
Voichap: a standalone real-time voice change application on iOS platform

Xiaoling Wu1, Shuhua Gao1, Dong-Yan Huang2, Cheng Xiang1

1Department of Electrical&Computer Engineering, National University of Singapore, Singapore
2Human Language Technology Department, Institute for Infocomm Research/A*STAR, Singapore

{a0115281,shuhua gao}@u.nus.edu, huang@i2r.a-star.edu.sg, elexc@nus.edu.sg

Abstract
High-quality voice mimicry is appealing to everyone. However,
only few vocal geniuses are endowed with the talent for vivid
mimicry. Professional mimics have to be trained and practice
over many years for various vocal skills, such as vocal control,
precision in pitch, sense of rhythm and personal style, etc. To
help achieve our dream for fascinating voice mimicry, such as
speaking in a celebrity’s voice, we have developed a real-time
voice conversion technology for the general users. You can
specify any target (like your friend or a celebrity) for your voice
conversion as long as the target’s training utterances are avail-
able. To facilitate easy use, we have implemented it efficiently
as a mobile application on the iOS platform, called Voichap,
which can generate a desired natural target voice. Notably, the
complete training and conversion process is performed locally
in a reasonable time, with no need for on-line server service,
to improve the user experience. Just three steps are enough to
use this application: choose a target, record your voice and then
have fun listening to your converted voice.
Index Terms: real-time voice conversion, mobile application,
harmonic plus stochastic model (HSM), parallel computing

1. Introduction
Voice conversion means the modification of a source speaker’s
voice to make it sound like the voice of another speaker (target
speaker) while keeping the linguistic information unchanged.
There are many potential applications of voice conversion, for
example, we can equip text-to-speech (TTS) systems with voice
conversion capacity to provide various distinctive voice choices
to the user[1]. Some other scenarios for voice conversion may
include voice recognition, voice pathology, video games and
other entertainment applications. For example, a single actor
can dub for all roles in a computer animated film by converting
her/his voice to any roles voice, which will save the labor cost
and maximize the profits.

The main underlying mechanism of voice conversion tech-
nology is to modify the nonlinguistic information such as the
voice characteristics while leaving the linguistic information
unchanged. In literature, various voice conversion approaches
have been proposed with emphasis on different features, rules
and requirements, such as the initial mapping code books
[2], weighted frequency warping [3], Gaussian Mixture Model
(GMM) [4] and artificial neural networks [5]. In recent years, as
the increasing computation power and larger amount of data be-
come available, more and more deep learning techniques have
been adopted for voice conversion, for instance, the deep neural
networks with layer-wise generative training [6] and the deep
belief nets [7]. Remarkably, the DeepMind team has proposed
a generative model for raw audios, called WaveNet, and they
claim that this model can generate speech which mimics any hu-
man voice and which sounds more natural than the best existing

Text-to-Speech systems, reducing the gap with human perfor-
mance by over 50% [8]. However, though many of these algo-
rithms may produce high-quality converted voice in the natu-
ralness and similarity sense [9], it is still questionable whether
they can be implemented effectively on a mobile platform, such
as iOS or Android, due to the limited computation resource.

We first made a search on Apple store and Google play
for present applications labeled with voice change/conversion.
It was found that most of the existing voice conversion appli-
cations only deal with the modification of spectral features to
mimic robot-like voices for fun, such as VoiceLab and Voice
Changer. Only few applications are designed to mimic an-
other predefined person’s voice, such as Trump Voice Changer,
which can speak the input text in a Trump-like voice, and the
Celebrity Voice Changer Lite, which provides a fixed list of
celebrities as your voice conversion target. However, accord-
ing to the user reviews, there are mainly three limitations for
these existent applications: first, the produced utterance sounds
unnatural, dissimilar to the target’s voice or even hard to un-
derstand; second, they need Internet connection to their on-line
servers, which may be inconvenient and has potential issues on
user privacy; last, no application supports the addition of cus-
tom new target speakers.

To this end, the main purpose of our study is to develop a
stand-alone mobile application for voice conversion. This local
application should generate converted voice for any specified
target speaker, which sounds natural and similar, and allows the
user to add custom target speakers. Therefore, both training and
conversion need to be done in a single mobile phone within an
acceptable time. This objective demands highly efficient imple-
mentation of voice conversion algorithms on mobile platforms.
After an extensive comparison, the harmonic plus stochastic
model (HSM) approach is chosen for the underlying conver-
sion algorithm due to its satisfactory conversion performance
and potentially high efficiency [10]. Then we implement this
algorithm with the C++ programming language and advanced
numerical computation optimizations. An iOS application is af-
terwards developed based on this algorithm and real device tests
show that our implementation technology is efficient enough for
high-quality voice conversion in a reasonable time: a 10-second
utterance takes about 1.5 seconds for conversion. To the best of
our knowledge, Voichap is the first public mobile application for
full-featured human voice conversion: you can add new custom
targets and specify any target to convert your voice to.

The remaining of this paper is organized as follows. In Sec-
tion 2, the theoretical foundation of the underlying voice con-
version algorithm is briefly introduced. In Section 3, the im-
plementation techniques for numerical algorithm acceleration
are presented. Then, Section 4 focuses on the development and
design patterns of the iOS application Voichap. The final appli-
cation product and its test are demonstrated in Section 5. Fi-
nally, concluding remarks followed by our future intentions for

Proceedings of APSIPA Annual Summit and Conference 2017 12 - 15 December 2017, Malaysia

978-1-5386-1542-3@2017 APSIPA APSIPA ASC 2017



further improvement are presented in Section 6.

2. Overview of the HSM-based voice
conversion algorithm

Nowadays, artificial neural networks, especially deep learning,
are quite popular and it seems they can solve questions in many
fields, from computer vision to natural language processing and
even unmanned vehicle drive. As aforementioned, the famous
research institute on deep learning, DeepMind, has developed
the WaveNet for human speech synthesis. However, we must
realize that deep learning is not a panacea. The two essential re-
quirements of deep learning, huge data and high computational
capacity, will limit its application in many cases, especially on
resource-limited mobile platforms. For a mobile application, it
would be crazy to ask the user for a huge amount of training
audios. What’s worse, the poor GPU power on most mobile
phones can hardly accelerate the neural network training pro-
cess. Therefore, for this project, we try to implement a tradi-
tional voice conversion algorithm based on the harmonic plus
stochastic model (HSM) [10]. Though the focus of our study
is on the efficient implementation of this algorithm and the de-
velopment of an iOS application, for completeness, the basic
principle of the algorithm is briefly introduced in the following.

The overall idea of HSM is to represent the speech signal
as a sum of various harmonically related sinusoids with time-
varying parameters and a noise-like component. The harmonic
component is only present in the voiced speech segments and is
decomposed into a number of sinusoidal harmonics. Then the
non-sinusoidal signal components, which may be caused by the
frication or breathing noise, are modeled by the stochastic com-
ponent. The voice conversion system based on HSM models is
divided into two parts, training and conversion, which is illus-
trated in Figure 1. In the training phase, a conversion model
is generated based on a set of source and target voice inputs.
Then in the conversion phase, using the acquired conversion
model, the system can convert the voice of a source speaker
to that of the target speaker by modifying the corresponding
voice features. For more details, interested readers are referred
to [10, 11].

Figure 1: Overview of the HSM voice conversion algorithm.

In our application, the input source speeches and target
speeches can be directly recorded by the phone, following
which a binary format model file is generated by the training
part. After we get the model, the user (source speaker) can
speak anything to the phone, which will be collected by the
recorder, and the conversion part will modify the source voice
features according to the model to make it sound like the target
speaker voice. This overall work flow of our voice change appli-

cation, Voichap, is shown in Figure 2. In the following sections,
the techniques for efficient implementation and the application
graphical user interface development will be detailed.

Figure 2: Workflow of the voice change application.

3. Highly-efficient implementation of the
voice change algorithms

Generally speaking, hardware is always faster than software.
Thus, we need to make full use of the hardware characteris-
tics for efficient computation-intensive algorithm implementa-
tion, such as the data-level parallelism and core-level concur-
rency supported by most modern CPUs. To better utilize such
hardware facilities, a relatively low-level but high-performance
programming language is the best candidate for implementa-
tion. For the iOS platform, the main programming languages
are the classic Objective-C and the emerging Swift. However,
both languages are inconvenient for low-level API interaction
and lack a versatile linear algebra library. Besides, though Ap-
ple recommends Swift for iOS application development, it is
quite awkward to manipulate data memory directly with Swift
due to its automatic memory management. Therefore, to gain
best algorithm performance and to facilitate the iOS application
development, we choose C++, a native language, for the core
voice conversion algorithm implementation, and Swift for the
user interface building.

Since Swift does not support direct interoperability with
C++, we first wrap the input/output interfaces of the C++ al-
gorithm with C language, which can communicate with Swift
later. Besides, almost all modern operation systems have a
C++ compiler, which means our algorithm code implemented
in C++ can be easily ported to multiple platforms, including
mobile platforms such as iOS and Android. The programing
paradigm with C++ implemented core algorithm for multiple-
platform support is summarized in Figure 3. Two numeric com-
putation techniques have been adopted to accelerate the voice
conversion algorithm, including of vectorization and multiple-
core parallel computing.

Figure 3: C++ implementation of the voice conversion algo-
rithm for multiple platform support.

Proceedings of APSIPA Annual Summit and Conference 2017 12 - 15 December 2017, Malaysia

978-1-5386-1542-3@2017 APSIPA APSIPA ASC 2017



3.1. Vectorization with SIMD instructions

Single instruction for multiple data (SIMD), is a class of par-
allel computers in Flynns taxonomy [12]. It is the process of
rewriting a loop so that instead of processing a single element
of an array N times, it processes multiple of elements of the ar-
ray simultaneously, called vectorization. iPhone 7 is equipped
with an Apple A10 CPU including of two 64-bit 2.34 GHz
ARMv8-A cores. Since ARMv8 provides an SIMD instruc-
tion set, NEON, for efficient processes of multimedia process,
we use the Eigen library to accelerate our code performance by
vectorization. Eigen is a C++ template library for linear alge-
bra computations, which supports explicit vectorization using
SSE, AVX and NEON instruction sets. Besides, compared with
MATLAB, which is an interpreted language, C++ is a power-
ful native language and the Eigen library can make use of the
SIMD instructions of modern processors, both of which con-
tribute to the much faster speed of C++ programs with Eigen.
In converting MATLAB prototype code to C++, Eigen can also
be used to replace some MATALB built-in functions for matrix
manipulation, such as the eig and sum functions, to make the
C++ program more efficient and more understandable.

3.2. Multiple-core parallel computing

Parallel computing is a type of computation in which many cal-
culations or the execution of process are carried out simulta-
neously on multiple cores. Open Multi-Processing(OpenMP)
and Grand Central Dispatch (GCD) are used on Windows and
Mac/iOS platforms respectively to boost the code performance.
OpenMP is an application programming interface (API) for
multiprocessing programing using shared memory in C or C++
supported on most platforms. GCD is a counterpart technol-
ogy developed by Apple Inc specifically for iOS/Mac systems
with multi-core processors. In practice, our algorithm is first
developed and tested with the powerful Visual Studio IDE on
Windows 10. Afterwards, it is ported to macOS/iOS with only
few necessary changes, mainly replacing OpenMP with GCD
support, thanks to the high platform-independent capacity of
C++.

3.3. Test results

To visually demonstrate the power of the above techniques in
the speeding up of the numerical algorithm implementation, the
algorithm performance is tested under various environment con-
figurations. Figure 4 shows the running time of the algorithms
training phase with four different configurations on PC with
Windows 10 and Inter Core i7 of 4 hardware cores. Since there
are multiple training audio samples and their feature extractions
are independent, we can allocate them on different cores for par-
allel processing. As we can see, utilizing both vectorization and
multi-core parallel programming is the most efficient among the
4 different configurations. Therefore, in the subsequent iOS ap-
plication development, well adopt these two techniques to speed
up the conversion algorithm.

4. iOS application development
4.1. Overview of the functional modules

In software engineering, it is well known that modularization
is a necessary method for large-scale software development. In
this project, the mobile application is also constructed with var-
ious modules, with each module responsible for its own func-
tion. The module structure of this application is illustrated in

403

53
28

65

0

50

100

150

200

250

300

350

400

450

No vectorization Vectorization Multi-core parallel +
Vectorization

MATLAB

Figure 4: Running time of the training phase with different con-
figurations(unit: second). Left to right: C++ program: C++
program with vectorization: C++ program with both vectoriza-
tion and multi-core parallel computing; MATLAB program.

Figure 5, which includes six functional modules.

Figure 5: Functional module structure of the iOS application.

4.2. Some specific design patterns

Developing a well-performing iOS application is a challeng-
ing task, which involves UI design, business logic modeling,
coding with Swift/Objective-C and debugging in an iterative
manner. In the following, two typical design considerations are
presented as representatives of the whole process and the cod-
ing/debugging details are neglected here for conciseness.

4.2.1. MVC design pattern for the user interface

We use the Model-View-Control (MVC) pattern for our user in-
terface, which is illustrated in Figure 6. The benefits for using
this pattern are that many components in this application will
be more reusable following the single responsibility principle
in software engineering [13]. By adopting the MVC design pat-
tern, applications tend to be more manageable and more easily
extensible. The three objects in the MVC framework have dif-
ferent roles and can interact with each other: user action in the
view layer that creates or modifies the data informs the con-
troller to update its model; on the other hand, when a model is
updated, it notifies a controller object to refresh the view with
corresponding changes.

4.2.2. Data-driven design and presentation in collection views

To display multiple items of record audios and target speakers
in better organization, the table view and collection view are
extensively used in the GUI design of our application. For more

Proceedings of APSIPA Annual Summit and Conference 2017 12 - 15 December 2017, Malaysia

978-1-5386-1542-3@2017 APSIPA APSIPA ASC 2017



Figure 6: Model-View-Control(MVC) design pattern.

flexibility and reusability of the program, the best practice is
to separate the data from its visualization through a UI-Data-
Operation style. In the iOS development framework, the data is
stored in a data source object and the operation is represented
by a delegate object.

The single responsibility of the data source object is to pro-
vide data and it does not care about how the data will be dis-
played. To customize the rendering of data, i.e., the specific
appearance of data on the UI, we can adopt a delegate object.
In addition, the UI displaying the data is synchronized with
the underlying data source through the delegate object. After
all these connections are set up, we can simply make modifi-
cations on the data source, like insertion or deletion, and the
corresponding table/collection views will be updated automati-
cally. Therefore, it is exactly the data that drives the evolution
of the dynamic view. More importantly, delegation is ideal for
passing information between objects in order to change the be-
havior of certain objects, which is actually an implementation
of the classic observer pattern in a one-to-one sense [14]. With
this design pattern, we can better decouple the data source and
its presentation.

5. Demonstration of the application
In this section, we will introduce the functions of our iOS appli-
cation Voichap which has been deployed on an iPhone 7 device,
whose screenshots are exhibited in Figure 7.

To better explain the user guides for our Voichap, we
show an example about how to convert your voice to President
Trump’s voice in Figure 8. First, you create a new target in the
target management screen in Figure 7e. Then by clicking your
portrait or Trump’s portrait, the information and training win-
dow in Figure 7f will show up. In this window, the personal
information can be edited and the training audio samples can be
loaded here (your voice can be recorded directly while Trump’s
may be downloaded from YouTube). It should be noted that you
and Trump have to speak the same sentences for training pur-
pose. After the 20 training samples from both you and Trump
have been fed, just click the Train button to start training, which
may take about 40 seconds. From then on, you can enjoy your
words ”spoken” by Trump in the Speak here screen in Figure
7d: first choose Trump as the target; then hold the microphone
button for speaking. Once the button is released, you’ll hear
the same speech as you have just said in a short moment, but
in Trump’s voice, which is generated by our underlying voice
conversion system in real-time manner.

6. Conclusions
In this study, a HSM model based human voice change algo-
rithm is implemented quite efficiently with C++ by adopting
advanced numerical computation techniques including of vec-

(a) Login and sign up (b) Recorded audios
list

(c) Select the target
speaker

(d) Speak here (e) User and targets
management

(f) User/target infor-
mation and training

Figure 7: User interface of the Voichap application

torization and multi-core parallel computing. The fast speed
and satisfactory voice conversion quality of this implementa-
tion is proved through a well-designed iOS application. Ex-
tensive experiments have been conducted to demonstrate this
result: on the iPhone 7 platform, the training phase for a 20
samples dataset takes about 40s and the conversion of a 10s in-
put audio needs about 1.2s. Besides, the converted voice sounds
very natural and similar to the target’s voice in most cases.

Since the current application can only convert a speakers
voice to another persons voice, that is, in a speech-to-speech
manner, our future work will focus on the integration of this
technique into TTS (text-to-speech) systems such that texts can
be read with a specified speaker’s voice directly. To sum up, for
the first time our study has proved the feasibility of full-featured
custom voice change on a mobile platform using only the local
computation resource through the highly efficient algorithm im-
plementation with modern and advanced techniques.

7. Acknowledgments
The authors would like to acknowledge Dr. Daniel Erro, the
original designer of the conversion algorithm, whose website
can be found at https://aholab.ehu.es/users/derro/home.html.

8. References
[1] A. Kain and M. W. Macon, “Spectral voice conversion for text-

to-speech synthesis,” in Acoustics, Speech and Signal Processing,
1998. Proceedings of the 1998 IEEE International Conference on,
vol. 1. IEEE, 1998, pp. 285–288.

[2] M. Abe, S. Nakamura, K. Shikano, and H. Kuwabara, “Voice con-
version through vector quantization,” in Acoustics, Speech, and

Proceedings of APSIPA Annual Summit and Conference 2017 12 - 15 December 2017, Malaysia

978-1-5386-1542-3@2017 APSIPA APSIPA ASC 2017



Figure 8: A typical usage scenario of Voichap: how to make
yourself sound like President Trump?

Signal Processing, 1988. ICASSP-88., 1988 International Con-
ference on. IEEE, 1988, pp. 655–658.

[3] D. Erro, A. Moreno, and A. Bonafonte, “Voice conversion based
on weighted frequency warping,” IEEE Transactions on Audio,
Speech, and Language Processing, vol. 18, no. 5, pp. 922–931,
2010.

[4] Y. Chen, M. Chu, E. Chang, J. Liu, and R. Liu, “Voice conversion
with smoothed gmm and map adaptation.” in INTERSPEECH,
2003.

[5] S. Desai, A. W. Black, B. Yegnanarayana, and K. Prahallad,
“Spectral mapping using artificial neural networks for voice con-
version,” IEEE Transactions on Audio, Speech, and Language
Processing, vol. 18, no. 5, pp. 954–964, 2010.

[6] L.-H. Chen, Z.-H. Ling, L.-J. Liu, and L.-R. Dai, “Voice conver-
sion using deep neural networks with layer-wise generative train-
ing,” IEEE/ACM Transactions on Audio, Speech and Language
Processing (TASLP), vol. 22, no. 12, pp. 1859–1872, 2014.

[7] T. Nakashika, R. Takashima, T. Takiguchi, and Y. Ariki, “Voice
conversion in high-order eigen space using deep belief nets.” in
Interspeech, 2013, pp. 369–372.

[8] A. van den Oord, S. Dieleman, H. Zen, K. Simonyan,
O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and
K. Kavukcuoglu, “Wavenet: A generative model for raw audio,”
CoRR abs/1609.03499, 2016.

[9] M. Wester, Z. Wu, and J. Yamagishi, “Analysis of the voice con-
version challenge 2016 evaluation results,” submitted to) Inter-
speech, 2016.

[10] E. Banos, D. Erro, A. Bonafonte, and A. Moreno, “Flexible
harmonic/stochastic modeling for hmm-based speech synthesis,”
Proc. V Jornadas en Tecnologias del Habla, pp. 145–148, 2008.

[11] D. E. Eslava and A. M. Bilbao, “Intra-lingual and cross-
lingual voice conversion using harmonic plus stochastic mod-
els,” Barcelona, Spain: PhD Thesis, Universitat Politechnica de
Catalunya, 2008.

[12] R. Duncan, “A survey of parallel computer architectures,” Com-
puter, vol. 23, no. 2, pp. 5–16, 1990.

[13] R. C. Martin, Agile software development: principles, patterns,
and practices. Prentice Hall, 2002.

[14] J. Hannemann and G. Kiczales, “Design pattern implementation
in java and aspectj,” in ACM Sigplan Notices, vol. 37, no. 11.
ACM, 2002, pp. 161–173.

Proceedings of APSIPA Annual Summit and Conference 2017 12 - 15 December 2017, Malaysia

978-1-5386-1542-3@2017 APSIPA APSIPA ASC 2017




