
Highly-Distributed Sensor Processing using IoT for
Critical Infrastructure Monitoring

Mehrdad Babazadeh∗, Sokratis Kartakis† and Julie A McCann†

∗ Imperial College London, London, UK and University of Zanjan, Iran
E-mail: mebab@imperial.ac.uk and mebab@znu.ac.ir

† Imperial College London, London, UK
E-mails:{s.kartakis13, j.mccann}@imperial.ac.uk

Abstract—Highly-distributed signal processing for critical
monitoring infrastructures has been a main research topic
over the last decade. Under this context, we show the three
phases of the joint ”Cyber-physical control system” project;
a collaboration between Imperial College London and NEC
Corp. Japan. First, the implementation of edge processing with
multiple tasks including data mining and communication, de-
veloped on a lightweight single core low-powered MCU system
is presented. This algorithm has been effectively customized to
be implemented on resource-constrained embedded systems. The
developed sensor network is coupled with a low-powered wide
range LoRa platform for transmission of the minimized payload.
The work explores the node-to-node communication limitations
and discusses how edge processing can be used for water network
control and we present the overview of a Cyber-physical control
system which is concerned with the event-triggered control of a
water network. Finally, the results of the LoRa communication
tests are given.

I. INTRODUCTION

Next generation smart cities, manufacturing, smart build-
ings, driver-less vehicles, precision agriculture etc. will go
beyond sophisticated telemetry and will enable automatic
distributed control and monitoring. That is, we will move
beyond merely understanding people, places, and things via
sensing and analysis to being able to close the loop and provide
more automation. However, there have been few works on
understanding how to build high performing computer systems
composed of low-cost and low-powered wireless networked
components that will support such systems. Though such
systems are well motivated in theory to provide cost-effective
adaptive control, traditional control systems users currently do
not trust them as they do not provide any guarantees regarding
stability. At the same time suppliers of traditional computing
systems do not fully understand the behaviors exhibited by
embedded networked systems, much less a control system.
This has motivated a new research discipline focusing on the
nature of cyber-physical systems and their interaction which
has the potential to open up massive new markets.

One of the most important applications, the development of
wireless sensor network (WSN) platforms to support critical,
potentially inherently vulnerable and expensive infrastructures
such as water networks is gaining interest. Their use brings
about the ability to monitor utilities to provide early warning
for deterioration or failure (e.g. leakage). Within the NEC
project, Cyber-physical Systems (CPS) control project, we

develop the integrated self-adaptive protocols that support
distributed near real-time control and monitoring and provide
guarantee pertaining to reliability, stability, convergence, and
security. The extreme complexity of analytics required to
process a huge volume of data limits what can be understood
about the systems in real-time. Yet, real-time analytics is what
is required to enable automatic control and monitoring. To
overcome this problem, our approach is to reduce the dimen-
sionality by minimizing the data without losing information.
In ”Cyber-physical control system” project, we have achieved
this goal by focusing in compression, anomaly detection and
control. This paper represents the three phases of the project
and focuses on the implementation of the anomaly detection
on a single-core platform. In addition, Section II illustrates a
pseudo code for a future dual-core implementation. Section
III briefly addresses event-triggered control approach. Since
the proposed distributed system uses a wide area communi-
cation platform, LoRaWAN, we summarize our preliminary
experimental results by evaluating state-of-the-art Low-Power
Wide-Area (LPWA) technologies in Section IV.

II. ANOMALY DETECTION

There have been some research works in the area of water
networks anomaly detection where they have applied the
detection system on a wired network, a supervisory control
and data acquisition (SCADA) system in [1] and other re-
search work in [2] where they refer to the water network
infrastructures and modeling. Researcher in [3] introduces
a WSN to detect and identify major anomalies in steam
flood pipeline networks. Another article for the field of wa-
ter pipeline anomaly detection using sensor networks is [4]
which describes the use of Intel Mote sensor nodes (SNs) to
collect required samples for anomaly detection, transmit the
min/max/average data and go back to sleep. Data is relayed
via the GPRS modem to a back-end server. This approach
is basically what many subsequent researchers have followed
since. However, the major disadvantage of this approach is
that all sensed or aggregated data is expected to be sent to
the backend system for analysis which means that battery
powered nodes will deplete their resources as they have to
communicate all the data to the server and in some cases,
this is not completely necessary. The main concern of this
phase of NEC project is to detect anomalies based on the

Proceedings of APSIPA Annual Summit and Conference 2017 12 - 15 December 2017, Malaysia

978-1-5386-1542-3@2017 APSIPA APSIPA ASC 2017



water pressure in a water network by using a WSN and to
transmit the corresponding data in two stages: First to transmit
a short notification to the center including information about
the sensor identity and the time of detection. Then, to transmit
full compressed data of (before/during/after) anomaly.

This section translates the above-mentioned requirements
to an implementable scenario of the anomaly detection by
developing an Arduino-based WSN as follows:
• The fastest possible reading of analog sensor (Pressure

sensor). The first candidate sampling time for sensor read-
ing occurred every 2 ms. However, to have several time-
consuming operations in the main loop of the program as
it will be discussed later in this section, we had to increase
it to 5 ms. Otherwise, with lower sampling rates, input
data during the loop execution time could be overwritten
which is not acceptable.

• Edge data analysis by:
– Using a lossless compression algorithm to obtain

a data Compression Rate (CR) for the rest of the
algorithm as mentioned in [5]. This data can be
decompressed for further analysis later in the center.

– managing a SD card read/write procedure to record
compressed data arrays and use it.

• Appropriate filtering to improve the performance.
• Anomaly Detection based on the CR.
• Real clock time tracking and synchronization.
• Node-to-node communication.
The above-mentioned tasks are different in terms of hard-

ware and software requirements; and in how they interact
with each other. Put simply, reading sensor data requires fast
operations to be carried out every few milliseconds, while
writing/reading to/from an SD card and communications are
tasks that run slower which have to be taken into account.

A. Water network and embedded system architecture

Fig. 1 briefly illustrates the proposed architecture covering
a section of a Water Network equipped with a WSN (with
tens of SNs located in a 3-5km circle area), a base station
where further data evaluations are carried out, and the cloud
to keep data available through the Internet. As an example in
a part of the network represented by the red color, some of
the local SNs (SN1, SN3, and SN4) can sense the anomaly,
a water leakage or burst in the pipes or other equipment. As
represented in Fig. 2, anomaly detection system is including

Fig. 1. Water Network architecture with SNs, Base Station and Cloud

Fig. 2. Hardware platform and peripherals.

four main devices: An Arduino 101 board [6] where the main
program is coded both for the measuring SN and the central
node, an SD memory card where the compressed data is
recorded together with the relevant timestamps and a special
read/write operation is carried out, a Real Time Clock (RTC)
to provide the real clock time for the system, and a LoRa
shield SX1276 for the communication purposes.

Although by using an Arduino 101 we are constrained by
the SRAM limitations (24 KB), there are reasons we chose
it among the other available processors. The methodology
optimized for the limited resource, single core, but low power
Arduino 101 will obviously work with more powerful pro-
cessors. There are also several peripherals compatible with
this processor and useful libraries are available which makes
the complicated implementation easier. The last reason is that
the final implementation will be on a new upcoming dual-
core Intel processor from the same platform but with Zephyr
operating system. It will be including LoRa shield and more
RAM space (80 KB) which makes it a perfect base for the
proposed system after it is optimized on Arduino 101.

B. Single core implementation

Algorithm 1 and Algorithm 2 in the next page represent
the pseudo codes for the main loop (thread 1) and the sensor
reading unit (thread 2) in the Arduino-based anomaly detection
system respectively. After the initialization of the process, the
first task to do is to frequently read the input sensor and scale
the measured values between 0 and 255 to be represented by
a one-byte unsigned char variable. To get the best from the
data we sample at the maximal sample rate achievable for
the sensor and node system we can handle. To prepare the
noiseless data for the process, a pre-filter applies and then
the filtered data is recorded in an input array. The Pre-filter
improves the data compression performance which in turn
reduces the payload for the slow LoRa based communication
[7]. This filter can be more accurately tuned later according
to the given water-pressure data. Fig. 3 represents raw and
the filtered signals by using either a first order low pass or a
moving average filter (with 4 last data considered). The low-
pass filter in the Laplace form is simply written as:

Y (S)
U(S)

=
1

(a×S+1)
(1)

Proceedings of APSIPA Annual Summit and Conference 2017 12 - 15 December 2017, Malaysia

978-1-5386-1542-3@2017 APSIPA APSIPA ASC 2017



The discrete time representation of the above filter based on
the Backward Euler method is given by (2) where α and Ts
are the filter time constant and the sampling time.

S =
Z−1
Z×Ts

; yt =
a× yt−1 +ut ×Ts

a+Ts
(2)

Data: Set up input data, arrays and Interrupt Timer
while do

while input for Comp.algorithm is not complete do
Wait and call Algorithm 2 every Ts millisecond;

end
Call Compression Algorithm;
Determine Compression Rate (CR);
Apply Kalman Filter to CR;
if received any Synchronization Request then

Update RTC;
else

Read RTC;
end
Time stamp= RTC time;
if there is Anomaly or it is inside timer1 period then

Start timer1 by the first anomaly;
Count time stamps until timer1=1 min ;
Look for the worst anomaly during 1 min period;
Notify Center at the end of 1 min period;
Reset timer1 and Start timer2;

end
Append time stamp and data packet to SD memory

card (refer to Algorithm 3) if There is a Data
Request and Ttimer2 <= 1 min then

Read SD card and transmit data (Algorithm 4);
Reset timer2;

end
end

Algorithm 1: Pseudo code for anomaly detection

Read Sensor;
Apply sensor Transfer function;
Apply pre-filter and put new data in the input array;
Back to where interrupt started in Algorithm 1;

Algorithm 2: Pseudo Code for Callback function

A wait state in the first stage of the loop ensures filling
up the input array with the filtered sensor data that pipelines
that data to the next important stage (compression algorithm).
It is noteworthy that even during the main loop, there will
be several interrupts to read new sensor data. After the input
buffer is full, it’s time to get the real timestamp for the data
set. The pre-filtered data is stored in an array then compressed
and then the CR% is calculated and edge-anomaly detection
is carried out.

C. Real time clock
A sensor node should communicate a short packet after an

anomaly is detected together with a time-stamp which is just

Fig. 3. Real measurement vs. filtered signal.

the indicator time. the real time-stamps can be provided when
the extra data is decompressed back in the central node and
will enable more accurate analysis. To retrieve the real clock
time in the system and to synchronize all the SNs, a real-
time clock (RTC) element is added to each node. It makes
the real time available wherever it is called in this sequential
implementation of the tasks. In this regard, an I2c based,
Mod-RTC Olimex has been used and programmed to pro-
vide required calendar (Year-Month-Day-Hour-Min-Second).
For example, 170310141023 represents the time stamp of
the compressed data packet on the 10th of March 2017 at
14:10:23. The sequential implementation forces the system to
interact according to the time scheduled for each task located
in the queue. This will affect the resolution of the timers in the
system. For example, since we call the RTC every 4 seconds in
the loop, we have to accept 0-4 seconds tolerance for the timer.
After the first anomaly is detected, the proposed timer waits
to react after the pre-defined 60 seconds (60-64 in practice).
Then, the system starts notifying the base station and to refresh
the anomaly detection procedure and then starts to analyze the
possible anomalies for the next period. It restarts another 60
sec., waiting for the data request from the base station. Each
SN involved in the anomaly detection makes a short packet
including a time stamp provided by the RTC. This unique time
points out to the time when the compression rate is going to
be filtered and the anomaly is detected afterward. Another
application of the RTC in this WSN is for the synchronization
of the SNs whenever the real clock time is broadcasted by
the base station. This might be needed for instance, every one
month depending on the RTC accuracy or the other system
requirements. The synchronization unit in each SN is located
in the middle of the slow main loop and the SNs work
independently. Therefore, the real time should be available
when each SN checks out the receiving packets every 4 sec.
Therefore, synchronization packets transmitted by the center
has to be refreshed frequently for at least 4 seconds to make
sure all SNs get the right clock time and set themselves
properly and on time.

Proceedings of APSIPA Annual Summit and Conference 2017 12 - 15 December 2017, Malaysia

978-1-5386-1542-3@2017 APSIPA APSIPA ASC 2017



D. Lossless compression algorithm and signal conditioning

Following the methodology proposed in the previous stage
of this project, in the Smart Water Lab project [5]. An anomaly
is detected based on the variation of the CR instead of the raw
data and the compressed data is recorded and communicated
instead of the raw data. The CR is defined in (3) where the
’in len’ and the ’out len’ are input and output array sizes.

CR(%) =
in len−out len

in len
×100 (3)

The compression technique used for this first version is
lossless and therefore data quality is maintained. To do this,
the implementation of the lossless Lempel Ziv compression
algorithm is the vital part for the whole anomaly detection
system. Because of the low RAM memory available in Ar-
duino 101, even the minimal version, Mini-LZO, which is
developed by Oberhumer as mentioned in [8] and [9] was not
applicable due to the RAM space needed though it was already
used in [10] on Intel Edison platform. Another library of
LZO so-called LZO1X 1 11 was customized and could work
on Arduino 101 after manipulating the dependent libraries
and changing memory space allocation. This library needed a
predefined memory allocation for the input and output arrays
where the maximum input array size could reach to 790
bytes after optimization of the memory usage of the different
variables and arrays. The length of the input array of the data
compression algorithm keeps fixed and known (790 Bytes)
where the output length is known but not fixed. A good
compression (CR% greater than 90 %) achieves for an input
data window with the minimum data variation and a poor
compression (lower CR%) represents more variations among
the taken input-data. After a single dimensional Kalman filter
[11]-[12] applies to the CR to minimize false positive anomaly
detection, the filtered CR is evaluated as seen in Fig. 4. The
initial value of the filter output is also set to 100 to avoid false
anomaly detection while initiating the system.

A great measured signal variation can be reflected also in
the CR and by using a proper threshold a miss behaving is

Fig. 4. Data compression Rate before and after using Kalman Filter.

detected. In addition, the severe and repetitive faults versus
single faults should be taken in to account where they result
in to repetitive event messages issued by a SN. As a solution,
only the worst anomaly during a specific period of time, for
instance, 1 minute of system operation is transmitted together
with the corresponding time-stamp. The system then refreshes
the worst anomaly detection procedure and re-starts to monitor
anomalies for the next 1 minute afterward.

E. SD Card read/write
Because of the Arduino’s memory limitation, we use an

SD memory card for the data read/write purposes. After the
anomaly detection task, the compressed data arrays are written
together with their corresponding time-stamp to the SD card.
To writing/reading the long and variable-size data packets
to/from SD card, Algorithm 3 and Algorithm 4 present the
algorithms developed for a stackable SD/TF Card Shield [13].

Data: Address of the last written data.
Result: A ppend a compressed data packet to a text file.
if the text file exists then

open it;
else

Create it;
end
if not reached to the far permissible capacity limit then

1. Append the Time Stamp ;
2. Append the data packet line by line;

else
3. Clear all data from the SD memory card;
4. Set writing address equal to zero;

end
Close file;

Algorithm 3: Pseudo code for Writing to SD memory card

Data: Required history (time) of the recorded data.
Result: Make a data string of one compressed data

packet together with the time stamp to transmit.
Open text file on the SD memory card;
if not reached to the end of the required packet then

if starting point has not already been found then
while until reaching to the required address do

Go one step back in memory address;
end

end
1. Start reading until the next time stamp;
2. Make a data string of (1 packet and a time stamp);
if node-to-node then

Transmit pieces of a packet one by one in a loop.
else

Transmit the string to the base station;
end

end
Close file;

Algorithm 4: Reading SD card and transmission

Proceedings of APSIPA Annual Summit and Conference 2017 12 - 15 December 2017, Malaysia

978-1-5386-1542-3@2017 APSIPA APSIPA ASC 2017



F. Optimal input array size

Fig. 5 shows a simplified main loop of the program for
the anomaly detection in the SN-side. The input array size
is an important parameter which has to be set correctly by
the user. It affects almost every task in the main loop and
causes a system failure if it is wrongly chosen. The following
conditions apply for an optimal input array size selection.

Increasing the input array size for the slow tasks in the
main loop increases t1 and the total RAM needed. By using a
minimum possible data format, unsigned char to assign only
one byte for each number, we guaranty to use the lowest
possible RAM because input data format affects other depen-
dent variables accordingly and influences the total memory
allocation. Further, increasing the input array size increases
executing time of the wait loop and makes the following
advantages (ADV) and disadvantages (DIS):
• (ADV): Enhances the performance of the data compres-

sion algorithm and reduces both the memory needed for
the data logging and communication per specific input
length.

• (DIS): Depends on the type of data communication, LoRa
might fail to transmit the larger compressed data arrays
due to the inherent payload limitation. Further, the system
loses the real-time sense of the anomaly detection since
it has to wait a long time until the long input array is
ready for the compression and anomaly detection.

On the other hand, reducing the input array lowers t1 and
it causes:
• (ADV): Improves the real-time sense of the anomaly

detection so that anomalies are detected after a short
time they occur. Further, since maximum compressed data
array size is limited to the input size, the communication
time is limited accordingly which is good for the node to
base station communication platform.

• (DIS): There will be a worse data compression and the
data logging performance. This means longer compressed
data is needed to be written on the SD card and finally,
a longer total communication for the whole data in
comparison to the case we could take longer inputs is
expected. Finally, if (t1 < t2), data are overwritten in the
input array before being compressed.

Fig. 5. Simplified flowchart of the sequentially implemented main loop.

G. Anomaly detection on a dual-core processor

In the single core Arduino-based system, we reached to
maximum 790 bytes input data and had to increase the
sampling time to 5 ms to achieve a safe operation as already
proposed by t1>t2. Then the required time for filling up the
input array became t1= 790 * 0.5 ms ≈ 4 sec which is the
maximum permitted time for t2. If we are able to increase the
number of input array data, we will be able to allow more time
for the rest of the tasks. This can be done even by a processor
with a more RAM space, regardless of being the single core
or dual-core.

By a new Intel Processor (SE C1000) with more RAM avail-
able, not only the input array size can be increased, but also the
sampling time of the sensor measurements can be minimized.
This lowers the whole data size for a specific period of time
which results in a lower total payload for Communication.
Algorithm 5 presents how the proposed implementation would
be systematically ported to a dual-core system.

Data: Set up input data, arrays and Interrupt Timer
while do

while input for Comp.algorithm is not complete do
Wait and call Algorithm 2 every Ts millisecond;

end
Call Compression Algorithm;
Determine Compression Rate (CR);
Apply Kalman Filter to CR;
if received any Synchronization Request then

Update RTC;
else

Read RTC;
end
Time stamp= RTC time;
if there is Anomaly or it is inside timer1 period then

Start timer1 by the first anomaly;
Count time stamps until timer1=1 min ;
Look for the worst anomaly during 1 min period;
Notify Center at the end of 1 min period;
Reset timer1 and Start timer2;

end
Append time stamp and data packet to SD memory
card (refer to Algorithm 3);

if There is a data request and Ttimer2 ≤ 1 min then
Read SD card (Algorithm 4) and pass data to core
2 of dual-core processor for communication;

Don’t wait for core 2 and continue loop
execution;

Reset timer2;
end

end
Algorithm 5: Pseudo code for anomaly detection implemen-
tation on a dual-core processor

In this implementation, communication tasks can be done
by the second core and the main loop doesn’t need to wait for
the execution of the slow communication units. In addition, to

Proceedings of APSIPA Annual Summit and Conference 2017 12 - 15 December 2017, Malaysia

978-1-5386-1542-3@2017 APSIPA APSIPA ASC 2017



take advantages of using more RAM space, this can introduce
great advantages to the system performance by either of the
following ways:
• Taking out the time-consuming communication from the

main loop saves time for the rest of the tasks.
• More RAM space allows using the longer input data size

for the compression algorithm. The longer input array,
the longer time for filling up the input array. But, we can
reduce the sampling time to overcome this issue. At the
same time, we take advantage of the proposed saved time
due to use the second core. Then we will have a better
compression performance and lower SD card memory
space required to record the data in comparison to the
single core platform.

H. Timing in the implemented system

For the sake of simplicity of description, Fig. 6 in the
next page represents a graphical overview of the implemented
anomaly detection. Some of the diagrams in this figure are
time-based and the rest show the sequence of executing the
different tasks. The top diagram (A) denotes to a pre-filtered
measured signal which will be the source for the rest of the
procedure. The second diagram (B) represents the sequence
of the real time fixed-length arrays of filtered data which
are used to make inputs for the data compression algorithm.
The next diagram (C) shows the lengths of the compressed
data arrays. Defined later in (3), the data compression rate
(CR) is obtained by using corresponding values shown in
diagrams B (input length) and C (output length) and a filtered
version of CR (FCR) is represented in diagram (D). After the
first anomaly is detected by comparing the FCR to a fixed
pre-defined threshold, the worst anomaly (smallest FCR) is
selected among the other possible anomalies in a period of 1
min. Then, the SN transmits the worst anomaly information
to the center and the center is given 1 min deadline onwards
to send its data request. Diagram (E) indicates the compressed
data packets that are appended sequentially to the SD memory
card data. After receiving data request shown in diagram (F),
the SN looks back to its last 2 min data packets in the SD
memory card as represented in the diagram (G) and starts
reading appropriate data and then making a string and then
sending it to the center packet by packet, according to the
LoRa payload limitation.

As mentioned, anomaly detection program includes a main
loop with different tasks (included in thread 1) and a callback
function (thread 2) which is called when an interrupt service
routine takes place by the thread 1. Since the SN-side tasks
execute consecutively with the interrupt/s in between, it is
important to consider their individual and total required time.
The number of interrupts during the loop execution depends on
the maximum time required for each task in the loop and also
the defined sensor sampling time (interrupt time). Therefore,
the sampling time can be minimized only after all tasks are
implemented and tested in the worst cases. Analyzing the
timing tests in this section resulted in the minimum sampling
time in this application which is Ts = 5 ms where a lower

sampling time may arise a risk of data loss. The time required
for each individual task in the worst case scenario, where
there is no data compression at all, is represented in Fig. 7.
In the earliest stage of this diagram, an internal wait loop
that executes in ∆t1 milliseconds ensures that a maximum
possible, fixed size input array (N=790) is filled up before data
compression algorithm starts. The wait loop duration depends
on the previous loop execution time. The wait loop will work
as expected provided that the total time for executing tasks
is less than the time required for filling up the input array.
Further, max(∆t1) refers to the maximum total time needed
for filling the input array up with 790 numbers as:

max(∆t1)≈ Input array length×Ts

= 790×5 ms = 3950 ms≈ 4 sec (4)

Therefore, to avoid data to be overwritten in the input array,
following relation must be fulfilled where Ttask(n) is execution
time of the ’nth’ task:

8

∑
n=2

Ttask(n) < max(∆t1) = 4 sec (5)

Fulfilling inequality in (5), the main loop will run in an
approximately fixed time about 4 sec. The performance of the
writing and reading tasks, represented in Fig. 7, are discussed
in the following:

1) Data writing performance: The writing to the SD card
is the third slowest task in the present implementation and it
takes ∆t6(Max) = 153 ms to write the longest possible packet.
Obviously, we cannot expect the same occupied space (790
bytes) after it is written. It is instead:

790 unsigned char data ≡ 3591 bytes≈ 3.5 KB (6)

This means that due to having metadata which is written
together with each individual unsigned char data, the text file
size is about 5 times bigger. Therefore, the overall writing
speed (SW) to SD memory card can be obtained as:

SW = 3591/(1024×153×10−3) = 23 KB/s (7)

This is slower than the expected written speed of the fast
SD memory card (80 MB/s) which is due to the overhead
of opening and closing the text file, formatting, and parsing
texts on the Arduino. Although another more advance SD-Fat
library may help to speed up the writing procedure, it will
need more SRAM which is not available in the Arduino 101.
Theoretically, every 3.5 KB data is written in each loop time
(about 4 sec) in the proposed worst case scenario. Therefore,
one minute of data should be equal to 52.5 KB in the SD
memory card. However, measurements show that after one
minute, 72 KB of compressed data is written on the SD
memory card. Consequently, a 16 GB SD memory card can
be filled up at least in 162 days as calculated in the beneath:

t f ill(min) > (16 GB)/(72 KB/min)≡ 162 days (8)

Where tfill(min) refers to the minimum time needed to fill
up the SD memory card from the first line to the end. This

Proceedings of APSIPA Annual Summit and Conference 2017 12 - 15 December 2017, Malaysia

978-1-5386-1542-3@2017 APSIPA APSIPA ASC 2017



Fig. 6. Operational and timing diagram of anomaly detection

Fig. 7. Flow diagram of the maximum times consumed by different tasks.

duration for compressed data writing is equivalent to a longer
raw data if it is decompressed. In practice, the more stable
operation of the system, the better data compression and the
longer tfill we will have. It is because the output (compressed

data array) size will be smaller than 790 for a fixed loop time
and will take longer until SD card is filled up.

2) Data reading performance: The packet size of 790
unsigned char numbers is different than the text file size of
these numbers when they are seen in the SD card text file.
Therefore, two values for the data transmission rate can be
introduced. The first value represents the transmission rate
according to the size of the data file. This reveals the average
speed (TR1) of the whole system including SD memory card.
Every 790 unsigned char numbers are equal to 3591 bytes on
the SD card and the corresponding time to read and make a
string of the data packet is about 114 ms. Therefore:

T R1 = 3591/[1024×114×10−3] = 30.7 KB/s (9)

The second value gives the effective data transmission speed
(TR2) according to the pure data size as follows:

T R2 = 790/[1024×114×10−3] = 6.7 KB/s (10)

The required time of the reading task, ∆t7 varies depending
on the packet size of the compressed data. After an SN
receives a data request from the center, it starts to search back
in the SD memory card data. Finding the starting point, it
reads one packet of data and makes a data string. Therefore,
the maximum data size is obtained while running the worst
case scenario by manipulating the algorithm to generate the
maximum output size which means no data compression at all.
The next sections address the other phases of the NEC project

Proceedings of APSIPA Annual Summit and Conference 2017 12 - 15 December 2017, Malaysia

978-1-5386-1542-3@2017 APSIPA APSIPA ASC 2017



Fig. 8. Arduino based WSN with LoRa module SX1276 for communication.

where the event-triggered control part and communication test
have been carried out.

I. LoRa based node-to-node data Communication

The Sensor Node (left hand side device) and the central
node (right hand side device) in Fig. 8 use the LoRa module,
SX1276 for communication. The SN-side hardware needs
more devices connected and more complicated code to manage
different tasks in comparison to the central node. The SN-
side is developed by Arduino 101, LoRa module SX1276, SD
Card Shield, RTC module, analog extension board, and a light
Sensor. However, the center node side is developed by only an
Arduino 101, and a LoRa module SX1276. Communication
between the SN-side and the central node is carried out in
different stages as follows:
• For synchronization of the SNs based on the message

received from centre. Hear is an example of the short
message (S1170627161500) which is updated according
to the real clock time. From the left-hand side, the first
letter ’S’ is a symbol for synchronization and the second
letter represents the unique number of the central node
’1’. Then, Year (2 digits), month, day, hour, minute and
second come afterward.

• On detection of the anomaly, only the originating node(s)
will send notification immediately to the central node.
Nodes not seeing the event remain silent. This data
indicates the source node and the time detected. A carrier
sensed MAC protocol is used for this notification so that
there is no delay in sending data because the nodes are
sparse and this means that interference should be low, so
this approach minimizes delays indicating an anomaly.

• After the central node receives anomaly notifications, it
then asks for extra data from the source nodes only with
a schedule indicating when they can send data back to
the central node.

• On receiving a data request from the central node, the
source SNs then send their long time compressed data
arrays for a long while during their several loop times.

The experiments done during this research represents that
we cannot send more than 31 bytes of data together with

a time-stamp in a node-to-node LoRa platform even for the
highest LoRa mode 10. However, the compressed data packet
size will always be more than this length. Therefore, we need
to divide long compressed data packets to the fixed but short
packets possible for transmission. Therefore, we have to send
the long data as follows: Primarily to transmit the timestamp
and then to divide any long compressed data array to several 30
bytes long packets and transmit sequentially in every SN-side
loop execution. Due to a fixed input array size assigned for the
compression algorithm (In len), the range of the compressed
data (Out len) is known and smaller than input array. We know
In len = 790 bytes (fixed) and Out len < 790 bytes (variable).

While writing to the SD card, the memory limitation applies
and we stop to write when the size of the last compressed
data packet for writing on the SD card is greater than a pre-
defined value one kilobyte less than SD card memory size (for
example 16 GB). After this point, we remove all the long-time
data from SD card and write newly compressed data arrays
starting from address zero (0).

J. Validation of the SN-side anomaly detection

To describe how the system is detecting anomalies, we have
intentional applied repetitive anomalies by changing the sensor
measurement drastically for a while. It changes the filtered
CR as represented in Fig. 9. between packet number 3 to 7.
The system works according to the threshold for CR, set to
85%, and Table I illustrates how the anomaly detection system
behaves.

For the sake of simplicity in description, we only take last
six digits of every timestamps in Table I to represent: hour,
minute and second for events. The system has been set to
take the last 20 seconds (linked to timestamps 064139 to
064159) of compressed data including (before/during/after)
anomaly for the data communication. During this experiment,
the SN detects the worst anomaly (occurred at 064139) and
transmit it to the central node (at 064151) which is the end
of the waiting period. After that, all the required data during
nine loop’s operating times which takes about 30 seconds

Fig. 9. CR% vs. packet number

Proceedings of APSIPA Annual Summit and Conference 2017 12 - 15 December 2017, Malaysia

978-1-5386-1542-3@2017 APSIPA APSIPA ASC 2017



TABLE I
ANOMALY DETECTION OUTPUT

CR% Time-Stamp System status
90.54 3-170626:064127 System is working normal
85.25 3-170626:064131 System is working normal
89.06 3-170626:064135 System is working normal
77.32 3-170626:064139 First anomaly detected
81.88 3-170626:064143 Second anomaly detected
85.05 3-170626:064147 System is working normal
87.37 3-170626:064151 Notify F3:030403064139
84.50 3-170626:064155 Full data starts to be sent
88.99 3-170626:064159 send the rest of data
91.72 3-170626:064203 send the rest of data
93.39 3-170626:064207 send the rest of data
94.41 3-170626:064210 send the rest of data
95.03 3-170626:064214 send the rest of data
95.41 3-170626:064218 send the rest of data
95.64 3-170626:064222 send the rest of data
95.78 3-170626:064226 send the rest of data
95.87 3-170626:064230 send the rest of data
95.92 3-170626:064234 back to normal
95.95 3-170626:064238 working normal
95.97 3-170626:064242 working normal

in this test is transmitted to the centre. After finishing the
data communication, system represents a normal situation (at
064234 ) where there is no threshold violation. The first
column in this table represents the filtered compression rate
(%) which is the criteria for the anomaly detection. The second
column starts with the sensor number that in this case is ’3’
and continues with the whole time-stamp. The third column
shows the system status which can be either of the normal,
during fault period, or during communication.

III. EVENT-TRIGGERED CONTROL AND COMMUNICATION
OPTIMIZATION IN A TESTBED ENVIRONMENT

Automated water distribution networks are an open research
field for the wireless sensor and actuator network (WSAN) and
CPS. This research aimed to augment the traditional water
supply network by using WSN/WSAN and CPS technologies
to satisfy the real needs of the water companies and to define
new innovative directions under the context of Smart Cities.
The objective is to design an innovative Wireless Sensor/
Actuator Network communication protocol that ensures the
stability and real-time control of an automatic Water Distribu-
tion System. This system has to ensure the stability of both
the wireless communication and water network at the same
time. The control part was done in three steps: First, a small-
scale testbed was created as a simulator mimicking a real
water network. The deployment of classic and event-trigger
control theory allowed the optimal decision of sample rates
and precision of the measurements to be measured therein.
The deployment requires the mathematic modeling of the
testbed, stability, virtual simulation, and the development of
algorithms in real nodes. Then, the decentralization of event-
triggered control and definition of the trade-offs between
stability and communication network lifetime were studied.
After the completion of the testbed and the deployment of the

control theory approach, the next step was the augmentation of
event-trigger control theory, in order to involve in the threshold
defining the status of each sensor/actuator node. The main
goal was to define the trade-off between the stability and
the lifetime of the system. Finally, the On-line adaptation of
the event-triggered system in faulty nodes was explored. The
decentralized event-trigger system was incorporated with our
anomaly detection algorithm to predict the failure of sensor
nodes, and fill the data gap by adjusting the sample rate of
the correlated nodes in order to estimate the missing data.
This step requires the use of correlation algorithms com-
bined with the event-triggered threshold definition obtained
in the previous phase. The main concerns of this phase were
the system scalability, optimality, the extension of system
lifetime, memory efficiency, adaptation, and robustness. Our
first experiments to fulfill these concerns were on energy
consumption reduction (data fusion, aggregation, lossy, and
lossless algorithm), hardware limitations and improvements,
wireless communication optimization, and in-node data anal-
ysis. The results of these experiments were data fusion and
compression algorithms comparison, the clear definition of
the hardware changes, the time and energy constraints of 3G
and Weightless communication, and the efficient in-node data-
stream analysis algorithm for anomaly detection. Furthermore,
the first outcomes of this research led to the publication of an
innovative in-node self-adaptive anomaly detection algorithm,
which requires 98% fewer computations than the traditional
techniques [14].

IV. LPWA TECHNOLOGIES IN REAL IOT DEPLOYMENTS

Over the last decade, short-range wireless communication
technologies, such as WiFi and Bluetooth, or cellular net-
works, such as GPRS and 4G, have been used to enable
the monitoring of IoT infrastructure. However, the large scale
of the real world IoT applications, either in terms of the
number of sensor devices or the coverage, leads to unfordable
costs. For example, by exploiting short range communication
technology, an expensive gateway or a sensor node is nec-
essary for every 10 to 20 meters. In the case of the cellular
networks, the data fees per device increase dramatically, while
the coverage is uncertain in remote areas. In order to enable

Fig. 10. BentoBox: Hybrid communication sensor node.

Proceedings of APSIPA Annual Summit and Conference 2017 12 - 15 December 2017, Malaysia

978-1-5386-1542-3@2017 APSIPA APSIPA ASC 2017



low-cost and city scale IoT applications, Low Power Wide
Area (LPWA) wireless communication technologies have been
introduced recently. Specifically, LPWA technologies exploit
the unlicensed spectrum to transmit information in low power
(e.g. 20mA) and frequency (e.g. 868MHz) with the trade-off
of low data rates (e.g. 0.2 kbps). Under this context, two main
theoretical directions have been used to enable the utilization
of the spectrum: Spread Spectrum (SS) and Ultra-Narrow
Band (UNB). In SS, the devices spread to signal along the
spectrum under a certain bandwidth allowing the gateways
to reconstruct the transmitted information reliably. In UNB,
the devices transmit to a narrow bandwidth enabling million
of devices and avoiding interference. State-of-the-art products
of these technologies are LoRa by Semtech [15] for SS and
Sigfox [16] for UNB. To evaluate the performance of LPWA
technologies in real world IoT deployments based on device-
to-device communication (D2D), we performed a number of
experiments in [15] under different communication scenarios
e.g. underground to overground, ground to ground, rooftop to
ground. In these experiments, we used our hybrid commu-
nication sensor node, BentoBox (see Figure 10). BentoBox
incorporates LoRa (spread spectrum), Xbee868 [18] (conven-
tional narrow band) and NWave [17] (UNB) communication
modules allowing a fair comparison among the technologies
(more details can be found in [15]).

Overall, LoRa outperformed the other technologies in terms
of range achieving 2.4 km in a semi line-of-sight environments
within average 40% success rate (the longest distance with
Xbee868 was 2km with 80% success rate). Similarly, in none
line of sight scenarios, LoRa achieved the longest ranges
at 850m, within average 70% success rate (while the range
for Xbee868 and NWave was 460m and 70% and 20% the
success rate respectively). However, LoRa dominated the other
technologies in terms of the range, UNB promising a more
efficient utilization of spectrum enabling more devices per
gateway. Having the results of the above experiments, we
currently examine the applicability of LPWA communication
technologies in smart water networks. Under this context,
we installed a number of BentoBoxes into chambers (i.e.
underground) of the Welsh Water company water network,
in Cardiff area. Preliminary results reveal that LoRa outper-
forms the other technologies. However, the ranges are reduced
dramatically by achieving communication only within 315m.
Our future work will be related to the type of antennas per
application in order to achieve longer ranges.

V. CONCLUSIONS

This paper revealed details of an optimized multi-thread
implementation of a new edge-based anomaly detection for
the smart water networks on the Arduino 101. A portable
lossless data compression library, LZO was customized to be
used by the sensor nodes when they evaluate data compression
rate in order to detect anomalies. On detection of anomalies
by the sensor nodes, they provide time aware notification and
compact data communication of pre-fault and post-fault for the
central node with minimal payloads. The paper came up with

different implemented and tested solutions and the time tests
verified the system operation under the worst case scenarios
and thereafter, resultant practical limitations were identified.
The final part of the paper explored in brief how well current
LPWA communications technologies can support the transfer
of data from a pipe to above ground base stations.

ACKNOWLEDGMENT

Special thanks to NEC Corporation in Japan for funding this
work as a part of the CPS-Ctrl project: Reliable Distributed
Adaptive Control for next generation Cyber-Physical Systems.
The authors would also like to show their appreciation to the
members of AESE group for their valuable inputs.

REFERENCES

[1] M Raciti, J Cucurull, S Nadjm-Tehrani, “Critical infrastructure protec-
tion,” 2012 - Springer p. 98-119.

[2] J. Izquierdo, P.A. Lpez, F.J. Martnez, R. Prez, “Fault detection in
water supply systems using hybrid (theory and data-driven) modeling,”
Mathematical and Computer Modelling, Volume 46, Issues 34, August
2007, pp. 341-350.

[3] SunHee Yoon, Wei Ye, et all, “Wireless sensor networks for steamflood
and waterflood pipeline monitoring,”IEEE Network (Volume: 25, Issue:
1, January-February 2011 )

[4] I. Stoianov, L. Nachman, S. Madden, T. Tokmouline, and M. Csail,
“Pipenet: A wireless sensor network for pipeline monitoring,” in Proc.
IPSN, 2007, pp. 264-273.

[5] S. Kartakis, J. A McCann, “Real-time Edge Analytics for Cyber Physical
Systems using data Compression Rates,” Publisher: USENIX Association,
2014, pp. 153-159.

[6] Arduino 101, https://www.arduino.cc/en/Main/ArduinoBoard101.
[7] LoRa Alliance, “LoRa Alliance Technology,”https://www.lora-

alliance.org/What-Is-LoRa/Technology (accessed 1 December 2016).
[8] Markus F.X.J. Oberhumer. open source lzo.

http://www.oberhumer.com/opensource/lzo/ (accessed 1 Dec. 2016).
[9] J. Kraus and V. Bubla, “Optimal methods for data storage in performance

measuring and monitoring devices,”in Proceedings of Electronic Power
Engineering Conference, 2008.

[10] S. Kartakis, W. Yu, R. Akhavan, and J. A. McCann, “Adaptive Edge
Analytics for Distributed Networked Control of Water Systems,”IEEE
First International Conference on Internet-of-Things Design and Imple-
mentation, 2016, pp. 72-82.

[11] Kristian Sloth Lauszus, “ practical approach to Kalman filter and how to
implement it,”http://blog.tkjelectronics.dk/2012/09/a-practical-approach-
to-kalman-filter-and-how-to-implement-it/ (accessed 8 February 2017).

[12] TINKERING. Filtering Sensor Data with a Kalman
Filter,”http://interactive-matter.eu/blog/2009/12/18/filtering-sensor-
data-with-a-kalman-filter/ (accessed 1 January 2017).

[13] Stackable SD/TF Card Shield for Arduino V3.
http://www.robotshop.com/en/stackable-sd-tf-card-shield-arduino-v3.
html (accessed 5 January 2017).

[14] S. Kartakis, A. Fu, M. M. Espinosa, and J. A. McCann, “Evaluation
of Decentralized Event-Triggered Control Strategies for Cyber-Physical
Systems“ arXiv preprint arXiv, 1611.04366, 2016.

[15] S. Kartakis, B. D. Choudhary, A. D. Gluhak, L. Lambrinos, and J.
A. McCann. Demystifying low-power wide-area communications for
city IoT applications. ”Tenth ACM International Workshop on Wireless
Network Testbeds, Experimental Evaluation, and Characterization (pp.
2-8), 2016.

[16] Sigfox radio modules. https://www.sigfox.com/. (accessed 26 Jan. 2017).
[17] Nwave radio modules. http://www.nwave.io/. (accessed 26 Jan. 2017]).
[18] Digi, XBee-PRO 868, http://www.digi.com/products/xbee-rf-

solutions/modules/xbee-pro-868. (accessed 5 Aug. 2016).

Proceedings of APSIPA Annual Summit and Conference 2017 12 - 15 December 2017, Malaysia

978-1-5386-1542-3@2017 APSIPA APSIPA ASC 2017




