# Introduction to Compressed Sensing

Mrityunjoy Chakraborty Dept. of Electronics & Electrical Communication Engg. Indian Institute of Technology, Kharagpur, INDIA



# Introduction

The field of Compressive Sensing(CS)

- A powerful method of exactly recovering signals at sub-Nyquist rate given that the signal has some sparse structure.
- It is a wide field with overlaps in several distinct areas of science and technology:
  - \* Signal Processing:
    - (i) MRI imaging
    - (ii) Speech processing
  - \* Applied mathematics:
    - (i) Applied harmonic analysis
    - (ii) Random matrix theory
    - (iii) Geometric functional analysis
  - \* Statistics

#### Data Acquisition

- For a signal bandlimited to *B* Hz, The Nquist rate demands at least 2*B* samples per second for perfect reconstruction.
- Becomes pretty challenging for ADCs to deliver the high sampling rate in context of modern high bandwidth communication systems(e.g. radar).



• Can prior knowledge about sparse structure of the signal help perfect reconstruction from a sub – Nyquist sampling strategy?

#### Data Compression

- Many signals are sparse in transform domains, like Fourier, Wavelet etc.
- Can we use the sparse structure in the transform domains to get compression even without the full acquisition (all signal coordinates)?
- Specifically, instead of taking samples of the actual vector  $\mathbf{x} \in \mathbb{R}^N$ , can we recover  $\mathbf{x}$ , from the linear measurements  $\mathbf{y} = \mathbf{\Phi}\mathbf{x}$ , where,  $\mathbf{x}$  is known to be sparse in some domain, that is there is some (known) matrix  $\mathbf{\Psi}$ , such that  $\mathbf{x} = \mathbf{\Psi}\mathbf{z}$ , such that  $\mathbf{z}$  is sparse.

### Sparsity in Wavelet domain



1 megapixel image



The problem of compressive sensing and its solutions

- The  $l_0$  "norm" optimization formulation • A suitable optimization problem must be formulated that addresses these questions by seeking out an unknown vector which is *highly sparse*, i.e. with as few nonzero coordinates as possible.
- Mathematically, let the system of linear measurements be given

by  $\mathbf{y} = \mathbf{\Phi} \mathbf{x}$ , where  $\mathbf{x} \in \mathbb{R}^N$ ,  $\mathbf{\Phi} \in \mathbb{R}^{M \times N}$ ,  $M \ll N$  and  $\mathbf{x}$  is highly sparse.

• Then the optimization problem we seek to solve is solving a constrained  $l_0$  "norm" minimization

$$\min_{\mathbf{x}:\mathbf{y}=\mathbf{\Phi}\mathbf{x}} \| \mathbf{x} \|_0$$

• However, this problem is a combinatorial one, and the complexity may be exponential. So, do we quit?

#### A relaxed convex optimization problem

- Turns out a slight convexification of the problem does the job, i.e. instead of minimizing  $l_0$  "norm", minimize the  $l_1$  norm  $\min_{\mathbf{x}:\mathbf{y}=\mathbf{\Phi}\mathbf{x}} ||\mathbf{x}||_1$
- The following diagram gives intuitive explanation to why  $l_1$  optimization finds a sparse solution, while  $l_2$  optimization does not



• Solution of this problem can recover unknown **x** with high probability, if **x** is K – sparse, and M satisfies,  $M \ge cK \ln(N / K) \ll N$ 

#### The Restricted Isometry Property

- In order to recover a high dimensional sparse vector x, from a low dimensional measurement vector y, obtained as y = Φx, the sensing matrix Φ must be "almost" orthonormal.
- This idea is captured by the *Restricted Isometry Property*(RIP):
  - A matrix  $\mathbf{\Phi} \in \mathbb{R}^{M \times N}$  is said to satisfy RIP of order *K*, if  $\forall$  *K* – sparse vector  $\mathbf{x} \in \mathbb{R}^N$ ,  $\exists \delta > 0$  such that  $(1 - \delta) ||\mathbf{x}||_2^2 \le ||\mathbf{\Phi}\mathbf{x}||_2^2 \le (1 + \delta) ||\mathbf{x}||_2^2$
  - The smallest such constant  $\delta$  is denoted as  $\delta_{K}$
- In simple words,  $\Phi$  is an approximate isometry for all *K* sparse vectors.

• RIP is fundamentally related to eigenvalues of a matrix

 $\delta_{K} = \max_{S \subset \{1, 2, \cdots, N\} : |S| = K} \| \mathbf{I} - \mathbf{\Phi}_{S}^{T} \mathbf{\Phi}_{S} \|_{2 \to 2}$ 

- We can prove this as below
  - Let **x** be a K sparse vector so that  $\Phi \mathbf{x} = \Phi_S \mathbf{x}_S$ , where S is the support of **x**
  - Then, by definition of maximum and minimum eigenvalues of a

matrix, 
$$\lambda_{\min}(\Phi_{S}^{T}\Phi_{S}) = \arg\min_{\mathbf{u}} \frac{\mathbf{u}^{T}\Phi_{S}^{T}\Phi_{S}\mathbf{u}}{\|\mathbf{u}\|_{2}}, \lambda_{\max}(\Phi_{S}^{T}\Phi_{S}) =$$
  
 $\arg\max_{\mathbf{u}} \frac{\mathbf{u}^{T}\Phi_{S}^{T}\Phi_{S}\mathbf{u}}{\|\mathbf{u}\|_{2}}$ 

• Hence, from the definition of RIP, any  $\delta$ , that satisfies the RIP of order *K*, also satisfies,  $\lambda_{\min}(\Phi_S^T \Phi_S) \ge (1-\delta), (1+\delta) \ge$  $\lambda_{\max}(\Phi_S^T \Phi_S) \Longrightarrow \delta \ge ||\mathbf{I} - \Phi_S^T \Phi_S||_{2\to 2}$ 

- Since this is true for any set *S* of indices with cardinality *K*, we can write, for any such  $\delta$  satisfying the RIP property of order *K*,  $\max_{S:|S|=K} ||\mathbf{I} \mathbf{\Phi}_S^T \mathbf{\Phi}_S||_{2\to 2} \leq \delta$
- Since, by definition,  $\delta_K$  is the smallest such  $\delta$ , we have  $\delta_K = \max_{S:|S|=K} \|\mathbf{I} - \mathbf{\Phi}_S^T \mathbf{\Phi}_S\|_{2 \to 2}$

• Another nice property of RIP is that if RIC is small, after transformation, orthogonal vectors remain *almost* orthogonal, as stated in the following form :

 $|\langle \mathbf{x}, \mathbf{y} \rangle| \leq \delta_{|S_1|+|S_2|} ||\mathbf{x}||_2 ||\mathbf{y}||_2$ 

where  $\mathbf{x}, \mathbf{y} \in \mathbb{R}^N$ , with supports  $S_1, S_2$  such that  $S_1 \cap S_2 = \emptyset$ 

• To prove this, note that,  $|\langle \mathbf{x}, \mathbf{y} \rangle| = 0$ , since  $S_1 \cap S_2 = \emptyset$ , which allows us to write

$$\begin{aligned} |\langle \mathbf{x}, \mathbf{y} \rangle| &= |\mathbf{x}^{T} (\mathbf{I} - \mathbf{\Phi}^{T} \mathbf{\Phi}) \mathbf{y}| \\ &= |\mathbf{x}_{S_{1} \cup S_{2}}^{T} (\mathbf{I}_{S_{1} \cup S_{2}} - \mathbf{\Phi}_{S_{1} \cup S_{2}}^{T} \mathbf{\Phi}_{S_{1} \cup S_{2}}) \mathbf{y}_{S_{1} \cup S_{2}}| \\ &\leq ||\mathbf{x}_{S_{1} \cup S_{2}} ||_{2} || (\mathbf{I}_{S_{1} \cup S_{2}} - \mathbf{\Phi}_{S_{1} \cup S_{2}}^{T} \mathbf{\Phi}_{S_{1} \cup S_{2}}) \mathbf{y}_{S_{1} \cup S_{2}} ||_{2} \\ &\quad (\text{due to Cauchy} - \text{Scwartz}) \\ &\leq ||\mathbf{x}_{S_{1} \cup S_{2}} ||_{2} || \mathbf{I}_{S_{1} \cup S_{2}} - \mathbf{\Phi}_{S_{1} \cup S_{2}}^{T} \mathbf{\Phi}_{S_{1} \cup S_{2}} ||_{2 \to 2} || \mathbf{y}_{S_{1} \cup S_{2}} ||_{2} \\ &\leq \delta_{|S_{1}|+|S_{2}|} || \mathbf{x} ||_{2} || \mathbf{y} ||_{2} \end{aligned}$$

- How to find good sensing matrix ? • A unique minimizer of the  $l_0$  minimization problem is guaranteed if every 2*K* columns of the sensing matrix is linearly independent, equivalently,  $\delta_{2K} \in (0,1)$ ; but how to find it ?
- How to design a sensing matrix such that  $\delta_{2K} \in (0,1)$ ?



• An easy answer is *random matrices*, i.e., matrices with elements independent and identically distributed according to some distribution

- Fantastic examples are :
  - Gaussian sensing matrices, i.e., elements are i.i.d. Gaussian
  - Bernoulli sensing matrices with elements i.i.d. 0,1 with probabilities 1 p, p

## Recovery algorithms

## $l_1$ minimization algorithms

• Basis pursuit :

$$\min_{\mathbf{x}\in\mathbb{R}^{N}} \|\mathbf{x}\|_{1}$$
s.t.  $\mathbf{y} = \mathbf{\Phi}\mathbf{x}$ 

• Quadratically constrained basis pursuit or Basis pursuit denoising (BPDN):

$$\min_{\mathbf{x}\in\mathbb{R}^{N}} \|\mathbf{x}\|_{1}$$
  
s.t.  $\|\mathbf{y} - \mathbf{\Phi}\mathbf{x}\|_{2} \le \epsilon$ 

• Dantzig Selector :

$$\min_{\mathbf{x}\in\mathbb{R}^{N}} \|\mathbf{x}\|_{1}$$
  
s.t. 
$$\|\mathbf{\Phi}^{T}(\mathbf{y}-\mathbf{\Phi}\mathbf{x})\|_{\infty} \leq \tau$$

## Greedy algorithms

Some of the most important greedy algorithms for sparse recovery are :

- Matching pursuit (MP), Orthogonal matching pursuit (OMP), Orthogonal least squares (OLS)
- Compressive sampling matching pursuit (CoSaMP), Subspace Pursuit (SP)
- Iterative Hard Thresholding (IHT), Hard Thresholding Pursuit (HTP)

#### Matching Pursuit

- Given that  $\mathbf{y} \in \mathbb{R}^{M}$ , the goal is to, iteratively, find the best linear representation of  $\mathbf{y}$  in the dictionary  $\{\phi_{1}, \dots, \phi_{N}\}$ 
  - In other words, find **x**, iteratively, such that  $||\mathbf{y} \mathbf{\Phi}\mathbf{x}||_2$  is minimum where  $\mathbf{\Phi} = [\phi_1 \cdots \phi_N]$
- In matching pursuit
  - Initialize the residual  $\mathbf{r} = \mathbf{y}$
  - Find the atom most correlated to the residual, i.e., find  $\phi_i$ such that  $i = \arg \max_{1 \le j \le N} |\rho_j|$ , where  $\rho_j = \langle \phi_j, \mathbf{r} \rangle$
  - Update the residual :  $\mathbf{r} \leftarrow \mathbf{r} \rho_i \phi_i$ , and return to step 1

## Orthogonal matching pursuit

- Same as matching pursuit, except that the dictionary representation is known to be *K* sparse
- The Orthogonal matching pursuit goes as below :
  - Initialize residual  $\mathbf{r} = \mathbf{y}$ , and the temporary support  $\Lambda = \emptyset$
  - Find the atom most correlated to the residual **r**, i.e., find  $\phi_i$ such that  $i = \arg \max_{1 \le j \le N} |\rho_j|$ , where  $\rho_j = \langle \phi_j, \mathbf{r} \rangle$
  - Enlarge the temporary support by augmenting this new index,
     i.e. Λ ← Λ ∪ {i}
  - Find the best *K* sparse representation of **y** with the atoms from the dictionary supported on Λ, i.e. find **x**, such that

$$\mathbf{x}_{\Lambda} = \boldsymbol{\Phi}_{\Lambda}^{\dagger} \mathbf{y}, \ \mathbf{x}_{(\Lambda)^{c}} = \mathbf{0}$$

• Update residual  $\mathbf{r} \leftarrow \mathbf{y} - \mathbf{\Phi}_{\Lambda} \mathbf{x}$  and return to step 1

Many types of conditions have been found for the sensing matrix Φ, to ensure perfect recovery of the *K* – sparse vector x from the measurement y = Φx vector in *K* iterations

- RIP based recovery conditions :
  - Davenport and Wakin [1] found the condition  $\delta_{K+1} < \frac{1}{3\sqrt{K}}$
  - Wang et.al [2] improved the condition to  $\delta_{K+1} < \frac{1}{\sqrt{K}+1}$
  - To date the best condition is established by chang et.al [3],

which is 
$$\delta_{K+1} < \frac{\sqrt{4K+1}-1}{2K}$$

Another type of recovery conditions are given by the *worst – case coherence*  $\mu$ , and the average – case coherence v

- Worst case coherence is defined as the maximum absolute cross – correlation among the columns of the sensing matrix, in other words  $\mu := \max_{i \neq j} |\langle \phi_i, \phi_j \rangle|$
- Average case coherence is defined as the maximum among all the absolute values of row averages (excluding the diagonal in that row) of the Gram matrix  $\Phi^{T}\Phi$ , in other words,

$$\nu \coloneqq \frac{1}{N-1} \max_{i} |\sum_{j:i \neq j} \langle \phi_i, \phi_j \rangle|$$

• Tropp. [4] gives recovery condition in terms of  $\mu$  as  $\mu < \frac{1}{2K-1}$ • Chi and Calderbank. [5] give conditions  $\mu < \frac{1}{240 \log N}$ , and

$$v < \frac{\mu}{\sqrt{M}}$$
, with  $N \ge 128$ 

• Tropp and Gilbert. [6] have shown that OMP can indeed recover a K – sparse vector with very high probability if an "uncorrelated" (that is the mutual correlation between the columns of the matrix is very low with high probability) sensing matrices are used : specifically, if  $\delta \in (0, 0.36)$ , and if an "admissible" sensing matrix  $\mathbf{\Phi}$  is chosen with dimension  $M \times N$ , with  $M \ge C \ln(N\delta)$ , for some constant C, then, OMP can recover the original, K – sparse vector **x** from the measurements  $\mathbf{y} = \mathbf{\Phi} \mathbf{x}$ , with probability exceeding  $1 - \delta$ 



## OMP with more than K iterations

- Recently a variant of OMP has been studied where OMP is run for more than *K* iterations, where *K* is the sparsity of the unknown vector
- Allowing the algorithm to run for more iterations improve the recovery condition
  - Recovery conditions found by Zhang : OMP can recover a *K* sparse vector with 30*K* iterations if  $\delta_{31K} < \frac{1}{3}$
  - Recovery conditions found by Livshitz: OMP reconstructs a *K* sparse signals in  $\left\lfloor \alpha \sqrt{K} \right\rfloor$ , if  $\delta_{\alpha \sqrt{K}} = \frac{\beta}{\sqrt{K}}$  for proper choices of  $\alpha, \beta(\alpha \sim 2.10^6, \beta \sim 10^{-6})$

• Sahoo and Makur [7] has shown that if OMP is allowed to run for  $K + \lfloor \alpha K \rfloor$  iterations ( $\alpha \in [0,1]$ ), the algorithm can recover a *K* sparse vector with high probability with only

 $\mathcal{O}\left(K\ln\frac{n}{\lfloor \alpha K \rfloor + 1}\right)$  measurements, pretty close to the number of

measurements required for success for Basis pursuit, that is

$$\mathcal{O}\left(K\ln\frac{n}{K}\right)$$

#### Generalized orthogonal matching pursuit

- Wang. et.al [8] proposed a generalized orthogonal matching pursuit algorithm (gOMP) where at the augmentation step, instead of augmenting one index, N(N ≥ 1) indices are added, which are chosen according to decreasing order of absolute correlation with the residual vector.
- Recovery conditions for this algorithm are given as

• 
$$\delta_{KN} < \frac{\sqrt{N}}{\sqrt{K} + 3\sqrt{N}}$$
[8]  
•  $\delta_{KN} < \frac{\sqrt{N}}{\sqrt{K} + 2\sqrt{N}}, \ \delta_{NK+1} < \frac{\sqrt{N}}{\sqrt{K} + \sqrt{N}}$ [9]





Courtesy of Wang et.al. [8].

#### Orthogonal least squares

- OLS has the same functional structure as OMP
- The key difference is in the identification step :
  - Recall that OMP searches for a new index by finding the largest among the absolute correlations |\langle \phi\_i, \mathbf{r}^k \rangle |
  - OLS searches for an index such that inclusion of the corresponding column will minimize the projection error, i.e., find the index *i* such that ||P<sup>⊥</sup><sub>T<sup>k</sup>∪{i}r<sup>k</sup></sub>||<sup>2</sup> is minimized where *i* is searched over all indices in {1, 2, ···, n} \ T<sup>k</sup>

- There seems to be not much work on OLS in the literature.
- Soussen et.al [10] has numerically shown that OLS has uniformly higher recovery probability compared to OMP.
- Mukhopadhyay et.al [11] has tried to characterize the recovery performance of OLS in terms of recovery probability and explained why OLS has higher recovery probability, compared to OMP, in correlated dictionaries.

#### Multiple Orthogonal least squares

- MOLS is a generalization of OLS, proposed by Wang et.al [12].
- The generalization is realized in identification step, where instead of choosing one new index, a set of *L* indices (*L*≥1) is chosen such that the sum of projection errors by individually appending an atom from that set is minimized, i.e. ∑<sub>i∈S</sub> || P<sup>⊥</sup><sub>T<sup>k</sup>∪{i}r<sup>k</sup></sub> ||<sup>2</sup> is minimized.
- A recovery condition has been found by them :  $\delta_{LK} < \frac{\sqrt{L}}{\sqrt{K} + 2\sqrt{L}}$ .



Courtesy of Wang et.al. [8].

Compressive sampling matching pursuit (CoSaMP) Input: Measurement vector  $\mathbf{y} \in \mathbb{R}^m$ , sensing matrix  $\boldsymbol{\Phi} \in \mathbb{R}^{m \times n}$ , sparsity level *K*, initial estimate  $\mathbf{x}^0$ ,  $\epsilon$ 

**Initialize**: counter k = 0

While  $(\|\mathbf{y} - \mathbf{\Phi}\mathbf{x}^k\|_2 > \epsilon)$ 

Identification:  $h^{k+1} = supp \left( H_{2K} \left( \mathbf{\Phi}^T (\mathbf{y} - \mathbf{\Phi} \mathbf{x}^k) \right) \right)$ Augmentation:  $U^{k+1} = S^k \cup h^{k+1}$  where  $S^k = supp(\mathbf{x}^k)$ Estimation:  $\mathbf{u}^{k+1} = \arg \min_{\mathbf{u}:\mathbf{u} \in \mathbb{R}^n, supp(\mathbf{u}) \subset U^{k+1}} \| \mathbf{y} - \mathbf{\Phi} \mathbf{u} \|_2$ Update:  $\mathbf{x}^{k+1} = H_{2K}(\mathbf{u}^{k+1})$ k = k + 1

**End While** 

**Output** :  $\hat{\mathbf{x}} = \mathbf{x}^{k-1}$ 

- Needell and Tropp. [13] proposed CoSaMP as a sparse signal recovery algorithm. They proved the following recovery condition :
  - Let the measurement model be given by y = Φx + e where x is K sparse and where e is the measurement noise vector. Then, for each iteration k ≥ 0, the signal approximation x<sup>k</sup> satisfies:

$$\|\mathbf{x} - \mathbf{x}_{2}^{k+1} \le 0.5 \| \mathbf{x} - \mathbf{x}^{k} \|_{2} + 10 \| \mathbf{e} \|_{2} \|,$$
$$\|\mathbf{x} - \mathbf{x}^{k} \|_{2} \le 2^{-k} \| \mathbf{x} \|_{2} + 20 \| \mathbf{e} \|_{2}$$

• Foucart [14] later improved the recovery condition to

$$\|\mathbf{x} - \mathbf{x}^{k}\|_{2} \leq \rho^{k} \|\mathbf{x} - \mathbf{x}^{0}\|_{2} + \tau \|\mathbf{e}\|_{2} \text{ where } \rho \text{ and } \tau \text{ depend on}$$
  
$$\delta_{4K}, \text{ and } \delta_{4K} < \sqrt{\frac{5}{4 + \sqrt{73}}} \approx 0.3847.$$

• Satpathi and Chakraborty [15] showed that the number of iterations for the convergence of the CoSaMP algorithm is

$$\lceil cK \rceil$$
, where  $c = \frac{\log(4/\rho_{4K}^2)}{\log(1/\rho_{4K}^2)}$ , where  $\rho_{4K} = \sqrt{\frac{2\delta_{4K}^2(1+\delta_{4K}^2)}{1-\delta_{4K}^2}}$ 

**Input** : Measurement vector  $\mathbf{y} \in \mathbb{R}^m$ , sensing matrix  $\mathbf{\Phi} \in \mathbb{R}^{m \times n}$ , sparsity level *K*, initial estimate  $\mathbf{x}^0$ ,  $\epsilon$ 

**Initialize**: counter k = 0

While  $(||\mathbf{y}_2 - \mathbf{\Phi}\mathbf{x}^k||_2 > \epsilon)$ *Identification*:  $h^{k+1} = supp(H_K(\mathbf{\Phi}^T(\mathbf{y} - \mathbf{\Phi}\mathbf{x}^k)))$ 

> Augmentation:  $U^{k+1} = S^k \cup h^{k+1}$  where  $S^k = supp(\mathbf{x}^k)$ Estimation:  $\mathbf{u}^{k+1} = \arg\min_{\mathbf{u}:\mathbf{u}\in\mathbb{R}^n, supp(\mathbf{u})\subset U^k} \|\mathbf{y} - \mathbf{\Phi}\mathbf{u}\|_2$   $Update: S^{k+1} = supp(\mathbf{u}^{k+1})$   $\mathbf{x}^{k+1} = \arg\min_{\mathbf{u}:\mathbf{u}\in\mathbb{R}^n, supp(\mathbf{u})\subset S^{k+1}} \|\mathbf{y} - \mathbf{\Phi}\mathbf{u}\|_2$ k = k + 1

**End While** 

**Output** :  $\hat{\mathbf{x}} = \mathbf{x}^{k-1}$ 

- Dai and Milenkovic [16] proposed SP almost at the same time Needel and Tropp proposed CoSaMP.
  - SP is quite similar to CoSaMP with the difference that SP has to compute two orthogonal projections, while CoSaMP requires to compute only one projection.
  - Dai and Milenkovic showed that if **x** is a *K* sparse unknown vector and  $\mathbf{y} = \mathbf{\Phi}\mathbf{x}$  is the measurement vector with the sensing matrix  $\mathbf{\Phi}$  satisfying  $\delta_{3K} < 0.165$ , then, SP converges to the unknown vector **x** in a finite number of steps.
  - Dai and Milenkovic also found an upper bound for the number of iterations necessary for SP to converge as

$$n_{\text{it}} \leq \min\left\{\frac{\log \rho_{\min}}{\log c_{K}} + 1, \frac{125K}{-\log c_{K}}\right\}, \text{ where}$$
$$\rho_{\min} = \min_{1 \leq i \leq n} |x_{i}| / ||\mathbf{x}||, \text{ and } c_{K} \coloneqq \frac{2\delta_{3K}(1 + \delta_{3K})}{(1 - \delta_{3K})^{3}}$$

• Satpathi and Chakraborty [15] later found the number of iterations for convergence to  $\lceil ck \rceil$ , where  $c = \frac{\log(4/\rho_{3K}^2)}{\log(1/\rho_{4K}^2)}$ ,

where 
$$\rho_{mK} \coloneqq \sqrt{\frac{2\delta_{mK}^2(1+\delta_{mK}^2)}{1-\delta_{mK}^2}}, \ m \in \mathbb{Z}^+.$$



(b) Simulations for zero-one sparse signals: both OMP and ROMP starts to fail when K ≥ 10, ℓ<sub>1</sub>-LP begins to fail when K ≥ 35, and the SP algorithm fails when K ≥ 29.

#### Courtesy Dai and Milenkovic [16]



(a) Simulations for Gaussian sparse signals: OMP and ROMP start to fail when  $K \ge 19$  and when  $K \ge 22$  respectively,  $\ell_1$ -LP begins to fail when  $K \ge 35$ , and the SP algorithm fails only when  $K \ge 45$ .

## Iterated Hard Thresholding (IHT)

**Input** : Measurement vector  $\mathbf{y} \in \mathbb{R}^m$ , sensing matrix  $\mathbf{\Phi} \in \mathbb{R}^{m \times n}$ , sparsity level *K*, initial estimate  $\mathbf{x}^0$ ,  $\epsilon$ 

Initialize: counter 
$$k = 0$$
  
While  $(\|\mathbf{y} - \mathbf{\Phi}\mathbf{x}^k\|_2 > \epsilon)$   
 $\mathbf{x}^{k+1} = H_K \left( \mathbf{x}^k + \mathbf{\Phi}^T (\mathbf{y} - \mathbf{\Phi}\mathbf{x}^k) \right)$   
 $k = k + 1$ 

**End While** 

**Output** :  $\hat{\mathbf{x}} = \mathbf{x}^{k-1}$ 

- This algorithm is motivated by the constrained gradient descent approach :
  - The IHT algorithm solves the following problem :

 $\min_{\mathbf{x}:||\mathbf{x}||_0 \le K} \| \mathbf{y} - \mathbf{\Phi} \mathbf{x} \|_2^2$ 

- The problem is non convex in nature as the constraint set is non convex.
- However, an heuristic approach is to use gradient descent to first solve the unconstrained convex problem  $\min_{\mathbf{x}} ||\mathbf{y} \mathbf{\Phi}\mathbf{x}||_2^2$  by the following update at each step

$$\mathbf{x}^k + \boldsymbol{\mu} \boldsymbol{\Phi}^T (\mathbf{y} - \boldsymbol{\Phi} \mathbf{x}^k)$$

then restrict each update of the gradient descent to a K – sparse vector.

• This amounts to projecting the gradient descent update on the

union of the  $\binom{n}{K}$  subspaces containing K – sparse vectors

• The resulting update becomes

$$\mathbf{x}^{k+1} = H_K(\mathbf{x}^k + \mu \mathbf{\Phi}^T(\mathbf{y} - \mathbf{\Phi}\mathbf{x}^k))$$

- The "heuristic" approach of deriving IHT has been formalized by Blumensath and Gilbert [17].
  - Instead of directly solving the actual constrained optimization problem, they attempt to solve another constrained optimization problem where the objective function is a majorization of the actual objective function, with the constraint set unchanged.
  - Specifically, they define the following functional:  $C(\mathbf{x}, \mathbf{z}) = ||\mathbf{y} - \mathbf{\Phi}\mathbf{x}||_{2}^{2} - ||\mathbf{\Phi}\mathbf{x} - \mathbf{\Phi}\mathbf{z}||_{2}^{2} + ||\mathbf{x} - \mathbf{z}||_{2}^{2}$
  - Note that  $C(\mathbf{x}, \mathbf{x})$  is the actual objective function, and under the condition  $\|\mathbf{\Phi}\|_{2\to 2} < 1$ ,  $C(\mathbf{x}, \mathbf{x}) \le C(\mathbf{x}, \mathbf{z})$ ,  $\forall \mathbf{z}$ .

- Thus the prescription for the minimization follows the so called "Maximization – Minimization" (MM) approach, formally,  $\mathbf{x}^{k+1} = \arg\min_{\mathbf{u}:\|\mathbf{u}\|_{k} \le K} C(\mathbf{u}, \mathbf{x}^{k}), \forall k \ge 0.$
- The updates turn out to be the updates of IHT.
- Also note that,  $C(\mathbf{x}^{k+1}, \mathbf{x}^{k+1}) \leq C(\mathbf{x}^{k+1}, \mathbf{x}^{k}) \leq C(\mathbf{x}^{k}, \mathbf{x}^{k})$ , where the first inequality follows from the majorization property, and the second inequality follows from the minimization property.

- A very simple convergence proof has been given by Foucart [14]
  - Assume the measurement model  $\mathbf{y} = \mathbf{\Phi} \mathbf{x}$ , with the unknown  $\mathbf{x}$  having known sparsity *K*
  - Then, from the  $k^{th}$  update of IHT, it follows that

$$\|\mathbf{x}^{k+1} - (\mathbf{x}^{k} + \mathbf{\Phi}^{T} (\mathbf{y} - \mathbf{\Phi} \mathbf{x}^{k}))\|_{2}^{2} \leq \|\mathbf{x} - (\mathbf{x}^{k} + \mathbf{\Phi}^{T} (\mathbf{y} - \mathbf{\Phi} \mathbf{x}^{k}))\|_{2}^{2}$$
  
$$\Rightarrow \|(\mathbf{x}^{k+1} - \mathbf{x})\|_{2}^{2} \leq 2\langle \mathbf{x}^{k+1} - \mathbf{x}, \mathbf{x}^{k} + \mathbf{\Phi}^{T} (\mathbf{y} - \mathbf{\Phi} \mathbf{x}^{k}) - \mathbf{x} \rangle$$
  
$$\Rightarrow \|(\mathbf{x}^{k+1} - \mathbf{x})\|_{2}^{2} \leq 2\langle \mathbf{x}^{k+1} - \mathbf{x}, (\mathbf{I} - \mathbf{\Phi}^{T} \mathbf{\Phi}) (\mathbf{x}^{k} - \mathbf{x}) \rangle$$

- Let the supports of  $\mathbf{x}$ ,  $\mathbf{x}^{k}$ ,  $\mathbf{x}^{k+1}$  be  $\Lambda$ ,  $\Lambda_{k}$ ,  $\Lambda_{k+1}$  respectively, and let  $V_{k+1} = \Lambda \cup \Lambda_{k} \cup \Lambda_{k+1}$ , so that  $|V_{k+1}| \le 3K$ .
- The, it follows from Cauchy Scwartz inequality,

$$\| (\mathbf{x}^{k+1} - \mathbf{x}) \|_{2}^{2} \leq 2 \| \mathbf{I} - \mathbf{\Phi}_{V^{k+1}}^{T} \mathbf{\Phi}_{V^{k+1}} \|_{2 \to 2} \| \mathbf{x}^{k} - \mathbf{x} \|_{2} \| \mathbf{x}^{k+1} - \mathbf{x} \|_{2}$$
$$\Rightarrow \| (\mathbf{x}^{k+1} - \mathbf{x}) \|_{2} \leq 2\delta_{3K} \| \mathbf{x}^{k} - \mathbf{x} \|_{2}$$
which implies that  $\mathbf{x}^{k} \to \mathbf{x}$ , as  $k \to \infty$ , if  $\delta_{3K} < \frac{1}{2}$ 

## Hard Thresholding Pursuit (HTP)

**Input** : Measurement vector  $\mathbf{y} \in \mathbb{R}^m$ , sensing matrix  $\boldsymbol{\Phi} \in \mathbb{R}^{m \times n}$ , sparsity level *K*, initial estimate  $\mathbf{x}^0$ ,  $\epsilon$ 

Initialize: counter k = 0While  $(\|\mathbf{y} - \mathbf{\Phi}\mathbf{x}^k\|_2 > \epsilon)$   $L^{k+1} = supp \left( H_K \left( \mathbf{x}^k + \mathbf{\Phi}^T (\mathbf{y} - \mathbf{\Phi}\mathbf{x}^k) \right) \right)$   $x^{k+1} = \arg \min_{\mathbf{u}:\mathbf{u} \in \mathbb{R}^n, supp(\mathbf{u}) \subset L^{k+1}} \| \mathbf{y} - \mathbf{\Phi}\mathbf{u} \|_2$ k = k + 1

**End While** 

 $\hat{\mathbf{Output}}: \mathbf{\hat{x}} = \mathbf{x}^{k-1}$ 

- Foucart [18] proposed HTP motivated by the observation that the number of iterations taken by IHT to converge can be reduced by taking orthogonal projections of the updates on the set of *K* indices found at an iteration
- Foucart found the recovery condition for HTP for perfect measurements to be  $\delta_{3K} < \frac{1}{\sqrt{3}}$
- Bouchot et.al [19] has found an upper bound on the number of iteration that HTP take to converge, as  $n \le cK$ , where *c* is a constant such that  $c \le 3$ , whenever,  $\delta_{3K} \le 1/\sqrt{5}$

# Hard Thresholding Pursuit (HTP)



FIG. 4.2. Number of successes for IHT and HTP algorithms (Gaussian matrices and vectors)

Courtesy of Foucart [18].

Models of sparsity

### Block sparsity

- These are sparse vectors where the non zero coefficients occur in clusters.
- Let a vector can be written as

 $\mathbf{x} = [x_1 \cdots x_d \ x_{d+1} \cdots x_{2d} \cdots x_{N-d+1} \cdots x_N]^T. \text{ Let } N = Ld,$ and let  $\mathbf{x}[l] \coloneqq [x_{(l-1)d+1} \cdots x_{ld}]^T$ , so that each of these  $\mathbf{x}[\cdot]$ 

represents a block of length d.



#### Group Sparsity

- A generalization of block sparsity, where the blocks may not be overlapping
- Consider a set of indices N = {1, 2, ..., n}, and consider a class 𝔅, called a group structure, which is a collection of some subsets of N, i.e, 𝔅 = {𝔅<sub>1</sub>,..., 𝔅<sub>L</sub>}, such that
  𝔅<sub>i</sub> ⊆ N, 1 ≤ i ≤ L, and ⋃<sub>𝔅∈𝔅</sub>𝔅 = N
- A vector x is called a *G group sparse*vector [21] with respect to the group structure G, if the support of x is contained in the union of at most *G* groups form the group structure G



Union of Subspace (UoS) model and Model sparse signals

- Another generalization of block sparse model that tries to capture the effect of overlapping blocks
- Let  $\mathbf{x} \in \mathbb{R}^N$  be a K sparse vector, but with unknown support,

i.e. the support of **x** can be any of the  $\binom{N}{K}$  supports of cardinality *K*, numbered as  $\Lambda_1$  through  $\Lambda_{\binom{N}{\nu}}$ 

• For each *i*,  $1 \le i \le \binom{N}{K}$ , define the sets

 $\mathcal{V}_i = \{ \mathbf{u} \in \mathbb{R}^N \mid u_i = 0 \ \forall i \in \Lambda_i \}$ 

It is not difficult to see that each V<sub>i</sub> is a subspace of dimension K, but are, in general, overlapping, that is, in general, V<sub>i</sub> ∩ V<sub>j</sub> \ {0} ≠ Ø

• Thus, 
$$\mathbf{x} \in \mathcal{U}$$
 where  $\mathcal{U} = \bigcup_{i=1}^{\binom{N}{K}} \mathcal{V}_i$ 

• In general, let 
$$\mathcal{M}_{K} = \bigcup_{i=1}^{m_{K}} \mathcal{V}_{i}$$
, where  $1 \le m_{K} \le \binom{N}{K}$  then

 $\mathcal{M}_{K}$  defines the *K* – model sparse signal model and the elements of  $\mathcal{M}_{K}$  are called the *K* – model sparse signals.

#### References

- M. Davenport, M. B. Wakin *et al.*, "Analysis of orthogonal matching pursuit using the restricted isometry property," *IEEE Trans. Inf. Theory*, vol. 56, no. 9, pp. 4395 – 4401, 2010.
- [2] J. Wang and B. Shim, "On the recovery limit of sparse signals using orthogonal matching pursuit,"
  - IEEE Trans. Signal Process., vol. 60, no. 9, pp. 4973-4976, 2012.
- [3] L.-H. Chang and J.-Y. Wu, "An improved rip based performance guarantee for sparse signal recovery via orthogonal matching pursuit," *IEEE Trans. Inf. Theory*, vol. 60, no. 9, pp. 5702–5715, 2014.
- [4] J. Tropp*et al.*, "Greed is good: Algorithmic results for sparse approximation," *IEEE Trans. Inf. Theory*, vol. 50, no. 10, pp. 2231–2242, 2004.
- [5] Y. Chi and R. Calderbank, "Coherence based performance guarantees of orthogonal matching pursuit," in *Communication, Control, and Computing (Allerton)*, 2012 50th Annual Allerton Conference on. IEEE, 2012, pp. 2003–2009.

- [6] J. A. Tropp and A. C. Gilbert, "Signal recovery from random measurements via orthogonal matching pursuit," *IEEE Trans. Inf. Theory*, vol. 53, no. 12, pp. 4655–4666, 2007.
- [7] S. K. Sahoo and A. Makur, "Signal recovery from random measurements via extended orthogonal matching pursuit," *IEEE Trans. Signal Process.*, vol. 63, no. 10, pp. 2572–2581, 2015
- [8] J. Wang, S. Kwon, and B. Shim, "Generalized orthogonal matching pursuit," *IEEE Trans. Signal Process.*, vol. 60, no. 12, pp. 6202–6216, 2012.
- [9] S. Satpathi, R. L. Das, and M. Chakraborty, "Improving the bound on the rip constant in generalized orthogonal matching pursuit," *IEEE Signal Process. Lett.*, vol. 20, no. 11, pp. 1074–1077, 2013.
- [10] C. Soussen, R. Gribonval, J. Idier, and C. Herzet, "Joint k-step analysis of orthogonal matching pursuit and orthogonal least squares," *IEEE Trans. Inf. Theory*, vol. 59, no. 5, pp. 3158–3174, 2013.

[11] S. Mukhopadhyay, P. Vashishtha, and M. Chakraborty,
"Signal recovery in uncorrelated and correlated dictionaries using orthogonal least squares," *arXiv preprint arXiv*:1607.08712, 2016.

 [12] J. Wang and P. Li, "Recovery of Sparse Signals Using Multiple Orthogonal Least Squares," *arXiv preprint arXiv*:1410.2505, Oct. 2014.

[13] D. Needell and J. A. Tropp, "Cosamp: Iterative signal recovery from incomplete and inaccurate samples," *Appl. Comput. Harmon. Anal.*, vol. 26, no. 3, pp. 301–321, 2009.

 [14] S. Foucart, "Sparse recovery algorithms: sufficient conditions in terms of restricted isometry constants," in *Approximation Theory XIII*: San Antonio 2010. Springer, 2012, pp. 65–77.

[15] S. Satpathi and M. Chakraborty, "On the number of iterations for convergence of cosamp and sp algorithm," *arXiv preprint arXiv*:1404.4927, 2014.

- [16] W. Dai and O. Milenkovic, "Subspace pursuit for compressive sensing signal reconstruction," *IEEE Trans. Inf. Theory*, vol. 55, no. 5, pp. 2230–2249, 2009.
- T. Blumensath and M. E. Davies, "Iterative hard thresholding for compressed sensing," *Appl. Comput. Harmon. Anal.*, vol. 27, no. 3, pp. 265–274, 2009.
- S. Foucart, "Hard thresholding pursuit: an algorithm for compressive sensing," *SIAM J. Numer. Anal.*, vol. 49, no. 6, pp. 2543–2563, 2011.
- [19] J.-L. Bouchot, S. Foucart, and P. Hitczenko, "Hard thresholding pursuit algorithms: number of iterations," *Appl. Comput. Harmon. Anal.*, 2016.
- [20] Y. C. Eldar and G. Kutyniok, *Compressed sensing* : *theory and applications*. Cambridge University Press, 2012.
- [21] L. Baldassarre, N. Bhan, V. Cevher, A. Kyrillidis, and
   S. Satpathi, "Group sparse model selection : Hardness and relaxations," *arXiv preprint arXiv*:1303.3207, 2013.