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Abstract—We investigate adaptivity of the online model selec-
tion method which has been proposed recently within the mul-
tikernel adaptive filtering framework. Specifically, we consider
a situation in which the nonlinear system under study changes
during adaptation and an appropriate kernel also does accord-
ingly. Our time-varying cost functions involve three regularizers:
the �1 norm and two block �1 norms which promote sparsity
both in the kernel and data groups. The block �1 regularizers
are approximated by their Moreau envelopes, and the adaptive
proximal forward-backward splitting (APFBS) method is applied
to the approximated cost function. Numerical examples show
that the proposed algorithm can adaptively estimate a reasonable
model.

I. INTRODUCTION

Kernel adaptive filtering is an attractive way of extending
linear adaptive filtering algorithms to the nonlinear case. The
early study of kernel adaptive filtering has been motivated
by the success of kernel methods in batch settings, such as
support vector machine, Gaussian processes, and regulariza-
tion networks [1]. In the classical linear adaptive filtering, the
system is modeled as a Euclidean vector, and the ith element
hi of the vector (filter) represents a coefficient of a standard
basis vector ei (which has one at the ith position and zeros
elsewhere); i.e.,

h := [h1, h2, · · · , hN ]T =
N∑
i=1

hiei. (1)

In the kernel adaptive filtering, on the other hand, the system
is modeled as an element of a functional space H called a
reproducing kernel Hilbert space (RKHS), which is a Hilbert
space equipped with a reproducing kernel as well as an inner
product 〈·, ·〉H [2, 3]. Specifically, an element of a RKHS can
be written as

ϕ(x) =
N∑
i=1

hiκ(x,ui), x ∈ U ⊂ R
L, (2)

where U is a compact subset of R
L (which is reffered to as the

input space), κ : U×U → R is a reproducing kernel which has
the reproducing property ϕ(x) = 〈ϕ, κ(·,x)〉H for any x ∈
U . A popular example of reproducing kernel is the Gaussian
kernel κ(x,y) := e−α(x−y)T(x−y), where α > 0 is the kernel
parameter. In the case of Gaussian kernel, κ(x,ui), given a
vector ui ∈ U , is a Gaussian function of x centered at ui,
and the coefficients his determine the heights of the Gaussian
functions centered at different points uis. Comparing (1) and
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Fig. 1. An illustration of nonlinear system.

(2), it is seen that κ(x,ui)s serve as basis vectors like eis.
The set of κ(x,ui)s is called dictionary, and it is constructed
based on observed data during adaptation in practice.

How can we choose the kernel? This would be a natural
question and has been the main theme of the author’s prior
work in [4–6]. Modeling is always an important fraction of
science and engineering. Under an improper model, there is
no chance to obtain a good result. There is no perfect model
probably in real world applications, and what people can do is
to choose a reasonable model under, for instance, the principle
of parsimony also known as Occam’s Razor. Although a
Gaussian kernel with a large kernel parameter α (i.e., use
of a ’narrow’ Gaussian) has a capability to express rapidly
changing parts in the nonlinear system (see Fig. 1), it requires
a large number of center points ui (i.e., N has to be quite large
in (2)) to cover the input space U . (One needs to take many
center points to express slowly changing parts in the nonlinear
function.) This increases computational costs unreasonably
and should be prevented in online settings. In contrast, it is
obvious that a Gaussian kernel with a small α (i.e., use of
a ’wide’ Gaussian) cannot express rapidly changing parts in
the system. The availability of a Gaussian kernel that fits well
with the system therefore seems to be a strong assumption in
some practical scenarios. Nevertheless, this has mostly been a
common premise in the literature of kernel adaptive filtering
[1, 7–12]. In [6], the author has proposed multikernel adaptive
filtering which employs multiple different kernels, e.g., ’wide’
and ’narrow’ Gaussian kernels, linear and Gaussian kernels,
etc. The multikernel adaptive filtering provides a systematic
way to allocate an appropriate kernel to each center point. In
order to make this approach more attractive, one may employ



many kernels, say fifty or even hundreds of kernels. In this
case, the model becomes very complex and may cause an
overfitting issue. In [13], the authors have addressed this issue
and developed an adaptive algorithm which can systematically
suppress inappropriate kernels and select appropriate ones in
online fashion, thereby preventing the overfitting issue.

The key word in this paper is adaptivity in online model
selection. We consider a situation in which the nonlinear sys-
tem changes during adaptation and an appropriate kernel also
does accordingly. Our multikernel adaptive filtering algorithm
has three regularizers: the �1 norm and two block �1 norms.
One of the block �1 norms is for kernel groups, contributing to
nulling the coefficients of such kernels that are unsuitable for
the learning task. A proper model is thus selected, alleviating
the overfitting problem. The other one is for data groups,
contributing to nulling the coefficients of such dictionary data
that are less relevant to the learning task than the others. The
dictionary data are thus updated in an adaptive manner. Our
algorithm is based on the adaptive proximal forward-backward
splitting (APFBS) method [14]. To apply it, we approximate
the block �1 regularizers by their Moreau envelopes. The
resultant cost function contains smooth convex functions and
a single nonsmooth convex function, to which APFBS can be
applied directly. Numerical examples show that the proposed
algorithm can adaptively estimate a reasonable model.

II. BACKGROUND

Throughout the paper, let R, N, and N
∗ denote the sets of

all real numbers, nonnegative integers, and positive integers,
respectively. We consider online scenarios in which input
vectors (un)n∈N ⊂ U arrive sequentially and the response
dn ∈ R, n ∈ N, is a nonlinear function of the input vector
un. The task of nonlinear adaptive filtering is to find and/or
track the time-variable nonlinear function (the estimandum) in
an online fashion with the sequentially arriving measurements
(un, dn)n∈N.

We consider the case that a proper model for the esti-
mandum is unknown. A practical approach in this case is
to use many possible kernels under the multikernel adaptive
filtering framework [6]. Let κm : U × U → R, m ∈ M :=
{1, 2, · · · ,M}, denote the set of positive definite kernels to be
used. Let {κm(·,uj)}m∈M,j∈Jn be the dictionary indicated
by the dictionary index set Jn := {j(n)

1 , j
(n)
2 , · · · , j(n)

rn } ⊂
{0, 1, · · · , n− 1}, where rn ∈ N

∗ is the size of the dictionary
index set Jn. A multikernel adaptive filter is then given by

φn(u) :=
∑
m∈M

∑
j∈Jn

h
(m)
j,n κm(u,uj)︸ ︷︷ ︸

the mth model

, u ∈ U (3)

where h(m)
j,n ∈ R, m ∈ M, j ∈ Jn. Define an inner product be-

tween two matrices A and B by 〈A,B〉 := tr(ATB), where
(·)T and tr(·) stand for transpose and trace, respectively. Its
induced norm is defined as ‖A‖ :=

√〈A,A〉 for any matrix
A. Then, an estimate of dn can be expressed simply in a

matrix form as follows:

d̂n := φn(un) = 〈Hn,Kn〉 (4)

where

Hn :=
[
h
j
(n)
1 ,n

h
j
(n)
2 ,n

· · ·h
j
(n)
rn ,n

]
∈ R

M×rn

Kn :=
[
k
j
(n)
1 ,n

k
j
(n)
2 ,n

· · ·k
j
(n)
rn ,n

]
∈ R

M×rn

hj,n :=
[
h

(1)
j,n, h

(2)
j,n, · · · , h(M)

j,n

]T
∈ R

M

kj,n := [κ1(un,uj), κ2(un,uj), · · · , κM (un,uj)]
T ∈ R

M .

Those readers who are not familiar with convex analysis
may refer to the appendix before proceeding to the following
section.

III. PROPOSED ADAPTIVE ALGORITHM

The size and associated data indices of the coefficient matrix
Hn ∈ R

M×rn depend on the dictionary index set Jn and are
therefore time dependent. The cost function to be considered
is thus a function of a matrix in R

M×rn+1 (not in R
M×rn ).

We define the following cost function:

Θn(X) := ϕn(X)︸ ︷︷ ︸
smooth

+ψ(1)
n (X) + ψ(2)

n (X) + ψ(3)
n (X)︸ ︷︷ ︸

proximable

,

X :=

⎡⎢⎢⎢⎣
x1,1 x1,2 · · · x1,rn+1

x2,1 x2,2 · · · x2,rn+1

...
...

. . .
...

xM,1 xM,2 · · · xM,rn+1

⎤⎥⎥⎥⎦ =:

⎡⎢⎢⎢⎢⎣
ξT

1

ξT
2
...

ξT
M

⎤⎥⎥⎥⎥⎦
=:
[
x1 x2 · · ·xrn+1

] ∈ R
M×rn+1

where

ϕn(X) :=
1
2
d2(X , Cn)

ψ(1)
n (X) := λ1

rn+1∑
i=1

w
(n)
i ‖xi‖

ψ(2)
n (X) := λ2

M∑
m=1

ν(n)
m ‖ξm‖

ψ(3)
n (X) := λ3

rn+1∑
i=1

M∑
m=1

μ
(n)
m,i |xm,i| .

Here, λ1, λ2, λ3 ≥ 0 are the regularization parameters,
w

(n)
i , ν

(n)
m , μ

(n)
m,i > 0 are the weights, and

d(X , Cn) := min
Y ∈Cn

‖X − Y ‖ (5)

is the metric distance between a point X ∈ R
M×rn+1 and the

set
Cn :=

{
X ∈ R

M×rn+1 : |εn(X)| ≤ ρ
}
, (6)

where ρ ≥ 0 and εn(X) :=
〈
X, K̃n

〉
− dn. Here, K̃n ∈

R
M×rn+1 consists of (i) those column vectors of Kn whose

associated indices are included in the new dictionary index set



Jn+1 and (ii) kn,n at the rightmost column if n ∈ Jn+1. (The
formal definition of K̃n is given later on.) Each term of the
cost function plays the following role.

(a) ϕn(X) contributes to reducing empirical risks.
(b) ψ

(1)
n is the block �1 norm for data groups, promoting

column-wise sparsity to select relevant data.
(c) ψ

(2)
n is the block �1 norm for kernel groups, promoting

row-wise sparsity to select relevant kernels. This term is
particularly important in terms of model selection.

(d) ψ
(3)
n is the weighted �1 norm which promotes sparsity

of the coefficient matrix. In particular, it will lead to
selecting relevant kernels for each data point.

The first term ϕn is a differentiable convex function hav-
ing a Lipschitz continuous gradient. On the other hand, the
terms ψ(1)

n , ψ(2)
n , and ψ

(3)
n are nondifferentiable but convex

and proximable. Here, proximable means that the proximity
operator can be computed easily (see the appendix). The
adaptive proximal forward-backward splitting algorithm [14]
can suppress a sequence of functions each of which is a sum
of a smooth function and a single proximable function. We
thus approximate ψ(1)

n and ψ
(2)
n and consider the following

cost function:

Θ̃n(X) := ϕn(X) + γ1ψ(1)
n (X) + γ2ψ(2)

n (X)︸ ︷︷ ︸
smooth

+ ψ(3)
n (X)︸ ︷︷ ︸

proximable

,

where γ1, γ2 ∈ (0,∞). The gradient of

gn(X) := ϕn(X) + γ1ψ(1)
n (X) + γ2ψ(2)

n (X) (7)

is β-Lipschitz continuous with

β := 1 +
1
γ1

+
1
γ2

> 1. (8)

Now we show how to suppress the sequence of cost
functions (Θ̃n)n∈N. We define the modified matrices H̃n ∈
R
M×rn+1 and K̃n ∈ R

M×rn+1 with their (m, i) entries given
respectively by

[H̃n]m,i := h
(m)

j
(n+1)
i

,n
(9)

[K̃n]m,i := κm

(
un,uj(n+1)

i

)
. (10)

The modified matrix H̃n consists of a submatrix of Hn elim-
inating some columns with minor contributions and possibly a
new entry hn,n := 0 at the rightmost column if n ∈ Jn+1. The
dictionary is initialized as J0 := {0}. Let H̃0 := h0,0 = 0.
The proposed algorithm is then given by

Hn+1 := prox
ηψ

(3)
n

[
H̃n − η∇gn(H̃n)

]
, n ∈ N, (11)

where η ∈ (0, 2/β) ⊂ (0, 2) is the step size and

∇ϕn(H̃n) = H̃n − PCn(H̃n) (12)

with

PCn(H̃n)=H̃n − sign(εn(H̃n))
max{|εn(H̃n)|−ρ, 0}

‖K̃n‖2
K̃n.

Finally, the proximity operators are given by

prox
γ1ψ

(1)
n

(X) =
rn+1∑
i=1

max

{
1 − λ1γ1w

(n)
i

‖xi‖ , 0

}
xie

T
i,rn+1

,

prox
γ2ψ

(2)
n

(X) =
M∑
m=1

max

{
1 − λ2γ2ν

(n)
m

‖ξm‖ , 0

}
em,MξT

m,

prox
ηψ

(3)
n

(X) =
rn+1∑
i=1

M∑
m=1

max

{
1 − λ3ημ

(n)
m,i

|xm,i| , 0
}

Em,ixm,i.

Here, ep,q , p, q ∈ N
∗, is a length-q unit vector that has one at

its pth entry and zeros elsewhere, and Em,i is an M × rn+1

matrix that has one at its (m, i) entry and zeros elsewhere.
To keep the dictionary size bounded by some constant

rmax ∈ N, we use the following sparsification strategy: (i) add
each new datum into the dictionary as long as the dictionary
size is smaller than rmax, and (ii) discard those data which
have minor contributions to estimation. To be precise, the
dictionary index set is updated as follows:

Jn+1 :=

⎧⎪⎨⎪⎩
J n
�=0 ∪ {n}, if

∣∣∣J n
�=0

∣∣∣ < rmax,

J n
�=0, if

∣∣∣J n
�=0

∣∣∣ = rmax,

n ∈ N, (13)

where

J n
�=0 := {j ∈ Jn : hj,n �= 0}.

One may also use a sparsification strategy based on the
coherence criterion for an admission test as in [9, 12, 13].
However, to determine the coherence threshold reasonably in
the sense of achieving good performance as well as keeping
the dictionary size bounded, some information about the range
of input data would be required. An advantage of the present
strategy is that, without such information, it yields good
performance while keeping the dictionary size bounded by
rmax.

The proximity operators prox
γ1ψ

(1)
n

and prox
γ2ψ

(2)
n

shrink

those column and row vectors of H̃n which have minor
contributions in estimation. However, it is not ensured that
the gradient operation in (11) completely nullify such col-
umn and row vectors. Note here that η∇γ1ψ

(1)
n (H̃n) =

η
γ1

(
H̃n − prox

γ1ψ
(1)
n

(H̃n)
)

and η
γ1

< 2
βγ1

< 2; the same

applies to γ2ψ
(2)
n . Nevertheless, the final operation prox

ηψ
(3)
n

attracts nearly-zero components to zero and this assists minor
row and column vectors to vanish completely.

IV. NUMERICAL EXAMPLES

We conduct simulations in an estimation task of nonlinear
function with an abrupt change for L = 1 to show the
efficacy of the proposed algorithm. We test 100 indepen-
dent trials and, at each trial t = 1, 2, · · · , 100, the data
is generated as d

(t)
n := ψn(u

(t)
n ) + v

(t)
n , n ∈ N, with

ψn(x) := exp
(
−2 ‖x − 0.2‖2

)
for n ≤ 20, 000 ψn(x) :=

− exp
(
−20 ‖x − 0.1‖2

)
− 2 exp

(
−20 ‖x − 0.8‖2

)
for n >



20, 000, Here, each component of the input vector u
(t)
n obeys

the i.i.d. uniform distribution between 0 and 1. It is supposed
that the data are contaminated by impulsive noise, at iterations
10, 000 and 30, 000, of amplitude 100, and by Gaussian noise
obeying N (0, 0.1) at the other iterations. Totally M = 45
Gaussian kernels are employed with the kernel parameters
a × 10b, a ∈ {1, 2, · · · , 9}, b ∈ {−2,−1, 0, 1, 2}. To be pre-

cise, κm(x,y) := exp
(
−ζm ‖x − y‖2

)
, x,y ∈ U , m ∈ M,

where ζ1 = 0.01, ζ2 = 0.02, · · · , ζ45 = 900.
The parameters for the proposed algorithm are set to ρ = 0,

η = 0.1, and rmax = 25. The regularization parameters λ1,
λ2, and λ3 are controlled adaptively as λ1 = λ2 = λn and
λ3 = 0.1λn with λn := maxm,j

∣∣∣h(m)
j,n

∣∣∣, n ∈ N. The index γ1

and γ2 of the Moreau envelopes are chosen as γ1 := γ2 :=
2(2/(η + εγ) − 1)−1 > 0, where εγ := 10−5 < 2 − η
and it is automatically guaranteed that η ∈ (0, 2/β). The
weight design is based on the idea of the iteratively reweighted

least squares (IRLS) [15]. Specifically, w(n)
i =

rn+1ŵ
(n)
i∑rn+1

ι=1 ŵ
(n)
ι

,

i = 1, 2, · · · , rn+1, n ∈ N, where ŵ(n)
i =

1
ȟ1−p
i,n + ε

with ε =

10−6, p = 0.5, and ȟi,n = maxm∈M

∣∣∣∣h(m)

j
(n+1)
i

,n

∣∣∣∣. Analogously,

ν
(n)
m =

Mν̂
(n)
m∑

l∈M ν̂
(n)
l

, m ∈ M, n ∈ N, where ν̂(n)
m =

1

h́1−p
m,n + ε

with h́m,n = maxi=1,2,··· ,rn+1

∣∣∣∣h(m)

j
(n+1)
i

,n

∣∣∣∣, and μ
(n)
m,i =

rn+1Mμ̂
(n)
m,i∑

l∈M
∑rn+1

ι=1 μ̂
(n)
l,ι

, where μ̂
(n)
m,i =

1∣∣∣∣h(m)

j
(n+1)
i

,n

∣∣∣∣1−p + ε

. We

compare the proposed algorithm with the KNLMS-BT (kernel
normalized least mean square with block soft-thresholding
sparsification) algorithm, a single kernel method, for the
parameters η = 0.1, ζ = 3 (a kernel parameter which gives
the best performance during the first 20,000 iterations (before
the abrupt change of the nonlinear system) in this experiment),
λ = 0.05, rmax = 25, rmin = 23, ρ = 0, and εw = 10−5.

The MSE learning curves are plotted in Fig. 2. It is seen that
the proposed algorithm outperforms the single kernel method
after the abrupt change of the system. It should be mention that
the observed poor performance of the single kernel method is
due to the mismatch between the employed kernel and the
nonlinear system. To show that the proposed algorithm adapts
the model to the system change, we show the norms of each
row vectors of Hn at (a) n = 20, 000 (right before the system
change) and (b) n = 40, 000 (at the end of the adaptation)
in Fig. 3. Comparing Fig. 3(a) and Fig. 3(b), it is seen that
the mean of the distribution shifts to the right. Indeed, the
nonlinear system for n ≤ 20, 000 is a single Gaussian function
with its variance corresponding to the 20th kernel ζ20 = 2.0.
On the other hand, the nonlinear system for n > 20, 000
is composed of two Gaussian functions with their variances
corresponding to the 29th kernel ζ29 = 20. This means that
an appropriate kernel should be around the 20th kernel for
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Fig. 2. MSE learning curves. The nonlinear system changes at the 20, 000th
iteration and impulsive noise is added at the 10, 000th and 30, 000th itera-
tions.
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Fig. 3. Adaptivity in online model selection.

n ≤ 20, 000 and around the 29th kernel for n > 20, 000. We
can see that the model selected by the proposed algorithm is
more or less reasonable.

V. CONCLUSION

This paper investigated adaptivity of the online model
selection method which is based on the multikernel adaptive
filtering framework. Specifically, we considered a situation
in which the nonlinear system under study changes during
adaptation and an appropriate kernel also does accordingly.
Our cost function involved three regularizers: the �1 norm and
two block �1 norms which promote sparsity both in the kernel
and data groups. The block �1 regularizers were approximated
by their Moreau envelopes, and the adaptive proximal forward-
backward splitting (APFBS) method was applied to the ap-



proximated cost function. Numerical examples showed that
the proposed algorithm can adaptively estimate a reasonable
model when the nonlinear system changes.
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APPENDIX — MATHEMATICAL INGREDIENTS

This appendix provides some mathematical tools and no-
tions coming from convex analysis and fixed point theory of
nonexpansive mapping [16, 17]. We use the notation H :=
R
M×rn+1 since everything can be defined and discussed in

the general Hilbert space.
Convex function: A function f : H → (−∞,∞] := R∪{∞}
is said to be convex on H if

f(αx + (1 − α)y) ≤ αf(x) + (1 − α)f(y), (14)

∀(x,y, α) ∈ H ×H× [0, 1].

Strictly convex function: A function f : H → (−∞,∞]
is said to be strictly convex on H if (14) holds with strict
inequality for any x �= y.

Proper convex function: If a convex function f : H →
(−∞,∞] is said to be proper if there exists an x ∈ H such
that f(x) <∞.

Lower semicontinuous function: A function f : H →
(−∞,∞] is said to be lower semicontinuous on H if the set
lev≤af := {x ∈ H : f(x) ≤ a} is closed for any a ∈ R. Any
continuous function is lower semicontinuous.

The set of all proper lower semicontinuous convex func-
tions Γ0(H): The set of all proper lower semicontinuous
convex functions from H to (−∞,∞] is denoted commonly
by Γ0(H).

Coercive function: A function f ∈ Γ0(H) is said to be
coercive if ‖x‖ → ∞ implies f(x) → ∞. Coercivity
guarantees the existence of a minimizer of f .

Closed convex set: A subset C of H is said to be convex if
αx + (1 − α)y ∈ C, ∀(x,y, α) ∈ C × C × [0, 1]. A set S is
said to be open if any point x ∈ S has its neighbor included
by S; i.e., for any x ∈ S, there exists some εx > 0 such that
B(x, εx) := {y ∈ H : ‖x − y‖ < εx} ⊂ S. A set S is said
to be closed if it complement set H \ S is open. If a convex
set is closed, it is said to be a closed convex set.

Metric projection: Let C ⊂ H be an arbitrary closed convex
set. Then, for any point x ∈ H, its closest point in C exists
uniquely, and the unique closest point

PC(x) := argmin
y∈C

‖x − y‖ (15)

is called the metric projection of x onto C. It is a generaliza-
tion of the orthogonal projection.

Lipschitz continuous mapping: A mapping T : H → H is

said to be Lipschitz continuous, or α-Lipschitz continuous to
be more specific, if

‖T (x) − T (y)‖ ≤ α ‖x − y‖ , ∀x,y ∈ H, (16)

for some constant α > 0. Any Lipschitz continuous mapping
is continuous.

Sum of Lipschitz continuous mappings: Let T1 : H → H
and T2 : H → H be α1-Lipschitz continuous and α2-
Lipschitz continuous mappings, respectively, for α1 > 0 and
α2 > 0. Then, the sum T := T1 + T2 is an (α1 + α2)-
Lipschitz continuous mapping. This can readily be verified
by the triangular inequality.

Contractive mapping: A mapping T : H → H is said to be
contractive if (16) holds for 0 < α < 1.

Nonexpansive mapping: A mapping T : H → H is said to
be nonexpansive if (16) holds for α = 1.

Firmly nonexpansive mapping: A mapping T : H → H is
said to be α-averaged nonexpansive if there exist a nonexpan-
sive mapping N : H → H and a constant α ∈ (0, 1) such
that

T = (1 − α)I + αN, (17)

where I : H → H,x �→ x. A 1
2 -averaged nonexpansive

mapping is particularly important and is specially called firmly
nonexpansive. The metric projection is a typical example of
firmly nonexpansive mapping.

Smooth function: A function f ∈ Γ0(H) is said to be smooth
if it is differentiable and its gradient is Lipschitz continuous.

Moreau envelope: For any f ∈ Γ0(H),

γf(x) := min
y∈R

M×rn+1

(
f(y) +

1
2γ

‖x − y‖2

)
, γ ∈ (0,∞),

(18)
is the Moreau envelope of f of index γ. One of the remarkable
properties of the Moreau envelope is its smoothness, even
though the original function f is not necessarily differentiable
and could even be discontinuous.

Proximity operator (Proximal mapping): For any f ∈
Γ0(H),

proxγf (x) := argmin
y∈R

M×rn+1

(
f(y) +

1
2γ

‖x − y‖2

)
. (19)

is the proximity operator (or the proximal mapping) of f of
index γ. Here, the existence and the uniqueness of the mini-
mizer are guaranteed respectively by the coercivity and strict
convexity of the regularized function f(y)+ 1

2γ ‖x − y‖2. The
proximity operator is known to be firmly nonexpansive.

Gradient of Moreau envelope: The Lipschitz continuous
gradient of a Moreau envelope γf(x) is given by

∇γf(x) =
x − proxγf(x)

γ
, (20)

which is 1
γ -Lipschitz continuous.
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