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Abstract—The effective handling of end-of-sentences and
speaker alternations, both of which are frequently observed in
multiparty conversations, in recurrent neural network language
models (RNNLMs) is investigated. This kind of auxiliary in-
formation is represented as context cues and feature vectors.
The former representation can be inserted directory into a
transcription and treated as a word token, while the latter
serves as auxiliary input to the neural networks. Experimental
comparisons using multiparty conversation data, including the
AMI meeting corpus, demonstrated that both representations
contribute to improvement of the RNNLMs, and that dealing with
the end-of-sentences is important, especially on the multiparty
conversations.

I. INTRODUCTION

Deep learning and related technologies have improved the
performance of speech recognition systems [1]. Recognizing
speech in multiparty conversations, however, has not yet
achieved practical levels of performance because challenges
specific to this domain remain unresolved [2], [3], [4]. For
example, speakers in multiparty conversations are dynamically
alternated, and very short utterances that are attributed to back-
channel feedback and nods frequently appear, which yields
frequent end-of-sentences. Since different speakers indicate
different choices of spoken words (i.e., speaking styles),
subsequent words can be influenced by speakers, even if the
flows of conversation are consistent. Therefore, incorporating
information that is specific to multiparty conversations (e.g.,
dialog states and speaker alternations) into language modeling
can contribute to improvements in predicting words spoken
during multiparty conversations.

Many efforts have been made to develop language models
for spoken dialogs. The content and subjects of dialogs have
been focused on in the field of language modeling [5], [6]. Sev-
eral attempts have been made to consider speakers and their
alternations in language modeling, i.e., roles of participants in
a meeting were identified [7] and exploited as prior informa-
tion [8], [9], the effect of speakers was considered using topic
models [10], [11], [12], speaker alternations were explicitly
modeled [13], [14], and utterances just before alternation were
explicitly considered to model interactions [15], [16]. All these
methods, however, were implemented using n-gram language
models.

The present study focused on end-of-sentences and speaker
alternations, both of which frequently appear in multiparty
conversations, and we explored the effective use of these kinds

of information in recurrent neural network language models
(RNNLMs) [17], including long short-term memory language
models (LSTMLMs) [18], which have become the mainstream
of language modeling. Two attempts have particularly been
made to incorporate information on end-of-sentences and
speaker alternations into RNNLMs and evaluated on multi-
party conversation data including the augmented multiparty
interaction (AMI) meeting corpus. The first attempted to
represent these kinds of information as context cues, and
inserted them directly into a transcription and treated them
as word tokens. Second, they were represented as feature
vectors and taken as auxiliary inputs to neural networks
in addition to corresponding word vectors. The knowledge
obtained in the present study could contribute to improvements
in the performance of automatic speech recognition (ASR)
systems and natural language processing (NLP) applications
for multiparty conversations.

The rest of the present paper is organized as follows.
Section II briefly reviews RNNLMs. Section III describes
the use of the end-of-sentences and speaker alternations in
RNNLMs. Section IV investigates the effectiveness of using
these kinds of information on the performance of RNNLMs
using transcriptions from Japanese and English multiparty
conversations. Finally, a summary is presented in Section V.

II. RNNLMS

An RNNLM is a language model based on a two-layer
neural network with an input layer, x(t), a hidden layer,
h(t), and an output (word prediction) layer, y(t). The hidden
layer has recurrent connections, which makes it possible to
propagate contextual information.

Assume that the word vector at time t, denoted as w(t), is
represented by 1-of-K encoding. Then, input x(t) is formed by
concatenating w(t) and previous hidden layer output h(t−1)
as:

x(t) =
[
w(t)Th(t−1)T

]T
. (1)

The x(t) is mapped to a continuous vector, h(t). Considering
h(t) as a context, the network finally yields word probability
distribution y(t), which predicts the subsequent word (i.e., the
word at time t+1) given the context. The h(t) and y(t) are
calculated as:

h(t) = f
(
Ux(t)

)
, y(t) = g

(
Vh(t)

)
, (2)
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where U= (uji) denotes the weight between h(t) and x(t),
and V = (vkj) denotes the weight between y(t) and h(t).
The terms, f(z) and g(z), represent the activation function.
Back propagation through time (BPTT) [19] is exploited for
training.

Long short-term memory language models (LSTMLMs)
[18] were also exploited in the present study to capture
contexts that were longer than those that the RNNLMs could
deal with. The LSTM cells, which have an error carousel and
three gates, viz.,the input gate, forget gate, and output gate,
are introduced into a hidden layer in this model.

III. USE OF END-OF-SENTENCES AND SPEAKER
ALTERNATIONS IN RNNLM

This section describes the importance of exploiting end-of-
sentences and speaker alternations in language modeling for
multiparty conversations. In addition, two methods are pre-
sented to incorporate the previous information into RNNLMs:
first, the information is represented by the context cues and
equivalently inserted into the transcriptions as other word
tokens, and second, the information is represented by the
auxiliary features and taken as inputs to the neural networks.

A. Phenomena specific to multiparty conversations

Effective handling of the phenomena that are frequently
observed in multiparty conversations, such as end-of-sentences
and speaker alternations, can enhance the language models for
multiparty conversations. In contrast to spoken lectures, which
are uttered by a single speaker, multiparty conversations have
two main characteristics:

• Very short utterances such as back-channel feedback and
nods to other utterances frequently appear and

• Directions and content of subsequent conversations de-
pend on who is speaking.

The former property indicates that end-of-sentences frequently
appear in the text transcribed from multiparty conversations.
Therefore, the language models for multiparty conversations
are required to capture end-of-sentences and deal with very
short utterances more accurately than those in spoken lectures.
In addition, the effective use of speaker-derived information
could contribute to improvements to performance in predict-
ing words in multiparty conversations because of the latter
property.

B. Context cue representation

Context cues are tokens that represent arbitrary informa-
tion and are inserted into transcriptions. End-of-sentences are
generally represented as context cues and exploited. However,
the present study not only attempted to deal with end-of-
sentences but also speaker alternations using the representation
of context cues. The end-of-sentences and presence or absence
of speaker alternations in this case are represented by the con-
text cues listed in Table I, and the proposed context cues are
included in the transcriptions. Figure 1 has an example of using
these context cues. This figure indicates that information on

TABLE I
CONTEXT CUE REPRESENTATION OF END-OF-SENTENCES AND SPEAKER

ALTERNATIONS. “YES” AND “NO” CORRESPOND TO PRESENCE AND
ABSENCE OF END-OF-SENTENCES AND SPEAKER ALTERNATIONS AT NEXT

UTTERANCE.

context cue end-of-sentence speaker alternation
< /s > Yes -

< /s+ turn > Yes Yes
< /s+ else > Yes No
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Fig. 1. Example of exploiting information on end-of-sentences and speaker
alternations as context cues in RNNLMs. Upper figure corresponds to unrolled
RNN that does not deal with these context cues and lower figure corresponds
to that dealing with these context cues.

the end-of-sentences and speaker alternations is equivalently
given to neural networks as other word tokens.

C. Feature vector representations

An auxiliary feature vector, s(t), which represents end-of-
sentences and speaker alternation, for word wt spoken at time
t is defined using 1-of-K representation, as summarized in
Table II. The auxiliary feature is taken as the input to the
neural network at every time step, as outlined in Fig. 2. The use
of the auxiliary feature and network structure are determined
from preliminary experiments. The auxiliary feature at the next
time, s(t+1), in this model is fed as bias into the hidden layer.
The history of words and auxiliary information is retained in
this case via the hidden layer with recurrent connections. The
outputs of the word prediction layer are given in Eq. 2, as
with the conventional RNNLM. The hidden layer outputs can
be calculated as:

h(t) = f

(
U
[
w(t)Ts(t+1)Th(t−1)T

]T)
. (3)

TABLE II
DEFINITION OF AUXILIARY FEATURE VECTORS THAT REPRESENT

END-OF-SENTENCES AND SPEAKER ALTERNATION. AUXILIARY FEATURE
s(t) IS DEFINED ON BASIS OF WHETHER WORD wt AT TIME t IS BEGINNING

OF UTTERANCE AND WHETHER SPEAKER ALTERNATION OCCURS AT t.
auxiliary feature beginning-of-sentence speaker alternation

(1, 0) Yes -
(0, 1) No -

(1, 0, 0) Yes Yes
(0, 1, 0) Yes No
(0, 0, 1) No -
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Fig. 2. RNNLM with speaker-aware training.

IV. EXPERIMENTS

Experimental comparisons were conducted on multiparty
conversational data to evaluate the effectiveness of exploiting
information on the end-of-sentences and speaker alternations
in RNNLMs in terms of test set perplexity and word error rate
that were yielded from speech recognition systems. Six lan-
guage models were evaluated. After this, “C” means context
cues, “E” means end-of-sentences, and “A” means speaker
alternations.

• RNN: RNNLM (LSTMLM) that neither deals with end-
of-sentences nor speaker alternations,

• RNN CE: RNNLM (LSTMLM) that deals with end-of-
sentences represented by context cues,

• RNN E: RNNLM (LSTMLM) that deals with end-of-
sentences represented by auxiliary feature vectors,

• RNN CE E: RNNLM (LSTMLM) that deals with end-
of-sentences represented by both context cues and auxil-
iary feature vectors,

• RNN CEA: RNNLM (LSTMLM) that deals with end-of-
sentences and speaker alternations represented by context
cues, and

• RNN EA: RNNLM (LSTMLM) that deals with end-of-
sentences and speaker alternations represented by auxil-
iary feature vectors.

The context cues and auxiliary feature vectors in the present
experiments are defined in Table I for the former and Table II
for the latter.

A. Transcriptions

The transcriptions of multiparty conversations in Japanese
and those in English were used for evaluations as follows.

1) NTT meeting corpus: Multiparty conversations on spe-
cific topics were collected and transcribed in the NTT Com-
munication Science Laboratory. The transcriptions are referred
to as the “NTT corpus”, where all conversations were in
Japanese. Four to six participants had discussions on specific
topics for about 16 minutes, which was referred to as “one
session.” One participant was the presenter for each session
and the remaining participants asked questions. Several parties
participated in more than one session. Table III lists the

numbers of words, utterances, sessions, and vocabulary size
for the training, development, and testing data.

2) AMI meeting corpus: The AMI meeting corpus [20]
includes transcriptions of multiparty meetings in which all the
utterances are spoken in English. Table IV lists the recording
times and numbers of words, utterances, and vocabulary size
for the training, development, and testing data.

B. Experimental setup

RNNLMs were applied to evaluation on the NTT corpus
because this contained relatively small amounts of data, while
LSTMLMs were used in evaluation on the AMI corpus be-
cause large amounts of data were available. The parameters for
RNNLMs and LSTMLMs are listed in Table V for the former
and Table VI for the latter. The learning rate for both models
was initialized to 0.1 and then halved when the logarithmic
likelihood ratio on the development data was less than 1.003.
Dropout [21] was applied in training the LSTMLMs. The
emission probabilities of context cues were ignored, i.e., the
corresponding probabilities were forced to zero and those of
other words were normalized for cases in which the context
cues were used for representing auxiliary information on the
end-of-sentences and speaker alternations.

C. Experimental results

Table VII lists the test set perplexities obtained from the
language models evaluated on the NTT meeting corpus and
Table VIII lists those evaluated on the AMI meeting corpus.

Tables IX and X list the word error rates that were yielded
from the speech recognition systems using the NTT corpus for
the former and the AMI corpus for the latter. A 100-best list
was generated for each utterance using a weighted finite-state
transducer (WFST)-based speech recognizer [22], [23], where
the recognizer utilized a fully-connected deep neural network
(DNN) acoustic model and a 3-gram language model, which
were trained on the previously given dialogue data. The DNN
acoustic model in the experiment on the NTT corpus had six
hidden layers of 2048 units, an input layer of 418 nodes, and
3874 output units. The DNN acoustic model when the AMI
corpus was used had seven hidden layers of 450 units, an input
layer of 220 units, and 3742 output units. Each hypothesis
in the 100-best list was re-scored using the RNNLMs and
LSTMLMs. In addition, the language model scores obtained

TABLE III
SETUP FOR NTT MEETING CORPUS.

training dev. test
# of utterances 20176 4748 4646
# of sessions 40 8 8
vocabulary size 6050 2409 2351
# of words 150215 31074 30371

TABLE IV
SETUP FOR AMI MEETING CORPUS.

training dev. test
recording time (h) 81 9 9
# of utterances 108503 13098 12643
vocabulary size 11883 4146 3913
# of words 802894 94953 89666
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TABLE V
RNNLM PARAMETERS THAT WERE USED.

# of hidden units 40, 50, 70, 100, 200, 300
BPTT 1, 2, 4, 8, 10
learning rate 0.1
l2-regularization parameter 1.0× 10−5

TABLE VI
LSTMLM PARAMETERS THAT WERE USED.

# of hidden units 300, 600, 1000
BPTT 5, 10, 15, 20
learning rate 0.1
l2-regularization parameter 1.0× 10−5

dropout rate 0.5

TABLE VII
TEST SET PERPLEXITIES ON NTT MEETING CORPUS. “EOS” MEANS

END-OF-SENTENCE AND “SA” MEANS SPEAKER ALTERNATIONS.

model context cue feature vector PPL
RNN 55.3
RNN CE EOS 49.5
RNN E EOS 50.2
RNN CE E EOS EOS 50.3
RNN CEA EOS & SA 48.5
RNN EA EOS & SA 48.8

TABLE VIII
TEST SET PERPLEXITIES ON AMI MEETING CORPUS. “EOS” MEANS

END-OF-SENTENCES AND “SA” MEANS SPEAKER ALTERNATIONS.

model context cue feature vector PPL
LSTM 82.9
LSTM CE EOS 73.4
LSTM E EOS 73.6
LSTM CE E EOS EOS 74.0
LSTM CEA EOS & SA 73.2
LSTM EA EOS & SA 73.5

from the RNNLMs and LSTMLMs were linearly interpolated
with the scores obtained from the 3-gram language model,
where the interpolation coefficients for the RNNLM/LSTMLM
and those for the 3-gram language model were both set to one
for the NTT corpus, and set to one and four for the AMI
corpus.

These tables summarize the five main results obtained on
the RNNLMs for the multiparty conversations:

• The results on the NTT meeting corpus and those on
the AMI meeting corpus had similar trends where the
information on the end-of-sentences and speaker alter-
nations could be effective in RNNLMs and LSTMLMs
for multiparty conversations, irrespective of the spoken
languages or data size,

• Exploiting the information on speaker alternations in
addition to the generally used end-of-sentences reduced
the perplexity and word error rate,

• The context cue and auxiliary feature representations
yielded no clear differences in the performance of
RNNLMs or LSTMLMs,

• The results obtained from RNN CE E and
LSTM CE E suggest that simultaneous use of
both context cues and feature vectors was redundant and
did not help in improving performance, and

• The results in terms of both the word error rate and
perplexity indicated that RNN CEA and LSTM CEA,

TABLE IX
WORD ERROR RATES (WERS) (%) ON NTT MEETING CORPUS. “EOS”

MEANS END-OF-SENTENCES AND “SA” MEANS SPEAKER ALTERNATIONS.

model context cue feature vector WER
w/o re-scoring - - 20.8
RNN 19.6
RNN CE EOS 19.6
RNN E EOS 19.6
RNN CE E EOS EOS 19.6
RNN CEA EOS & SA 19.5
RNN EA EOS & SA 19.7

TABLE X
WORD ERROR RATES (%) ON AMI MEETING CORPUS. “EOS” MEANS

END-OF-SENTENCES AND “SA” MEANS SPEAKER ALTERNATIONS.

model context cue feature vector WER
w/o re-scoring - - 24.5
LSTM 23.9
LSTM CE EOS 23.8
LSTM E EOS 23.7
LSTM CE E EOS EOS 23.8
LSTM CEA EOS & SA 23.7
LSTM EA EOS & SA 23.8

which exploited information on the end-of-sentences and
speaker alternations that was represented by context cues,
could be the most effective tools in speech recognition
and word prediction.

D. Discussion
The same experiment was carried out on transcriptions

of spoken lectures, which were different from multiparty
conversations to emphasize the importance of handling end-
of-sentences in RNNLMs in multiparty conversations. We
randomly chose 320 spoken lectures in this case from the
corpus of spontaneous Japanese (CSJ) [24], and LSTMLMs
that deal with end-of-sentences were evaluated in terms of
perplexity. The use of end-of-sentences reduced the perplexity
by 6.1% on the CSJ corpus in the best case and reduced the
perplexities by 10.5% on the NTT meeting corpus and by
11.5% on the AMI meeting corpus. This suggests that the
consideration of end-of-sentences in RNNLMs is important,
especially in multiparty conversations.

V. CONCLUSION

The use of information on end-of-sentences and speaker
alternations in RNNLMs was discussed to develop effective
language models for multiparty conversations. Two attempts
were specifically made to represent such auxiliary information:
the first representation was the use of context cues as other
input tokens and the second involved feature vectors taken as
inputs to neural networks at individual time steps. Experimen-
tal comparisons conducted on Japanese and English meeting
data demonstrated that exploiting information on speaker
alternations yielded improvements over when only generally-
used end-of-sentences were used, but information on end-of-
sentences were dominant in performance. Two representations
for auxiliary information in this case did not create large
differences in performance. In addition, it was important to
handle information on end-of-sentences in language modeling,
especially that for multiparty conversations.
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