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Abstract—Joint density Gaussian mixture model (JD-GMM)
based method has been widely used in voice conversion task due
to its flexible implementation. However, the statistical averaging
effect during estimating the model parameters will result in
over-smoothing the target spectral trajectories. Motivated by the
local linear transformation method, which uses neighboring data
rather than all the training data to estimate the transformation
function for each feature vector, we proposed a local partial
least square method to avoid the over-smoothing problem of JD-
GMM and the over-fitting problem of local linear transformation
when training data are limited. We conducted experiments using
the VOICES database and measure both spectral distortion and
correlation coefficient of the spectral parameter trajectory. The
experimental results show that our proposed method obtain
better performance as compared to baseline methods.

I. INTRODUCTION

Voice conversion is a process to modify a speech signal

uttered by one speaker (source) to sound like a desired

target speaker without changing the linguistic information.

The conversion process, which transforms the source feature

vectors into the target feature space, includes two phases: off-

line training phase and real-time conversion phase. During

the off-line training phase, a transformation function is esti-

mated from parallel source and target feature vector sequence.

While in the real-time conversion phase, the transformation

function is applied to an input testing utterance to generated

converted speech signal. The features can be any parameters

which represent the speaker identity, such as spectral envelop

[1], [2], prosody [3], [4], [5], duration [3], [6]. As spectral

envelops contain more speaker characteristics information,

spectral mapping is the one of the most important techniques

in voice conversion.

To implement a robust spectral conversion function, a num-

ber of techniques have been proposed. A linear conversion

function has been implemented by joint density Gaussian

mixture model (JD-GMM) with both minimum mean square

error and maximum likelihood criteria [1], [2], partial least

square regression [7], mixture of factor analyzers [8], local

linear transformation [9] and so on. In addition to the linear

conversion function, by assuming that the source and target

speech features have non-linear relationship, methods such as

artificial neural network [10], kernel partial least square [11],

and conditional restricted Boltzmann machine [12], have also

been proposed. Due to the probabilistic treatment and flexible

implementation, JD-GMM based method [1], [2] has become

the mainstream method.

However, over-smoothing and over-fitting problems of JD-

GMM method have been reported in many studies [13], [7],

[9], [11]. To address the over-fitting problem caused by the full

covariance estimation, in [7], partial least square regression

method is combined with Gaussian mixture model to replace

the transformation matrix estimated by the full covariance ma-

trix, while keeping the mean vectors of the original JD-GMM

vector in conversion function. This combination, however, can-

not avoid the over-smoothing caused by the statistical average

during estimating the mean vectors of JD-GMM. One of the

successful methods for reducing over-smoothing problem is

the local linear transformation method [9]. In this method, each

frame has its own transformation matrix, which is estimated

from its K-nearest neighbourhood frame pairs in terms of

Euclidean distance in the training data. One problem of this

method is that when the number of nearest neighbourhood is

small, over-fitting problem will still be observed. When K is

too large, however, over-smoothing problem will occur [9].

Therefore, choosing the optimal number of K is an important

issue in local linear transformation method.

In this study, motivated by the local linear transformation

method, we proposed a local partial least square (LPLS)

regression method to avoid over-fitting and over-smoothing

problems in voice conversion. Similar to local linear transfor-

mation, each testing frame has individual linear transformation

matrix estimated from the testing frame’s K-nearest neighbour

in training data. Our strategy is then to use partial least square

regression to project both source and target speech vectors to

a low-dimensional space. As such, we are able to estimate a

robust transformation function from limited parallel frames.

II. BASELINE CONVERSION METHODS

In this section, we briefly introduce the two baseline conver-

sion methods used in this study: joint density Gaussian mixture

model (JD-GMM) and local linear transformation methods.

A. Joint density Gaussian mixture model method

The first baseline method is the JD-GMM method [1],

[2], [14], which employs Gaussian mixture model to model

the joint probability distribution of source and target feature



vectors. This method is original proposed by Kain et al in

[14], and has became a mainstream approach [2].

Given training data of source speaker X and target speaker

Y, by using dynamic time warping (DTW) to align the source

spectral vectors X = [x1,x2, . . . ,xn, . . . ,xN ] and target

spectral vectors Y = [y1,y2, . . . ,ym, . . . ,yM ], the parallel

training speech corpus, Z = [z1, z2, . . . , zt, . . . , zT ], can be

obtained. Here, xn ∈ Rd, ym ∈ Rd, and zt = [x⊤
n ,y

⊤
m]⊤ ∈

R2d.

With the paired spectral vectors Z, Gaussian mixture model

(GMM) is adopted to represent the joint probability density of

X and Y, written as:

P (Z) = P (X,Y) =

L
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are the mean vector and the covariance matrix of the l-th
Gaussian component N (z|µ

(z)
l ,Σ

(z)
l ), respectively. w

(z)
l is

the prior probability of the l-th Gaussian component with
∑L

l=1 w
(z)
l = 1 constraint. L is the total number of Gaussian

components.

In off-line training process, the expectation maximiza-

tion (EM) algorithm is employed to estimate the parame-

ters of the joint density Gaussian mixture model λ(z) =

{w
(z)
l , µ

(z)
l ,Σ

(z)
l |l = 1, 2, . . . , L} in maximum-likelihood

sense.

In conversion phase, the joint probability density GMM

model is employed to formulated a conversion function. For

each source speech feature vector x, the conversion function

F (x), which predicts the target speaker’s feature vector ŷ in

minimum mean square error sense, can be expressed as :

F (x) =

L
∑

l=1
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is the posterior probabil-

ity of the source vector x for the l-th Gaussian component.

During the JD-GMM model parameter estimation process,

the mean vector and the covariance matrix of l-th Gaussian

component can be calculated as:

µ
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From (3) and (4), we notice that all the training samples are

used for mean and covariance calculation, so-called statistical

average, which results in the over-smoothing of the converted

speech.

B. Local linear transformation method

The equation (2) can also be presented as a linear regression

model:

yi = Bxi + ε, (5)

where xi and yi denote the source and target observation data

for i-th frame, B is regression matrix or transformation matrix

and ε is the regression residual.

Different from equation (2), which use all the training

samples to estimate the transformation matrix, the local linear

transformation (LLT), [9], uses the neighboring data to es-

timate the individual transformation matrix for each feature

vector. We use this method as our second baseline, and

following is a brief introduction.

Firstly, we select the K-nearest neighbors (KNN) in terms

of Euclidean distance in X for the feature vector of each test

frame xtest
i :

d(xtest
i ,X) =‖ xtest

i −X ‖ (6)

The K paired vectors in Y are selected simultaneously. The

XKNN
i and YKNN

i are:

XKNN
i = [xi,1, xi,2, · · · , xi,k],

YKNN
i = [yi,1, yi,2, · · · , yi,k],

(7)

where, xi,k means the k-th nearest vector in X for xtest
i ,

XKNN
i ∈ Rd×k and YKNN

i ∈ Rd×k.

Then, for each test feature vector xtest
i , the linear transfor-

mation Bi ∈ Rd×d could be calculated by the neighborhood

we just selected, using the linear regression model:

YKNN
i = BiX

KNN
i (8)

Using least squares criterion, the Bi is:

Bi =
(

XKNN
i (XKNN

i )⊤
)−1

XKNN
i (YKNN

i )⊤ (9)

Finally, the converted speech vector ŷi of source vector xtest
i

is given as:

ŷi = Bix
test
i (10)

Obviously, the quality of the conversion will be influence

by the neighborhood selection. The converted results can be

used for the selection of new K-nearest neighbors to improve

the performance. We can combine the testing source xtest
i and

converted results ŷi into a new vector set, and then choose the

KNN again from the whole training data set Z.

d
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(11)

This reselection process is iterated till the neighborhoods

determined in consecutive steps become virtually identical or

sufficiently similar.



III. PROPOSED LOCAL PARTIAL LEAST SQUARE

REGRESSION METHOD

From section II, we note that the local linear transformation

method uses adjacent training data to estimate the transfor-

mation matrix rather than the whole training data to avoid

the over-smoothing problem. The size of the neighborhood,

however, affects the performance. In order to obtain a robust

transformation matrix, partial least square regression is em-

ployed to relax the KNN selection constraint.

A. Basic model of partial least square

Compare with the linear regression in (5), partial least

square (PLS) [15] is a regression method used to find a

relationship between source and target feature vectors in a

new low-dimensional space. The model of PLS is written as

follows:

X = RW⊤ +E, (12)

Y = QU⊤ + F, (13)

where R and Q are the factor loading matrices of source and

target vectors; W⊤ and U⊤ are low-dimensional representa-

tion matrices for source X and target Y, respectively. E and

F are residual components. Here, R ∈ Rd×h, Q ∈ Rd×h,

W⊤ ∈ Rh×T , U⊤ ∈ Rh×T , X ∈ Rd×T and Y ∈ Rd×T . d
is the dimension of feature vector, and h is the number of PLS

components. If h = d, which means the number of variables

is set to the number of predictors, PLS becomes equivalent to

standard linear multivariate regression as that in (5) and (9).

Usually, the number of PLS components h is lower than

the dimension of the feature vector d. Therefore, it is able

to produce a robust transformation with a small amount of

training data. In this regard, PLS regression is suitable for

using limited data to estimate a transformation matrix.

B. Combining PLS with LLT

As described in section 3.A, PLS is able to achieve a good

performance given limited training observations. In order to

prevent the over-fitting problem caused in LLT method, we

propose to combine PLS with LLT. Specifically, PLS could

be used to substitute the least squares solution used in LLT

method to obtain the transformation matrix of each testing

frame. In this case, the K-nearest neighbors, XKNN
i and YKNN

i ,

obtained in the first phase of LLT mentioned in section 2.B,

are used as input for PLS method. Different to [9], where the

KNN selection is based on perceptual evaluation, we will use

objective evaluation methods to choose the neighborhood.

C. SIMPLS Algorithm

Several variant methods could be used for solving the PLS

regression problem. In this paper, we use the SIMPLS (simple

partial least squares) algorithm proposed by de Jong [16].

This algorithm could provide faster computation speed, as

the weight factors can be obtained without matrix inverses.

Following is a brief description of the algorithm.

function SIMPLS (XKNN,YKNN, h)

1: X = (XKNN)⊤

2: Y = (YKNN)⊤

3: Y0 = Y− MEAN(Y)

4: S = X⊤ ×Y0

5: for i = 1, · · · , h do

6: q = dominant eigenvector of S⊤ × S

7: r = S× q

8: w = X× r

9: w = w− MEAN(w)

10: ‖w‖ = SQRT(w⊤ ×w)

11: w = w/‖w‖
12: r = r/‖w‖
13: p = X⊤ ×w

14: q = Y⊤
0 ×w

15: u = Y0 × q

16: v = p

17: if i > 1 then

18: v = v −V × (V⊤ × p)
19: u = u−W × (W⊤ × u)
20: end if

21: v = v/ SQRT (v⊤ × v)

22: S = S− v × (v⊤ × S)
23: Store r,w,p,q,u and v as i-th columns of matrices

R,W,P,Q,U and V, respectively

24: end for

25: Then, the regression matrix can be obtained by B =
Q×R⊤.

IV. EXPERIMENTS

To evaluate the performance of our proposed method, sev-

eral experiments were conducted, with baseline methods for

comparison.

A. Acoustic Data

The VOICE database [17] with the speech signal down-

sampled from 22.5 kHz to 16 kHz is used in our experiments.

Four speaker pairs: male-to-male, male-to-female, female-to-

male and female-to-female are selected from the database. The

STRAIGHT system [18] is used to extract spectral envelope,

which is represented by mel-cepstral coefficients (MCCs) with

order 24.

A parallel set of 20 sentences aligned by dynamic time

warping are used as training data, and another 20 sentences

are used for objective evaluations. The results are averaged

over all the conversion pairs.

B. Model Settings

In order to evaluate the performance of the proposed

method, the results of JD-GMM, PLS and LLT methods are

also reported as references.

• JD-GMM: It is the mainstream method as described in

section 2.A. The number of Gaussian components is set

to 64.



• LLT: As the conversion quality varies between different

numbers of neighborhood, we evaluate the system using

KNN with K from 50 to 300 with the step 10. Another

factor which will influence the transform performance is

the number of iterations to choose K-nearest neighbors in

(11). Our results show that one iteration is enough to find

nearest neighbors which give the lowest distortion. Thus,

in this paper, we just report the results for one iteration.

• PLS: The whole training data are used to learn the trans-

formation matrix from source feature to target feature.

By changing the number of components, we can find an

optimal latent PLS number, which yield a low distortion

error.

• LPLS (proposed): Using local data and partial least square

regression method to estimate the transformation for each

frame as described in section 3.

The spectral envelop is converted using above conversion

methods, with fundamental frequency converted by equalizing

the means and variances of source and target speakers in log-

scale.

C. Evaluation Methods

The mel-cepstral distortion (MCD) between the target and

converted mel-cepstral is used as the objective evaluation

measure. The following equation is the MCD for n-th frame:

MCD[dB] =
10

ln10

√

√

√

√2
24
∑

i=1

(cn,i − cconv
n,i )

2, (14)

where cn,i and cconv
n,i are the i-th dimension target and converted

MCCs in frame n, respectively. A lower MCD value indicates

smaller distortion.

To evaluate the conversion performance, the correlation

coefficient is also calculated between target and converted

MCC parameters. Different to the MCD calculation which

calculated by frame, the correlation coefficient was calculated

for each dimension defined as follows:

γi =

∑N

n=1(cn,i − ci)(c
conv
n,i − cconv

i )
√

∑N

n=1(cn,i − ci)2
√

∑N

n=1(c
conv
n,i − cconv

i )2
, (15)

where cn,i and cconv
n,i are the i-th dimension target and converted

MCCs in n-th frame; ci and cconv
i denote the mean value of

the target and converted MCCs in i-th dimension, respectively.

Here, higher correlation coefficient means higher similarity

between the target and converted MCCs.

We report the distortion and correlation coefficient results

by averaging all the conversion pairs.

D. Objective Results

1) The Effect of number of PLS Components: We first

evaluate the effect of PLS components number in LPLS

method and PLS method. The number of KNN was fixed as

200. The number of PLS components varies from 1 to 24
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Fig. 1. Spectral distortion as a function of number of latent components.
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Fig. 2. The correlation coefficient as a function of number of latent compo-
nents.

(since the MCC feature is 24 order). The results of JD-GMM

method, PLS and LLT methods were also shown as references.

Fig. 1 depicts the spectral distortion results. By increasing

the latent components, the MCD of PLS method, which using

whole training data, decrease continuously; while the MCD of

LPLS method reduces at the beginning, then increases because

of over-fitting. The LPLS method yield a lower error than

reference methods, when the number of latent components is

smaller than 11, and the optimal number of latent components

for LPLS method is 3 with the lowest distortion 5.10 dB,

which is much lower than the results of the two baseline

method: JD-GMM method (5.31 dB) and LLT method (5.58

dB) respectively. With different amount of training data, the

best result of PLS method is 5.42 dB for the number of latent

components around 18. This result is also 0.32 dB higher than

the result of our proposed method. As the latent components

number increased from 3 to 24, the distortion is getting higher

and higher. This occurs as the training data used to estimate the

transformation matrix is limited. When the number of latent

components equals to the feature dimension (24), the distortion

is almost the same as using LLT method.

Correlation coefficient results are presented in Fig. 2. In ac-

cordance with the results of MCDs, with 3 latent components,

the LPLS method achieved highest correlation coefficient
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Fig. 3. Spectral distortion as a function of number of nearest neighbor.
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Fig. 4. The correlation coefficient as a function of number of nearest neighbor.

(0.522), which is 0.039 and 0.062 higher than the results of

JD-GMM method and LLT method, and 0.042 higher than the

best result of PLS. The performance is getting worse when

the latent components number increased above 4.

2) The Effect of number of KNN: We then evaluate the

effect of the number of KNN vectors in LPLS and LLT meth-

ods, and the spectral distortion and correlation coefficient were

calculated by varying the number of KNN in 10 steps from 50

to 300. According to the results of previous experiments, the

PLS components number for LPLS method and PLS method

were fixed as 3 and 18 respectively. The results were averaged

over four conversion pairs and presented with results of JD-

GMM and original data together.

Fig. 3 indicates how the number of KNN affect the spectral

distortion results for different methods. With LLT method,

While the number of KNN is very small, as 50 for example, the

spectral distortion is almost the same as the result calculated

directly by the source and target features, which means the

method does not work; Contrast with the LLT method, LPLS

method is performed well with limited training observations.

With 50 KNN, the result is already better than JD-GMM

method and PLS method.

The correlation coefficient results with different number of

KNN were shown Fig.4. It shows the similar as the results of

MCDs. As in both LLT and LPLS methods, the correlation

coefficient increases, with the number of KNN grows from 50

to 200, and the result of LPLS method become stable after

200, whereas the result of LLT continues increase.

V. CONCLUSIONS

In this paper, we have proposed a local partial least square

(LPLS) method for voice conversion. The use of KNN data

can avoid the over-smoothing problem as described in section

2. In addition, partial least square regression is able to produce

more robust transformation function with limited training data.

Therefore, the proposed LPLS method is capable to balance

the over-smoothing and over-fitting problems in conventional

methods. The experimental results indicate that our proposed

method outperforms three baseline methods in terms of objec-

tive evaluation. In the future, we plan to use multiple source

features to predict target and add evaluate by both objective

methods and subjective listening test.
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