
Point Cloud Compression Based on Hierarchical
Point Clustering

Yuxue Fan and Yan Huang* and Jingliang Peng*
School of Computer Science and Technology, Shandong University, China
* Corresponding authors (E-mails: yan.h@sdu.edu.cn, jpeng@sdu.edu.cn)

Abstract—In this work we propose an algorithm for compress-
ing the geometry of a 3D point cloud (3D point-based model).
The proposed algorithm is based on the hierarchical clustering of
the points. Starting from the input model, it performs clustering
to the points to generate a coarser approximation, or a coarser
level of detail (LOD). Iterating this clustering process, a sequence
of LODs are generated, forming an LOD hierarchy. Then, the
LOD hierarchy is traversed top down in a width-first order. For
each node encountered during the traversal, the corresponding
geometric updates associated with its children are encoded,
leading to a progressive encoding of the original model. Special
efforts are made in the clustering to maintain high quality of
the intermediate LODs. As a result, the proposed algorithm
achieves both generic topology applicability and good rate-
distortion performance at low bitrates, facilitating its applications
for low-end bandwidth and/or platform configurations.

I. INTRODUCTION

Enabled by the advances in computer graphics technology,
high definition models are being increasingly produced and
used in many fields including gaming, filming and scientific
simulation. Along with the increasing data size and application
scope of 3D models comes the challenging issue of 3D model
compression for efficient utilization of the storage and the
bandwidth resources. In particular, for network-based graphics
applications, progressive transmission and reconstruction is
frequently desired to enable a smooth user experience at the
client side.

Point primitives have been more and more used for repre-
senting and rendering 3D models since their first use by Levoy
and Whitted [7] for 3D surface display. In contrast to a 3D
polygonal mesh that is composed of vertices, edges and facets,
a 3D point-based model, often called 3D point cloud as well, is
composed of point primitives. The point-based representation
is especially suitable for densely sampled 3D surfaces, saving
the need of storage for connectivity information.

In this work, we focus on compressing the geometry of
a 3D point cloud. That is, we focus on compressing the
points’ positions and normals. While many published algo-
rithms on 3D point cloud compression have yielded good
coding performance, not sufficient attention has yet been paid
to the low bitrate performance of point cloud coding, which
however is key to applications scenarios with limited network
bandwidth and/or client rendering capabilities. Further, not all
those methods are suitable for surfaces of generic topology,
limiting their generic applicability. As such, in this work we
propose a scheme for progressive compression of point clouds,
whose distinctive features include:

• Generic applicability. Since the proposed method is
based on point clustering, it is not restricted to any
specific type of surface topology (e.g., manifold) but
literally can process surfaces of arbitrary topology, be it
manifold or non-manifold.

• Outstanding low bitrate coding performance. The
proposed method yields outstanding rate-distortion per-
formance, especially at low bitrates, mainly because:

– the quality of the intermediate LODs are optimized
by the optimized point clustering process, and

– the geometry update encoding is made highly ef-
ficient with various techniques including cylindri-
cal coordinate representation, effective prediction,
Gaussian sphere based normal representation and
prediction, and entropy coding.

The rest of this paper is organized as follows. The related
work is surveyed in Section II, an overview of the proposed
algorithm is given Section III while the details of the proposed
algorithm follow in Section IV and V, the experimental results
are provided and analyzed in Section VI and the conclusion
is drawn in Section VII.

II. RELATED WORK

Since the beginning of this century, point-based 3D mod-
el compression has attracted intensive research attention.
Rusinkiewicz and Levoy [11] have developed a mutiresolution
point-based large model rendering system. While not specif-
ically being a compression work, it compactly represents a
bounding-sphere hierarchy by a 48-bit quantization of the
position, normal and color attributes at each node. Gumhold et
al. [3] proposed a single-rate encoder that builds a prediction
tree for the input model and uses it to guide the prediction
and entropy coding process. Krüger et al. [5] encode an input
model into multiple LODs by constructing Multiple Hexagonal
Close Packing (HCP) grids of various resolutions and encoding
the sequence of filled cells for each HCP grid. Their encoder
is however not a progressive one since the coding bits of the
coarser LODs are not embedded in those of the finer ones.

Many algorithms on progressive point-based model com-
pression have been proposed which enable adaptiveness to
runtime bandwidth and client rendering capabilities. Some of
these algorithms (e.g., [2], [8], [16]) work best for samples
from manifold surfaces while the others (e.g., [14], [6], [13],
[1], [12], [4], [15]) compress models of generic topological
types.

Fleishman et al. [2] propose a multilevel point-based rep-
resentation and reduce the coefficients from 3D to 1D for
efficient compression. Ochotta and Saupe [8], [16] partition
the model surface into relatively flat patches, each of which
is converted to a height field and encoded using 2D wavelet
coding techniques.

Wu et al. [14] simplify the original model into multi-
ple LODs with a sequence of virtual edge collapses each
contracting two points to one. The reverse of this iterative
simplification process is encoded. Kalaiah and Varshney [6]
conduct cluster-based hierarchical Principal Component Anal-
ysis (PCA) which leads to an efficient statistical geometry rep-
resentation. However, no rate-distortion (R-D) data are given
in these two works ([14], [6]), probably because their research
focus is more on efficient rendering than on compression.
Waschbüsch et al. [13] use point pair contractions to iteratively
reduce the original model to multiple LODs and encode the
reverse of this simplification process. However, the number of
LODs that are generated and encoded appears to be limited.

Some algorithms [1], [12], [4], [15] are based on the
iterative octree-partitioning of the object space. Associated
with each octree cell subdivision, they need to specify which
child cells are nonempty and the nonempty cells are further
iteratively subdivided. Botsch et al. [1] use a byte code to
indicate which child cells are non-empty. Inspired by Peng
and Kuo’s work on 3D mesh compression [10], Schnabel
and Klein [12] encode for each cell subdivision the number
of nonempty child cells and the index of the nonempty
child combination. Huang et al. [4], [15] propose a local
neighborhood based method for nonempty child prediction,
and employ Gaussian sphere based normal representation and
prediction, leading to good geometry coding performance. In
addition to the geometry, all the three works [12], [4], [15]
encode color information as well.

III. OVERVIEW

Three processes are involved in the proposed point cloud
compression scheme: the LOD hierarchy construction process
constructs a hierarchy of LODs for an input model; the LOD
hierarchy encoding process traverses the LOD hierarchy from
the root down to the leaves in a width-first order and encodes
the model refinement associated with each node, leading to a
progressive encoding of the input model; the LOD hierarchy
decoding process decodes the received bit stream and restores
the model progressively from low to high LODs. Since the
LOD hierarchy encoding and decoding processes are reverse
to each other, we will focus on only the LOD hierarchy
construction and the encoding processes in the following
algorithm description. It is noteworthy that we focus on the
geometry coding only in this work, i.e., we compress the
positions and the normals of the points, but not other attributes
like color.

LOD Hierarchy Construction: We reduce the resolution of
the original model through clustering the original points and
computing a representative for each cluster, all of which from
an approximation to the original model. Iteratively conducting

the clustering process, we obtain a hierarchy of LODs for
the input model. For the point clustering, we adapt the
Generalized Lloyd Algorithm (GLA) in order to maximize the
approximation quality of the intermediate LODs. In particular,
we propose a distance metric to drive the clustering process
which takes both the position and the normal attributes into
account for best preserved quality of the approximating LODs.

We construct an LOD hierarchy where each node corre-
sponds to a point primitive and all the point primitives on
the same level form an LOD of the model. Starting from the
input model, each coarser LOD is constructed from a finer one
through the clustering process and each point in the former
represents a cluster of points in the latter, forming a parent-
children relationship between those points in the hierarchy.

It is worthwhile to point out that the octree partitioning
based point cloud encoders [1], [12], [4], [15] are also based
on LOD hierarchy construction, but the LODs they generated
are often blocky at low point counts. In contrast, the GLA-
based approach produces significantly better model quality at
similar point counts. It is equally worth mentioning that, GLA-
based clustering is also used by Peng et al. [9] in the context
of progressive 3D mesh compression. They perform the GLA-
based clustering and encoding in one pass, from the coarsest
LOD (i.e., the root) to the finest. This top-down approach
performs aggressive clustering at coarser LODs and therefore
may easily smooths out sharp features in coarser LODs. As
such, in this work, we perform bottom-up LOD construction
and reduce the resolution of the input model gradually, with
an effort to preserve sharp features better in coarser LODs.
In addition, the GLA process is adapted in various aspects
(e.g., cardinality control, distance metric and representative
computation) to work on the point primitives.

LOD Hierarchy Encoding: The encoder traverses the LOD
hierarchy from the root down to the leaves in a width-first
order. At each node during the traversal, the encoder encodes
the position and the normal information of its child nodes,
corresponding to a local refinement on the current LOD.
Differential coding is conducted for both the position and the
normal coding. Essentially, each child node’s attributes are
predicted from its parent’s, and the differences are encoded.

For the position encoding, a local coordinate frame is set
up to align with the position and orientation of the parent
node; then the positional difference between each child and
the parent is expressed in cylindrical coordinates in this local
frame. Adaptive local quantization and effective prediction are
made to the child nodes’ cylindrical coordinates for coding
efficiency. The normal residual coding is made with the help
of the hierarchical Gaussian sphere subdivision and the local
neighborhood linearization on the Gaussian sphere.

It is noteworthy that techniques from reference [9] are
adapted for our position encoding and the method from
reference [4], [15] is used for our normal encoding.

Notation: In this paper we adopt the surfel set repre-
sentation for point-based models. A surfet set is defined as
S = {si|1 ≤ i ≤ n}, where n is the total number of points
in the model and si = {pi, ri,ni, ci} denotes the i-th surfel

that is centered on pi with a radius of ri, a normal of ni

and a color of ci. As [4], [15], we do not encode the radius
information since the radii can be easily reconstructed from the
surfels’ positions and normals. Specifically, we only encode
the position and the normal information of the input surfels in
this work. As such, we may sometimes omit the radius and/or
the color terms from the surfel’s denotation in the following
text.

IV. LOD HIERARCHY CONSTRUCTION

The LOD hierarchy is constructed through an iterative
point clustering process. The bottom level of the hierarchy
represents the original input model, each leaf node of which
corresponds to a point in the original model. At each iteration,
we reduce the number of point primitives by dividing them
into clusters and computing a representative point for each
cluster, all of which form a coarser LOD at one level up in the
hierarchy. The parent-child relationship is specified between
the nodes of a representative and each point in the associated
cluster. The root level contains one node corresponding to the
coarsest LOD containing only one point.

A. Point Clustering

We adapt the well-known GLA for the clustering purpose
The adaption mainly happens in three aspects: cluster cardi-
nality control, definition of distance metric, and representative
computation.

Cardinality Control: The standard GLA makes the cluster-
ing based on the spatial distribution of data samples without
explicit control on the cardinality of each cluster, which
may lead to unbalanced LOD hierarchy and correspondingly
increased entropy for data compression. As such, we prefer
to evenly distribute the primitives among clusters while max-
imizing the approximation quality of the intermediate LODs
at the same time. For a given LOD S = {si|1 ≤ i ≤ n},
the optimized GLA algorithm to generate the coarser LOD S′

with k = ⌈n/a⌉ surfels is described as follows.

1) Initialization: Pick randomly an initial set of represen-
tatives, Q = {qj |1 ≤ j ≤ k} ⊂ S

2) Iterative clustering: For l = 1, 2, · · · , we perform the
following.

a) Divide S into subsets Gj , 1 ≤ j ≤ k using
the nearest neighbor rule and cardinality control.
Specifically,
i) Set Gj = ∅, 1 ≤ j ≤ k, reset array A, and

mark all si ∈ S as unoccupied.
ii) For each surfel si ∈ S, we compute its distance

to qj , j = 1, 2, . . . , k, find the smallest distance
di corresponding to qji , and insert (di, i, ji) in-
to A whose elements are sorted in the ascending
order of di’s.

iii) Starting from the beginning of A, for each
(d, i, j) ∈ A, if si is not occupied and |Gj | < a,
set Gj = Gj ∪ {si} and mark si as occupied;

iv) For any sm ∈ S that is neither occupied nor
clustered, put it in Gjm , i.e., Gjm = Gjm ∪
{sm}.

b) Compute the new representative, qj , from all the
surfels in Gj , 1 ≤ j ≤ k, update the representative
set Q and compute the distortion

El =
1

n
Σk

j=1Σs∈Gjd(s, qj).

3) Stopping criterion: The clustering iteration stops if
(El−1 − El)/El < δ or l = L, where δ and L are
design parameters.

4) Final result: Q contains the final set of representatives,
forming the coarser LOD, i.e., S′ = Q .

Distance Metric: We propose a formula taking into account
both the position and the normal attributes; namely, given
two surfels, s1 = {p1, r1,n1} and s2 = {p2, r2,n2}, their
distance is computed as

d(s1, s2) = r21 · r22(wp · |p1 − p2|+ wn · |n1 − n2|). (1)

We empirically use wp = wn = 1.0 in our experiments.
Representative Computation: For a surfel cluster, G =

{gt = {pt, rt,nt}|t = 1, 2, . . . , T}, we compute its rep-
resentative surfel, q = {p, r,n}, to capture the geometric
characteristics of the surfels in G as precisely as possible.
Specifically, we compute p, n as area-weighted average of
pt and nt, t = 1, 2, . . . , T , respectively, and compute r as
r = α · (Σ|G|

t=1r
2
t)

1/2. Here α is a design parameter.

V. LOD HIERARCHY ENCODING

The LOD hierarchy is traversed level by level, from the root
down to the leaves. A queue is used to dynamically maintain
the nodes on the current tree front. During the traversal,
we visit each node on the tree front, encode the geometric
refinement associated with its children, and replace it with its
children in the tree front.

For each node encountered during the traversal, we encode
the position and the normal updates specified by the child
nodes, as described in the following subsections. We denote
the parent surfel as q = {p, r,n} and the T child surfels as
vi = {pi, ri,ni}, i ∈ [1, T].

A. Position Encoder

The position encoder encodes the difference between each
pi, i ∈ [1, T] and p. Similar to Peng et al. [9], we represent the
children’s spatial offsets in a local frame centered on p using
cylindrical coordinates, conduct adaptive local quantization to
the coordinates and make effective predictions to reduce the
data entropy. However, we design different approaches to some
of the above steps due to the specific characteristics of point
primitives, as will be emphasized in the following description.

We firstly define the local frame, F = (O,x,y, z). We set
O = p. Since we encode the normal information as well, we
directly use the unit normal vector, n, at q as the z basis vector,
in contrast to Peng et al. [9] who compute a best fitting plane
in the local neighborhood to obtain the z vector. We use the

same method as Peng et al. [9] to define the local x and y
basis vectors; namely, we project the global frame’s x basis
vector onto the tangential plane at p to get the local x basis
vector, and compute the local y basis vector as z× x.

Thereafter, we convert the Euclidean coordinates of the
children’s positions to cylindrical coordinates in this local
frame to obtain (ρi, θi, hi), i ∈ [1, T]. For the θ quantization,
we evenly divide the range of [0, 2π] to Q bins, as Peng
et al. [9] do; for the ρ and h quantizations, however, we
perform differently. Peng et al. [9] adaptively determine the
quantization parameters for ρ and h based on the geometrical
extents of the local neighborhood. For polygonal meshes, the
local neighborhood is readily available from the local connec-
tivity information. However, there is no explicit connectivity
between surfels in a point-based model. We do not choose to
explicitly construct and utilize the neighborhood relationship
either for computation- and memory-efficiency considerations.
As such, we may alternatively determine the range of ρ and
h coordinates adaptively based on the radius, r, of surfel p.
However, our point cloud encoder does not encode the radius
of each surfel. Instead, we compute and encode the average
surfel radius for each LOD with negligible bit cost, which
provides the quantization range for ρ and h coordinates on
each level of the LOD hierarchy. Denoting the quantization
parameters for ρ, θ and h as Gρ, Gθ and Gh, respectively,
they are computed as Gρ = Gh = α ·r/Q,Gθ = 2π/Q where
α and Q are design parameters specifying the scale of the
bounding volume and the number of bins, respectively, for
the quantization. We set α and Q to 6 and 64, respectively, in
our experiments.

Before encoding, we sort all the K child surfels in the
lexicographic order of their quantized θ, ρ and h coordinates.
The quantized ρ and h coordinates are directly arithmetic-
encoded. For the encoding of the quantized θ coordinates, we
as Peng et al. [9] make effective predictions to reduce the
data entropy. Assuming that the child surfels distribute evenly
around the parent, we expect their θ values to distribute evenly
in [0, 2π). As such, we encode the quantized polar angle, θ1,
for the first child directly, make predictions for the following
children’s quantized polar angles, θi, 2 ≤ i ≤ K, and encode
the residuals. Specifically, the polar angles of h1 and hi−1 are
α1 = θ1Gθ and αi−1 = θi−1Gθ, respectively; we predict θi
by θ′i = min[θi−1 +

2π+α1−αi−1

(K−i+2)Gθ
, 2π
Gθ

]; the residual θi − θ′i is
then arithmetic-coded.

B. Normal Encoder

We employ the normal encoding method proposed by Huang
et al. as part of their point cloud encoder [4], [15]. The normal
data quantization is based on a multi-resolution subdivision of
the Gaussian sphere surface, leading to a normal quantization
table which is used by both the encoder and the decoder.

Lower(higher) resolutions of the normal quantization are
used for coarser (finer) LODs during the encoding for better
rate-distortion performance. If the next level in the LOD
hierarchy uses the same normal resolution, the child surfels
simply inherit normal from the parent without any encoding;

Fig. 1. Test models used in our experiments.

otherwise, a finer normal resolution is used for the next LOD
and the child surfels’ normals need to be encoded. The differ-
ence between the quantized normals of each child surfel and
the parent surfel is encoded through a local normal indexing
scheme. That is, the quantized normals in a local neighborhood
centered on the parent surfel’s normal on the Gaussian sphere
are organized into a 1D list, with smaller indices given to
normals closer to the center. One bit is arithmetic-encoded
to indicate whether the child surfel’s normal is found in this
1D list. If it is, its local index in this list is arithmetic-
encoded; otherwise, its index in the global normal quantization
table is arithmetic-encoded. Since a child surfel’s normal is
typically close to that of the parent, this local indexing scheme
increases the frequencies of small local normal indices, leading
to significantly reduced entropy of the normal data.

VI. EXPERIMENTS

In our experiments, we use five test models, which are Face,
Igea, Rabbit, Horse and Saccarinum, as shown in Fig. 1. The
name and number of surfels of each model are marked in this
figure. Note that Face, Igea, Rabbit and Horse correspond to
manifold surfaces with or without boundary, while Saccarinum
corresponds to a surface with highly complicated topology.

We compare with the octree-based point cloud encoder
proposed by Huang et al. [15] which is the state-of-the-art
generic progressive point cloud encoder that can compress
models of arbitrary topology. For each encoder, we decode
the test models at a sequence of bitrates, and compare the
quality of the reconstructed LODs at the same bitrates between
these two point cloud encoders. The comparison is made both
quantitatively and visually.

We use the peak signal-to-noise ratio (PSNR) to measure the
quality of an intermediate LOD. Specifically, we compute the
PSNR for the position and the normal, respectively, according

to the following equations:

PSNRp = 20× log10
D

Ep
(2)

PSNRn = 20× log10
π

En
(3)

In Equations 2 and 3, D is the diagonal length of the original
model’s bounding box; En is the average angle between the
normal of each point in the original model and that of its
representative in the intermediate LOD; Ep is the average
distance from each point in the original model to the tangential
plane at its representative in the intermediate LOD.

A. Quantitative Comparison

We decode each test model at a sequence of bitrates using
the octree partitioning based point cloud coder by Huang et
al. [15] and our point cloud coder, respectively. For each
decoded intermediate model, we measure the position and
the normal PSNR values, which are reported in Table I. The
bitrates are reported in the unit of bits per point (bpp) with
respect to the total number of points in each original test
model. From Table I, we observe that, for the four manifold
models (Face, Horse, Igea and Rabbit), our coder yields higher
position coding PSNR values than and comparable normal
coding PSNR values to Huang et al.’s coder [15] at lower
bitrates; our coder yields lower PSNR values when bitrates
increase beyond a certain point. For the Saccarinum model
with highly complicated topology, however, our coder always
yields smaller PSNR values for both the position and the
normal coding.

Based on the data reported in Table I, we conclude that,
compared with Huang et al.’s coder [15], ours is superior
at low bitrates for relatively smooth and manifold models
but not not as good for models with high geometrical and/or
topological complexity.

B. Visual Comparison

Selected intermediate LODs at 2bpp and 4bpp for the
test models are shown in Fig. 2. The coding method and
corresponding bitrate is marked below each model in the
figure. Visually comparing the LODs obtained with Huang
et al.’s coder [15] and our coder, we find that our coder leads
to better model quality for the manifold models (Face, Igea,
Rabbit and Horse) but worse model quality for the complicate
non-manifold model (Saccarinum). This again confirms the
superiority of our coder in low bitrate manifold model coding.

VII. CONCLUSION AND FUTURE WORK

In this work, we have proposed a point cloud geometry
encoder that is composed of two stages: LOD hierarchy
construction and LOD hierarchy encoding. The first stage con-
structs a hierarchy of LODs using the adapted GLA algorithm,
leading to optimized quality of intermediate LODs; the second
stage makes progressive encoding of the LOD hierarchy using
effective representation, prediction and entropy coding for the
positional and the normal information points. Neither stage
requires that the surface has to be manifold. As a result, the

TABLE I
POSITION AND NORMAL CODING PSNR VALUES WITH HUANG et al.’S

CODER [15] AND OUR CODER ON THE TEST MODELS.

Bitrate(bpp) 0.7 2.0 4.0 5.0 7.0
PSNRp our coder 51.73 53.74 58.79 59.28 60.63

Huang et al. [15] 47.99 53.34 59.15 59.91 61.33
PSNRn our coder 22.33 24.08 30.42 30.45 30.45

Huang et al. [15] 21.74 28.08 28.37 28.72 30.81

(a) Face

Bitrate(bpp) 0.2 2.0 3.0 4.0 5.0
PSNRp our coder 50.71 59.87 64.21 64.42 64.67

Huang et al. [15] 47.41 59.25 60.32 61.78 63.90
PSNRn our coder 17.23 25.90 26.01 26.67 27.26

Huang et al. [15] 17.37 25.68 27.00 29.47 31.81

(b) Horse

Bitrate(bpp) 0.2 0.5 3.0 4.0 6.0
PSNRp our coder 48.80 50.20 61.89 62.15 62.76

Huang et al. [15] 46.51 48.30 59.10 59.79 61.93
PSNRn our coder 20.39 22.66 26.88 27.23 28.60

Huang et al. [15] 21.20 23.92 28.51 29.96 32.52

(c) Igea

Bitrate(bpp) 0.2 0.3 2.0 3.0 4.0
PSNRp our coder 49.99 50.42 59.07 62.76 63.01

Huang et al. [15] 47.14 48.19 59.11 60.43 61.99
PSNRn our coder 21.03 21.66 28.62 28.75 29.16

Huang et al. [15] 21.21 22.08 28.62 29.85 32.17

(d) Rabbit

Bitrate(bpp) 0.5 1.0 4.0 6.0 8.0
PSNRp our coder 44.25 47.55 50.38 52.51 54.03

Huang et al. [15] 48.77 51.42 59.53 60.44 61.83
PSNRn our coder 15.89 16.02 18.01 18.79 18.79

Huang et al. [15] 16.42 18.09 20.41 24.49 47.78

(e) Saccarinum

proposed point cloud encoder can process models of arbitrary
topology, and yields better reconstructed model quality at low
bitrates, making it potentially suitable for applications with
low-end bandwidth and/or platform configurations.

In the future, we plan to design algorithms to efficiently
encode the color information as well; Further, we will investi-
gate how to optimally allocate the coding bits over the model
surface such that the overall model quality is maximized for
a given total bit budget.

ACKNOWLEDGMENT

This work is supported by the Scientific Research Foun-
dation for the Excellent Middle-Aged and Youth Scientists
of Shandong Province of China (Grant No. BS2011DX017),
the National Natural Science Foundation of China (Grants
No. 61070103 and No. U1035004), the Program for New
Century Excellent Talents in University (NCET) in China,
and Shandong Provincial Natural Science Foundation, China
(Grant No. ZR2011FZ004).

Fig. 2. Visual comparison between Huang et al. [15] (OCT) and our method (Ours) at low bitrates (2bpp, 4bpp) on the test models.

REFERENCES

[1] BOTSCH M., WIRATANAYA A., KOBBELT L.: Efficient high quality
rendering of point sampled geometry. In EGRW ’02: Proceedings of
the 13th Eurographics workshop on Rendering (Aire-la-Ville, Switzerland,
Switzerland, 2002), Eurographics Association, pp. 53–64.

[2] FLEISHMAN S., COHEN-OR D., ALEXA M., SILVA C. T.: Progressive
point set surfaces. ACM Trans. Graph. 22, 4 (2003), 997–1011.

[3] GUMHOLD S., KARNI Z., ISENBURG M., SEIDEL H.-P.: Predictive
point-cloud compression. In Siggraph Sketches (2005).

[4] HUANG Y., PENG J., KUO C.-C. J., GOPI M.: Octree-based progressive
geometry coding of point clouds. In Eurographics Symposium on Point-
Based Graphics (2006), pp. 103–110.

[5] KRÜGER J., SCHNEIDER J., WESTERMANN R.: Duodecim - a structure

for point scan compression and rendering. In Eurographics Symposium on
Point-Based Graphics (2005), pp. 99–107.

[6] KALAIAH A., VARSHNEY A.: Statistical geometry representation for
efficient transmission and rendering. ACM Transactions on Graphics 24,
2 (2005), 348–373.

[7] LEVOY M., WHITTED T.: The use of points as a display primitive.
Technical report 85-022, Department of Computer Science, University of
North Carolina, 1985.

[8] OCHOTTA T., SAUPE D.: Compression of point-based 3d models by
shape-adaptive wavelet coding of multi-height fields. In Eurographics
Symposium on Point-Based Graphics (2004), pp. 103–112.

[9] PENG J., HUANG Y., KUO C.-C. J., ECKSTEIN I., GOPI M.: Feature
oriented progressive lossless mesh coding. In Computer Graphics Forum
(2010), vol. 29, Wiley Online Library, pp. 2029–2038.

[10] PENG J., KUO C.-C. J.: Geometry-guided progressive lossless 3D mesh
coding with octree (OT) decomposition. In ACM SIGGRAPH (2005),
pp. 609–616.

[11] RUSINKIEWICZ S., LEVOY M.: Qsplat: A multiresolution point render-
ing system for large meshes. In ACM SIGGRAPH (2000), pp. 343–352.

[12] SCHNABEL R., KLEIN R.: Octree-based point cloud compression. In
Eurographics Symposium on Point-Based Graphics (2006), pp. 111–120.

[13] WASCHBÜSCH M., GROSS M., EBERHARD F., LAMBORAY E.,
WÜRMLIN S.: Progressive compression of point-sampled models. In
Eurographics Symposium on Point-Based Graphics (2004).

[14] WU J., ZHANG Z., KOBBELT L.: Progressive splatting. In Eurographics
Symposium on Point-Based Graphics (2005), pp. 25–32.

[15] HUANG Y., PENG J., KUO C.-C. J., GOPI M.: A generic scheme for
progressive point cloud coding. In Visualization and Computer Graphics,
IEEE Transactions on 14, 2 (2008), 440–453.

[16] OCHOTTA T., SAUPE D.: Image-based surface compression. In
Computer graphics forum 27, 6 (2008), 1647–1663.

