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Abstract—In this paper, we propose a deep convolutional
feature-based robust and efficient template matching method.
The originality of the proposed method is that it is based on
a scale-adaptive feature extraction approach. This approach is
influenced by an observation that each layer in a CNN represents
a different level of deep features of the actual image contents.
In order to keep the features scalable, we extract deep feature
vectors of the template and the input image adaptively from a
layer of a CNN. By using such scalable and deep representation
of the image contents, we attempt to solve the template matching
by measuring the similarity between the features of the template
and the input image using an efficient similarity measuring
technique called normalized cross-correlation (NCC). Using NCC
helps in avoiding redundant computations of adjacent patches
caused by the sliding window approach. As a result, the proposed
method achieves state-of-the-art template matching performance
and lowers the computational cost significantly than the state-of-
the-art methods in the literature.

I. INTRODUCTION

Template matching is considered as one of the core tasks in
computer vision as it is the basis of finding solutions to many
correspondence identification problems, e.g., visual tracking,
object detection, and 3D reconstruction. Template matching
is usually performed using a sliding window manner, i.e.,
all possible patches in an image are compared with the tem-
plate by using a similarity measuring method. Early template
matching methods employ similarity measures such as sum
of squared differences (SSD), sum of absolute differences
(SAD), and normalized cross-correlation (NCC) [1]. Although
template matching methods using such similarity measures
work fast, such methods fail to show the robustness against
object deformations and partial occlusions.

Using a different trend, several methods attempted to in-
crease robustness with computationally expensive measures.
In [2], for deformation invariance, histogram matching (HM)
method is proposed which compares the color histogram of
the template with the target image patches, without considering
the spatial information. Although the method easily deals with
geometric deformations, it is still difficult to handle partial
occlusion and clutter backgrounds without considering the
geometrical cue. In the same vein, Oron et al. [3] employ the
Earth Mover’s Distance (EMD) between two sets of points
in xyRGB space. The inclusion of geometrical information
xy allows partial occlusion and clutter backgrounds to be
handled better than HM based method. In [4], a bidirectional
similarity based Best Buddies Similarity (BBS) method is

proposed. The BBS is a parameter-free and robust similarity
measure method between two sets of points. However, all the
mentioned methods require more expensive computations for
each window than the traditional similarity measuring methods
i.e., SSD, SAD, and NCC.

With the recent success of deep learning algorithms, CNNs
are actively employed in a variety of applications e.g., classifi-
cation, object detection, and segmentation. In [5], CNN is used
in an image correspondence problem having a variant of a two-
stream network called Siamese network. The Siamese network
considers the image correspondence problem as a classification
problem which determines the matching similarity between
two given patches. Thus, all patches in an image are captured
using a sliding window and compared to the template using
the Siamese network. For each image patch, exhaustive feature
extraction is performed, without considering the redundancies
within the image. As a result, the total cost of the computation
increases proportional to the number of pixels within the
image. Additionally, a large number of parameters are to be
trained from the scratch for comparison purposes. Moreover,
each input patch is scaled to a predetermined size and fed to
CNNs. To this end, CNNs should be learned with a scale-
invariant property, which makes training difficulty high.

The above mentioned solutions to the template matching
problem suffers from their own limitations. In this paper,
we propose a robust and efficient solution to the template
matching problem by overcoming those limitations. By an
observation that each layer in a CNN represents a different
level of deep features of the actual image contents [9], we
extract scale-adaptive deep convolutional feature vectors from
the template and the input image via the pre-trained VGG-
Net [7]. Then, NCC is used to measure the distance between
the features of the template and the image to detect the target
image patch. Concretely, we propose a scale-adaptive approach
which extracts features from an adaptively determined layers
of CNNs considering the size of the given template. Figure 1
shows an illustrative diagram of the proposed scale-adaptive
deep convolutional feature based template matching method.

The rest of the paper is organized as follows. In Section II,
we explain the proposed method in detail. Section III presents
the experimental results. Finally, the conclusion of this paper
is drawn in Section IV.
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Fig. 1: Illustration of the scale-adaptive deep convolutional feature extraction based method for template matching.

II. PROPOSED METHOD

We define template matching as a problem of locating the
most similar patch within an image I ∈ Rm×n×3 for a given
template T ∈ Rw×h×3, where m and n represent the width
and height of the image and w and h correspond to the width
and height of the template. To solve the problem, we propose
a robust and efficient scale-adaptive deep convolutional feature
based method. The detail of the proposed method appears in
the following subsections.

A. Scale Adaptive Deep Convolutional Feature Extraction

In the proposed scale-adaptive feature extraction method, we
use the VGG-Net [7] to extract feature vectors from both the
template and the input image. Unlike common CNNs-based
methods, we do not scale the template or images into a specific
size, e.g., 224 × 224. Instead of scaling, taking the template
size into account, we adaptively identify the target layer of the
VGG-Net and extract the feature vectors from the target layer.
Each layer of CNNs has a rf l × rf l receptive field where a
width of a receptive field of the lth layer rf l is as defined as

rf l =

{
rf l−1 + (f l − 1)

∏l−1
i=1 s

i l > 1,
3 l = 1,

(1)

where, for simplicity, the layer index l is set depending on their
order, e.g., conv1 1 is 1, conv1 2 is 2, and pool1 is 3. The f l

represents a filter size of the lth layer and si represents a stride
of the ith layer. If a template is smaller than a receptive field
of the target layer, the layer deals with a meaningless outer
region of the template filled with zeros. Therefore, we limit
the target layer to have a receptive field which is smaller than
or equal to the template. Here, we can represent a target layer
index l∗ by

l∗ = max(l − k, 1) s.t. rf l ≤ min(w, h), (2)

where k should be greater than or equal to 0 in order to satisfy
the condition in Eq. (2). We set k to 3 for consistent selection
while dealing with templates of various sizes. The effect of
the value of k is shown in Section III. As we set k to 3, the

size of the receptive field in the (l − 3)th layer is about half
of min(w, h) because there is a pooling layer between the lth
and the (l − 3)th layers. Then, we feed a template T and an
image I into CNNs and extract a template feature F and an
image feature map M from the target layer. Notice that an
image I and a template T are padded with a few zeros before
feed-forwarding in order to avoid generating fractional output.
For example, since pool1 layer has a 6×6 receptive field and a
stride of 2, the input should be padded to have a size of 6+2d
where d is an integer greater or equal than zero. Here, we only
need to compute convolutional feature vectors once for each
template and image with a fully convolutional approach [6],
which is much more efficient than a naı̈ve sliding window
approach.

B. NCC-based Similarity Measure

We locate the most similar patch by using NCC between
M and F . First, we calculate NCC between M and F by

NCCi,j =
< F, M̃ >

|F ||M̃ |
, (3)

where M̃ = Mi:i+hf−1,j:j+wf−1, which is a feature patch
extracted from M with a width wf and a height hf as equal
to the size of F . Here, we do not subtract the mean of each
F and M̃ since they have already been rectified. Then, we
find the location (i∗, j∗) which has the maximum NCC value.
Since the location is found on feature domain, we recover a
box position on image domain corresponding to the location
by back-projecting the position.

C. Location Refinement

Since the proposed method is conducted on the convolu-
tional feature map, it is considered as performing sliding win-
dow with a stride of the target layer. Therefore, we refine the
location found on feature domain in order to achieve better pre-
cision. First, we set the initial box position ((x0

1, y
0
1), (x

0
2, y

0
2))

computed by back-projecting the maximum location (i∗, j∗)
into image space where (x0

1, y
0
1) is the upper-left position
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(a)

(b)

Fig. 2: Quantitative analysis of the performances of the pro-
posed method and the state-of-the-art method. (a) Success
curve and AUC, (b) Computation time with respect to the
image size in terms of pixel.

and (x0
2, y

0
2) is the bottom-right position of the initial box,

respectively. Then, we take patches in the vicinity of the
maximum location (i∗, j∗) on NCC for refinement. In detail,
to get refined x1, we employ a weighted sum of the original
locations of a 3×4 NCC patch where weights are NCC values
expressed by

x1 =

∑1
u=−1

∑1
v=−2 NCCi∗+u,j∗+v · (x0

1 + v ·
∏l∗−1

i=1 si)∑1
u=−1

∑1
v=−2 NCCi∗+u,j∗+v

.

(4)
In a similar manner, we also refine x2, y1, and y2.

III. EXPERIMENTS

A. Experiment Setup

In the experiment, we follow the evaluation protocol of [4]
for fair comparison. In detail, 105 template-image pairs are
sampled from 35 videos (3 pairs per video) from the tracking
dataset given in [10]. The template is randomly chosen and the
image is sampled 20 frames after the template is captured. For
each pair, intersection-over-union (IoU) between ground truth
box and predicted box is measured. Then, success curve with

(a)

(b)

Fig. 3: Performances analysis based on AUC using (a) fixed
scale features and (b) the proposed adaptive-scale features.

varying IoU thresholds and area under the curve (AUC) is used
for quantitative comparison. We compare the proposed method
to 7 state-of-the-art methods in the literature. The methods are
three CNNs-based methods (2ch-deep, 2ch-2stream, Siamese)
[5], BBS [4], HM [2], SSD, and NCC [1].

B. Experimental Results

We perform several quantitive analysis to show the effective-
ness of the proposed method. First, we perform a quantitative
analysis using success curves shown in Fig. 2 (a). As it can be
seen, the performance of the proposed method is comparable
to that of 2ch-2stream method [5] and performs better than
that of 2ch-deep [5] and BBS [4] methods. Although the
performance of the 2ch-2stream is comparable, it is due to
the fact that the 2ch-2stream method is explicitly designed
for measuring the similarity between two patches. In contrast,
the proposed method achieves the same performance as 2ch-
2stream with the pre-trained VGG-net by taking advantage of
the scale-adaptive approach. It is further noticeable in Fig. 2
(a) that the Siamese network [5] shows worse performance
than simple similarity based methods such as SSD and NCC
even though the method also uses CNNs.
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(a) Deformation (b) Illumination change (c) Partial occlusion

Fig. 4: Examples of the template matching performance in different challenging situations using the proposed scale-adaptive
deep convolutional feature based method. Green and red boxes represent ground truth and a predicted box, respectively. The
above images are from the tracking dataset [10] which we used for evaluation.

From the efficiency perspective, we analyze the running
time performances of the proposed method and the state-of-
the-art methods which are reported in Fig. 2 (b). We compare
the running time performances of the methods with respect
to the image of size ranging from 25K to 115K pixels. The
computation time of the proposed method primarily depends
on the feature extraction step due to a high complexity of the
CNN. The methods based on CNNs with accelerated comput-
ing using GPUs takes tens of seconds due to exhaustive feature
extraction using a sliding window. In contrast, we perform
feature extraction once for an image rather than a series of
sliding windows. As a result, the proposed method could be
as efficient as NCC after feature extraction. Therefore, it takes
only 0.2s with GPU acceleration and 5.0s with only CPU,
which performs significantly faster than of BBS (605.0s), HM
(86.5s), CNNs-based methods (44.7s ∼ 50.3s), NCC (16.4s),
and SSD (7.3s) when dealing with an image with 115K pixels.
It is worth noting that the proposed method is faster than even
SSD since we calculate NCC with small feature map caused
by using a latter layer which has large stride. For instance, a
spatial size of feature map from the pool5 layer is 322 times
smaller than the number of image pixels.

The effectiveness of the proposed scale-adaptive feature
is shown in Fig. 3. For the fixed-scale case, we match the
template features to the image features extracted from all
layers of the VGG-Net except fully-connected layers. The
layer pool2, containing a 14×14 receptive field, shows the best
performance with AUC 0.57. For scale-adaptive feature extrac-
tion, we change the value of k from 0 to 17, corresponding to
the layer which had a similar receptive field size of a template
and the first layer, conv1 1, respectively. When k is set to 3,
it shows the best performance and it is not sensitive to the
change in the vicinity of 3. Moreover, it performs better than
the best-performing fixed-scale feature extraction method. It
verifies that using a scale-adaptive deep convolutional feature
based method is more effective than the fixed-scale case. In
addition, average of min(w, h) for templates which we use for
evaluation is 40. In the case where min(w, h) is 40, with k = 3
made l∗ represents pool2 which is the best outcome for fixed
feature extraction. This performance also supports the reason

of effectiveness of k = 3.
Next, we compare the proposed method with and without

refinement. Without refinement, the proposed method shows
AUC of 0.62. And, refinement increased precision in terms
of AUC by 0.01. Although the precision increment does not
look significant, it helped to deal with the sizes differences
between a template and a target object in an image. Figure 4
shows a few qualitative comparisons in different challenging
situations. As it can be seen, the proposed method finds the
best matches almost as accurately as the labeled ground truths.

IV. CONCLUSION

In this paper, we have proposed a robust template match-
ing method using scale-adaptive deep convoultional features.
The scale-adaptive approach could deal with various sizes of
templates by using rich and scalable representations of CNNs
properly. In addition, to prevent redundant computations of
sliding window based methods, we have employed a fully con-
volutional approach for feature extraction followed by efficient
normalized cross-correlation based location. As a result, the
proposed method achieves state-of-the-art performance within
affordable time.
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