of M samples yj , j = 1, 2, · · · ,M , M < N , linearly
related to ui’s, while retaining the capacity to reconstruct
u correctly. Defining y = [y1, y2, · · · , yM ]T and a M × N

sensing matrix A, this implies y = Au = Φx, where
Φ = AΨ. Under the K-sparsity assumption, as per the CS
theory, x can be reconstructed by solving the following l0
minimization problem

min
x∈RN

||x||0 subject to y = Φx. (1)

[Note that uniqueness of the K-sparse solution requires that
every 2K columns of Φ should be linearly independent.]
The above l0 minimization problem provides the sparsest
solution for x. However, the l0 minimization problem is a
non-convex problem and is NP-hard. In CS, this difficulty
is, however, overcome by replacing the l0 norm in (1) by
l1 norm and imposing certain “Restricted Isometry Property
(RIP)” condition of appropriate order on Φ. A matrix Φ is
said to satisfy the RIP of order K if there exists a “Restricted
Isometry Constant” δK ∈ (0, 1) so that

(1− δK) ||x||
2
2 � ||Φx||

2
2 � (1 + δK) ||x||

2
2 (2)



for all K-sparse x. The constant δK is taken as the smallest
number from (0, 1) for which the RIP is satisfied. It is easy
to see that if Φ satisfies RIP of order K , then it also satisfies
RIP for any order L where L < K and that δK ≥ δL. Simple
choice of a random matrix for Φ can make it satisfy the RIP
with high probability.
Given the underdetermined system y = Φx with x given to

beK-sparse andΦ satisfying RIP of orderK , several methods
exist for the recovery of x. These include convex relaxation
techniques like the basis pursuit (BP) [12], the basis pursuit
de-noising (BPDN) [13] and the LASSO [14] on one hand and
greedy methods like the orthogonal matching pursuit (OMP)
[15], the compressive sampling matching pursuit (CoSaMP)
[16], the subspace pursuit (SP) [17] etc. on the other. Of
these, the greedy methods have a special relevance to sparse
adaptive filtering. This approach recovers the K-sparse signal
by iteratively constructing the support set of the sparse signal
(index of non-zero elements in the sparse vector). At each
iteration, it updates its support set by appending the index of
one or more columns (called atoms) of the matrix Φ (often
called dictionary) by some greedy principles based on the
correlation between current residual of observation vector and
the atoms.
The iterative hard thresholding (IHT) algorithm [8]-[10] is

a newly proposed greedy type algorithm which uses gradient
descent followed by a hard thresholding as given below

x(n+ 1) = HK

�
x(n) + µΦT (y −Φx(n))

�
(3)

where x(n) is the n-th iterate of x, µ is the step size of the
gradient descent and HK is a hard thresholding operator that
sets all but theK largest (in magnitude) elements in a vector to
zero. The IHT algorithm provides guarantees of near optimal
recovery under the following constraint on the RIP parameter
: δ3K < 1√

32
≈ 0.177.

III. OVERVIEW OF SPARSE ADAPTIVE ALGORITHMS
BASED ON COMPRESSED SENSING

The CS method has influenced several researchers in recent
past to develop adaptive filters for identifying sparse systems.
In [18], Chen et al, motivated by LASSO, introduced two
different sparsity constraints (the l1 norm and the log-sum
penalty function) into the convex quadratic cost function of
the LMS algorithm, resulting in two sparsity aware LMS
algorithms, namely, the zero attracting LMS (ZA-LMS) and
the reweighted zero attracting LMS (RZA-LMS) algorithms.
It is shown in [18] that both the ZA-LMS and RZA-LMS
algorithms outperform the standard LMS w.r.t both transient
and steady state performance for sparse systems.
Separately, the LASSO has influenced the development of

several RLS based sparse adaptive filters as well. In [19], a
l1 norm penalty similar to [18] is introduced into the cost
function of the standard RLS algorithm, which is then mini-
mized by an expectation maximization (EM) type algorithm.
In [20]-[21], Angelosante et al developed an algorithm for
recursively generating weighted LASSO estimates using a
system of normal equations or by using iterative subgradient
methods. Separately, instead of using the l1 norm penalty in

the cost function (popularly called “l1 norm regularization”),
an alternate approach based on projection on appropriately
constructed closed convex sets and certain weighted l1 balls
at each index of time was presented in [22], which is reported
to have better performance than the above stated, LASSO
inspired RLS algorithms, both in terms of transient conver-
gence speed and steady state EMSE. In [23], a mixed norm
l1,∞ regularizer has been adopted in the recursive setting of
RLS algorithm to promote group sparsity for on-line identifi-
cation of group sparse system. Greedy RLS (GRLS)[24] is a
recently proposed RLS based sparse adaptive algorithm which
is derived from the orthogonal least squares batch algorithm,
providing better performance for sparse system while requiring
less complexity than the full RLS algorithm.
As regards to the MP, [25] proposed the so-called

“Sparse Adaptive Orthogonal Matching Pursuit (SpAdOMP)”
algorithm, which converts the greedy batch algorithms of
[16] and [17] into equivalent online procedures, requiring
linear complexity. The steady state MSE of the proposed
SpAdOMP algorithm is also evaluated analytically in [25].

IV. PROPOSED ALGORITHM

We consider an N-tap sparse system, with impulse re-
sponse given as wopt = [wopt,1 wopt,2 · · ·wopt,N ]T , which is
adaptively identified using a zero-mean white input sequence
u(n) with variance σ2u and a desired response signal d(n) =
uT (n)wopt+v(n) where u(n) = [u(n) u(n−1) · · ·u(n−N+
1)]T and v(n) is a zero-mean, observation noise with variance
σ2v , independent with u(m) for all n, m. The adaptation
process updates a N×1 filter coefficient vectorw(n). Defining
the filter output error at index m, n−L+1 ≤ m ≤ n, induced
by w(n), as e

w(n)(m) = d(m)−uT (m)w(n), we consider a
sliding window based cost function,

J
w(n)(n) =

L−1�

τ=0

e2
w(n)(n− τ) ≡ ||dn −Unw(n)||22 , (4)

where dn = [d(n) d(n − 1) · · · d(n − L + 1)]T and Un =
[u(n) u(n − 1) · · ·u(n − L + 1)]T . The filter weight vector
w(n) at index n is updated to an intermediate vector w�(n+
1) following a gradient descent search on J

w(n)(n) as given
below :

w�(n+ 1) = w(n) − ρ
∂

∂w(n)
(J

w(n)(n))

= w(n) + ρUT
n (dn −Unw(n)) (5)

where ρ is chosen such that norm of the a posteriori error
vectror for the L indices : n, n−1, · · · , n−L+1 is minimized
i.e.,

ρ = argminρ ||dn −Unw
�(n+ 1)||

2
2 (6)

Now, this cost function may be simplified as

Jρ = ||dn −Unw
�(n+ 1)||

2
2

=
�
�
�
�(dn −Unw(n)) − ρUnU

T
n (dn −Unw(n))

�
�
�
�2
2

= ||(dn −Unw(n))||
2
2 − 2ρ

�
�
�
�UT

n (dn −Unw(n))
�
�
�
�2
2

+ ρ2
�
�
�
�UnU

T
n (dn −Unw(n))

�
�
�
�2
2

(7)



Therefore, solving
∂Jρ

∂ρ
= 0 we find

ρ =

�
�
�
�UT

n (dn −Unw(n))
�
�
�
�2
2

||UnUT
n (dn −Unw(n))||

2
2

(8)

For smooth update, we introduce a small positive step-size
µ(0 < µ � 1), leading to

w�(n+ 1) = w(n) + µρUT
n (dn −Unw(n)). (9)

Next we construct the active support set ΛK
n of w�(n + 1)

by selecting the support of K largest (in magnitude) elements
in w�(n+ 1). The final update w(n+ 1) is then obtained by
applying a hard thresholding on w�(n+1), whereby elements
of w�(n + 1) that fall within the ambit of ΛK

n are retained
while others are hardlimited to zero. As the active support set
gets refined over iteration, the hard thresholding progressively
reduces the accumulated gradient noise due to the inactive
taps. The steps of the proposed algorithm are given in TABLE
I.

TABLE I

Algorithm 1: Hard Thresholding based Adaptive Filtering (HTAF)
Algorithm

Input: u(n), d(n), N (length of the adaptive filter), L (width of
the sliding window) and K (the sparsity level).
Initialization: Estimated filter weight w(0) = 0 and the iteration

count n = 0
Procedure:
1) Desired data vector, regressors vector and corresponding

sensing matrix:
dn = [d(n) d(n− 1) · · · d(n − L+ 1)]T ,
u(n) = [u(n) u(n− 1) · · · u(n−N + 1)]T and
Un = [u(n) u(n− 1) · · ·u(n− L+ 1)]T .

2) Gradient Descent Directional Update:

w�(n+ 1) = w(n) + µ
||UT

n (dn−Unw(n))||2
2

||UnUT
n (dn−Unw(n))||2

2

×

UT
n (dn −Unw(n))

3) Active Support Set:
ΛK
n =Support of K largest (in magnitude) elements in w�(n+ 1)

4) Hard Thresholding:
w(n+ 1) = HK (w�(n+ 1)) i.e.
w(n+ 1){1,...,N}−ΛK

n
= 0 and

w(n+ 1)ΛK
n

= w�(n+ 1)ΛK
n

5) Increment n, and return to Step 1.
Output:

The estimated filter weight vector w(n+ 1).
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Fig. 1. Impulse response of a sparse system.

V. SIMULATION STUDIES AND PERFORMANCE ANALYSIS

The proposed hard thresholding based adaptive filter
(HTAF) was simulated for identifying a sparse system of 110
taps with the number of active taps given by Q = 4. The
corresponding system impulse response is shown in Fig. 1.
For this, both the input u(n) and the observation noise v(n)
were taken to be zero mean, white processes with σ2u = 1 and
σ2v = 0.001, L was taken as 15 and an initial guess of the
system sparsity was taken as K = 5. Also, the performance
metric chosen to evaluate the proposed algorithm was the mean
square deviation (MSD) of the coefficient vector, defined by

η(n) = E(||wopt −w(n)||22). (10)

Further, for comparison purposes, we considered some of
the well known sparse adaptive filtering algorithms like the
PNLMS [26], the MPNLMS [27] and a related popular
adaptive filter like the NLMS [28] algorithms. Fig. 2 shows
the learning curve (MSD in dB vs n) of the proposed al-
gorithm vis-a-vis similar learning curves for the above three
algorithms, obtained by averaging ||wopt −w(n)||

2
2 over 100

independent trials. The step size µ was adjusted so that all the
algorithms above have the same steady state MSD, which then
makes it possible to have a fair comparison of them based on
their respective rates of convergence. For this, µ was taken as
0.25 for the PNLMS, the MPNLMS and the NLMS algorithms
whereas it was chosen as 0.4 for the proposed method. Both
the PNLMS and the MPNLMS algorithms need setting of
certain parameters, such as, the initialization parameter δg
which is taken to be 0.01 and the parameter ρ (ratio between
largest adaptation gain and the smallest gain) which is taken
as 0.01. Also, there is one parameter which is common
to the PNLMS, the MPNLMS and the NLMS algorithms,
namely, the so-called regularization parameter δ (used to avoid
division by zero in the update term). This was taken in
our simulation as 0.01. Fig. 2 confirms some of the well
known aspects of the convergence behavior of the PNLMS,
the MPNLMS and the NLMS algorithms, namely, that the
PNLMS algorithm provides very high initial convergence rate
but it slows down afterwards with convergence rate falling
below that of the NLMS algorithm. The MPNLMS algorithm
provides high convergence rate throughout the whole adap-
tation process though it has lesser initial convergence rate
than that of the PNLMS algorithm. What is, however, very
revealing from Fig. 2 is that the proposed algorithm has a
convergence rate that is much higher than any of the above
three conventional algorithms. Further, the performance of
the proposed algorithm was compared with some recently
proposed sparse adaptive algorithms as shown in Fig. 3. This
figure depicts the learning curves for the proposed algorithm,
Adaptive Projection-based Algorithm using Weighted l1 balls
(APWL1)[22], Zero Attracting Normalized Least Mean Square
(ZANLMS) and Reweighted Zero Attracting Normalized Least
Mean Square (RZANLMS) algorithms[23]. The step size of
all the algorithms was set to 1 in order to provide fastest
convergence response by each algorithm. The figure shows that
HTAF algorithm outperform other algorithms in convergence
speed. It can be seen again that RZANLMS algorithm may



produce better steady-state MSD but HTAF can yield better
convergence speed for the same MSD with step size µ = 0.1.
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Fig. 2. Learning curves for proposed sparse adaptive algorithm.
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Fig. 3. Learning curves for proposed sparse adaptive algorithm with other
recently proposed algorithms. Assumed sparsity K for both the algorithm
APWL1 and HTAF is taken as 6 and the order L of the HTAF algorithm is
50.

We next evaluate the sensitivity of the proposed method to
the initial guess of the system sparsity, by plotting the MSD
for different values of (assumed) K. The results, shown in
Fig. 4, suggest that as K increases from its true value in
small increments, the steady state MSD deteriorates slowly,
but it leaves the convergence speed almost unaffected. On the
other hand, if K starts at its highest possible value (i.e., no
hard thresholding) and gets progressively reduced, both the
convergence rate and steady-state MSD improve, i.e., former
becomes faster while the later gets lesser. Now, for sparse
systems, we have broadly two types of filter taps, namely the
active and the inactive taps, it is more convenient to discuss
the performance of proposed algorithm by splitting the total
MSD into two parts, contributed by the active and the inactive
taps separately. For this, let NZ denote the index set of the
active (non-zero) taps, i.e., wopt,i �= 0 for i ∈ NZ and let Z
denote the index set of the inactive (zero) taps, i.e., wopt,i = 0
for i ∈ Z .
Then we can define two different performance metrics as,
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Fig. 4. Sensitivity of proposed algorithm to the choice of K.

(1) Contribution of the active taps in total MSD:

ηNZ(n) = E

�
�

i∈NZ

(wopt,i − wi(n))
2

�

(11)

and

(2) Contribution of inactive taps in total MSD:

ηZ(n) = E

�
�

i∈Z

(wopt,i − wi(n))
2

�

(12)

Fig. 5 shows the stepwise improvement of ηNZ(n) and ηZ(n)
when K reduces from 110 to 5. To start with, we do not employ
any hard thresholding (Fig. 4(a)). In this case, the proposed
algorithm turns out to be just a gradient based algorithm which
cannot discriminate between active and inactive taps, and thus
the contribution of these two groups in the total MSD are
given by ηNZ(∞) = Q

N
η(∞) and ηZ(∞) = N−Q

N
η(∞). This

is in conformity with the observation in Fig. 5(a) where it
is found that η(∞) = −29.3 dB, ηNZ(∞) = −43.69 dB
and ηZ(∞) = −29.46 dB. In Figs. 5(b)-(d), we gradually
reduce K to 50, 15 and then 5 respectively, and in each case,
compare the ηNZ(n) and ηZ(n) with the same for the previous
choice of K . It is seen from Figs. 5(b)-(d) that both ηZ(n)
and ηNZ(n) improve their respective convergence speeds as
K decreases, the former being due to the removal of accrued
gradient noise as K decreases, while the latter may be because
the effective length of the filter reduces with decreasing K .
Now, it is known that the existing sparse adaptive filters

like the PNLMS are not very robust against colored input.
However, as we are using the concepts of affine projection
algorithm in our formulation, it is expected that the proposed
algorithm might enjoy robustness against colored input. To
check this, the proposed HTAF was tested against a colored
input, generated using an AR(1) model with pole at r using
the following expression:

u(n) = ru(n− 1) +
�
1− r2v(n) (13)

where u(n) is the AR process output and v(n) is a zero-
mean Gaussian white noise process with unit variance. For our
simulation r was set to 0.9. The results are shown in Fig. 6,
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Fig. 5. Contribution of active and inactive taps in total MSD.
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Fig. 6. Tracking performance of the proposed algorithm with increasing L
and for colored input with a parametric change of the system at n = 2000.

where, taking a cue from the affine projection algorithm [11],
L was increased gradually, which showed a steady increase
in the convergence speed. To study the effect of increasing L
on the tracking performance, the system was changed at n =
2000 to a new system by shifting the 4 active taps to the left
by 30 units, as shown in Fig. 7. Clearly, as confirmed by Fig.
6, the effect of increasing L on the tracking performance is
marginal.
Finally, we did one more experiment to check whether

HTAF algorithm could update small FIR coefficients effi-
ciently or set all them to zeros. For this, we considered one
near-sparse system response which contained a sufficiently
small tap with magnitude 0.05 as shown in Fig. 8. The
learning curves are plotted in Fig. 9 and it shows that proposed
HTAF algorithm performs still better compared to APWL1
algorithm. By plotting the instantaneous updated steady-state
weight vectorw(n) in Fig. 10 , we show that HTAF algorithm

can update the small tap with same accuracy as obtained for
other higher valued active taps.
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(b) Sparse System 2

Fig. 7. Response of the time varying system. (a) Initial response (b) Response
after 2000 iterations.
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Fig. 8. Impulse response of a sparse system containing a small-magnitude
tap.
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Fig. 9. Learning curves for proposed sparse adaptive algorithm.

VI. CONCLUSIONS

In this paper, a sliding window type gradient based sparse
adaptive algorithm with iterative hard thresholding is pro-
posed. The proposed HTAF algorithm offers significant im-
provement over the recently proposed sparse adaptive algo-
rithms in both convergence speed and steady-state MSD for
sparse and near-sparse system. Moreover, the HTAF algorithm
shows better performance for colored input, while maintaining
the excellent tracking ability as well.
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