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Abstract—In this paper, we discuss some methods for chord
recognition based on long short-term memory recurrent neural
networks (LSTM, LSTM-RNN). Chord progressions play an
important role in the generation process of music. Actually, music
processing systems containing a model for chord progressions
achieve high accuracies in tasks like music structure analysis,
multi pitch analysis an automatic composition or accompaniment.

In previous research, chord progressions were obtained rule-
based or have been modeled using stochastic methods like hidden
Markov models or probabilistic context-free grammars. Pitch
patterns were then regarded as the observations resulting from
the hidden states of the chord progression model. Recently, con-
volutional neural networks have been used for chord recognition
with considerable success. On the other hand, LSTM networks
have been shown to be suitable for generating chord progressions,
since these neural networks can process time series data very well.

The purpose of this study is to evaluate and compare three
types of LSTM networks based on the bidirectional and encoder-
decoder structure with regards to their chord recognition per-
formance. In order to extract more effective data for chord
recognition, we use a constant-Q transform and specmurt analysis
to suppress overtone components, and chroma vectorization to
reduce the feature dimensionality.

The evaluation results show that the encoder-decoder-based
LSTM can learn the relationship between the observed chroma
vectors and the associated chord progression more effectively
than simpler LSTM networks.

I. INTRODUCTION

Harmony, which is the foundation of Western music, is
an important element in music analysis. Although in recent
years several genres without tonality like twelve-tone music
and free jazz have become popular, music analysis based
on harmony has not lost its importance, since most of the
currently produced music is still bound to the concept of
tonality.

Stochastic models that take harmonic structure into account
are utilized for various tasks, including automatic harmo-
nization of melodies [1], automatic arrangement for guitar
[2], automatic music transcription [3], multi pitch analysis of
polyphonic music [4], sound source separation [5] and other
disciplines in the field of music information retrieval [6]. These
approaches often use an inverse problem formulation based on
a generative model of music including concepts like tonality
and chords.

Such models of harmonic structure can be regarded as
equivalent to language models for voice recognition, where
concatenation of words can be probabilistically modeled using
n-grams or formal grammars. Similarly, chord progressions are
traditionally based on musical rules and patterns: While for
instance the sentence structure “subject - verb - object” is that
of a viable sentence in the English language, cadences like “I
- IV - V - I” occur frequently in western music and provide
the basis for functional harmony theory.

Due to this similarity, it is reasonable to assume that one
can apply methods of the field of research of speech and
language analysis to music analysis problems as well. In fact,
several such methods have already been applied successfully
for music information processing tasks. This includes n-grams
and hidden Markov models (HMM) [7] as well as probabilistic
context-free grammars (PCFG) [8]. One of the recently very
successful methods for speech and language processing is the
long short-term memory recurrent neural network (LSTM,
LSTM-RNN) [9]. On the basis of these previous successes,
it is reasonable to assume that LSTM networks could achieve
high precision in the field of music information retrieval such
as the chord recognition task discussed in this paper.

II. CHORD RECOGNITION

A human trained in musical theory can recognize a tonic key
or chords from a melody (pitch information). If a computer
could similarly extract precise pitch information from audio
material and learn the relationship between pitches and chords,
it could estimate chords from audio input.

Fig. 1 illustrates the processing steps of the chord recogni-
tion system used for this paper. The system receives an audio
signal in WAVE format as input, which is then preprocessed
to extract information that is most relevant to chord recogni-
tion. The signal is first converted to a logarithmically scaled
spectrogram using a constant Q transform, projecting musical
intervals on constant distances in the constant Q transform
spectrogram. Since overtone frequencies produced by musical
instruments complicate the estimation of precise pitches, we
use a specmurt analysis [10], which accounts for overtone
components by treating the audio signal as a convolution
of the “clean” spectrogram (containing only the fundamental
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Fig. 1. Processing steps of the chord recognition system. Using a constant Q
transform, specmurt analysis and chroma vectorization, a time series of vectors
is computed from an audio signal. The relationship between the vectors and
chords is learned by LSTM networks.

Fig. 2. Given the common harmonic structure pattern h(x), the fundamental
frequency distribution u(x) can be estimated from a logarithmically scaled
spectrum v(x) using the specmurt analysis

frequencies of each note) with the overtone spectrum of
the performing instrument. In addition, we compute chroma
vectors [11], [12] from the resulting spectrograms. A chroma
vector contains 12 elements, each containing the sum of a
tone’s (e.g. C#) spectrum magnitudes at all octaves. The
computer then learns the relationship between the time series
of the resulting chroma vectors and labeled chords.

A. Specmurt analysis

Specmurt analysis is used for multi pitch analysis of spec-
trograms of audio signals of recorded musical instruments
which usually produce overtone frequencies. In the specmurt
analysis, the power ratio of the harmonic overtones is assumed
to be the independent from the absolute value of the respective
fundamental frequency. Although this assumption is only
an approximation, it allows to easily suppress a significant
amount of overtone frequencies in spectrograms of recordings
of a single instrument. If one scales the frequency domain
logarithmically, the distances between the overtone frequen-
cies become constant and independent from the fundamental
frequency. Therefore, in a logarithmically scaled frequency
domain x, one can approximate the spectrum of an audio
signal of a single instrument v(x) using the common harmonic
structure pattern h(x) and convolving it with the fundamental
frequency distribution u(x) as shown in Fig. 2:

v(x) = u(x) ∗ h(x). (1)

Due to the convolution theorem of the Fourier transform
F , the following equation holds for the Fourier transformed

Fig. 3. Experimental results of applying the specmurt analysis to a recording
of the note C4 played on a piano (taken from the RWC Music Database [14]).

TABLE I
PARAMETERS USED FOR THE SPECMURT ANALYSIS

Frame shift 10 ms
Lowest frequency 60 Hz
Highest frequency 8000 Hz
Frequency resolution 12.5 cent
Overtone magnitude attenuation factor used in h(x) α = 1.5
Number of harmonics considered in h(x) 10

signals F [u(x)](y),F [v(x)](y) and F [h(x)](y):

F [u(x)](y) = F [v(x)](y)
F [h(x)](y)

. (2)

implying that the fundamental frequency distribution u(x) can
be obtained as follows:

u(x) = F−1

[
F [v(x)](y)
F [h(x)](y)

]
(x). (3)

To obtain a logarithmically scaled power spectrum as re-
quired for the specmurt analysis, one could rescale a linear
spectrum obtained using the short-time Fourier transform
(STFT). However, it is more effective to directly compute
such a logarithmically scaled spectrum using a constant Q
transform (CQT) [13]. We used a CQT filter bank with 96
filters per octave in a range between 60 Hz and 8000 Hz. The
spectrograms were computed with a time resolution of 100
frames per second, i.e. a frame shift of 10 ms.

Fig. 3 shows the results of the specmurt analysis of a
recording of the note C4 (261.6Hz) played on a piano (taken
from the RWC Music Database [14]). The common harmonic
structure pattern h(x) used for this paper contains peaks (with
a width of a single bin) for 10 harmonics (including the fun-
damental frequency). The magnitude of these peaks decreases
with distance from the fundamental frequency according to the
following formula:

h(fn)

h(f0)
= (n+ 1)−α

Proceedings of APSIPA Annual Summit and Conference 2017 12 - 15 December 2017, Malaysia

978-1-5386-1542-3@2017 APSIPA APSIPA ASC 2017



where fn is the index of the n-th harmonic and α is
an attenuation factor for which the value 1.5 was chosen
for this paper. All parameters of the specmurt analysis are
listed in table I. As can be seen in Fig. 3, the specmurt
analysis does not completely remove the overtone frequencies
due to its approximative character, but it significantly reduces
their magnitudes. Negative values obtained from the specmurt
analysis are set to 0 before further data processing is applied.

B. Chroma vector

In chord recognition, using the combined magnitude of pitch
classes like C or D can be more effective than using detailed
magnitude information of every individual pitch C4, C5, or
D4. The combined magnitude information is computed as 12-
dimensional chroma vectors [11]. Each element of a chroma
vector corresponds to a semitone class of western tonal music.
Each bin of the CQT spectrogram is assigned to the semitone
that it is closest to (considering the logarithmic scaling of
semitone frequencies) and an element of a chroma vector is
the computed as the sum of all bin magnitudes belonging to
the respective semitone class. The obtained chroma vectors are
normalized to mean 0 and variance 1.

III. LSTM-BASED TRAINING

In recent years, stacked LSTM networks which consist
of multiple hidden LSTM unit, as well as bidirectional
LSTM networks [15] into which time series vectors are
input in both forward and backward direction, have been
used with considerable success. For this paper, we utilized a
encoder-decoder LSTM network (ED-LSTM) as well as the
stacked/bidirectional LSTM [16] network architecture. The
ED-LSTM network can not only deal with data containing
different sequence lengths but is also able to directly map
sequences to sequences (the chord progression states in our
system). Because of their properties, encoder-decoder models
are often used in research on automatic language translation.

We compared the following 3 LSTM networks to demon-
strate the usability of the bidirectional and encoder-decoder
LSTM architectures for the chord recognition task.

1) Stacked bidirectional LSTM network (SBi-LSTM)
A neural network consisting of 3 stacked bidirectional
LSTM units.

2) Stacked bidirectional ED-LSTM network (SBiED-LSTM)
The output of 3 stacked bidirectional LSTM units (see
Fig. 4) is used as the input of an encoder layer of an
encoder-decoder structure. This network is able to train
label estimation from input data, as well as to explicitly
learn time series characteristics of the label data.

3) Conditional stacked bidirectional ED-LSTM network
(CSBiED-LSTM)
We propose a LSTM network architecture in which the
output of three bidirectional LSTM units is used as input
for both an encoder layer as well as a classification
layer. The output of said classification layer is then used
as input of another 3 bidirectional LSTM units whose

Fig. 4. In the SBiED-LSTM network, the chroma vector input is first processed
by three bidirectional LSTM units, whose output is used as the input of an
encoder layer of an encoder-decoder structure.

Fig. 5. In the CSBiED-LSTM network, stacked bidirectional LSTM units are
used for preprocessing both the input of the encoder layer as well as that of
the decoder layer.

output in turn is used as the input of the decoder layer
connected to the previously mentioned encoder layer
(see Fig. 5).

IV. EXPERIMENTAL EVALUATION

We trained our system using 8 musical pieces from the
classic database of the RWC Music Database and evaluated the
chord recognition rate utilizing cross validation (using another
musical piece from same database). The chord progression la-
bels were obtained from the KS notation database (KSN) [17].
The label data was created by music university students and
experts trained in harmony theory. The notation itself is based
on functional harmony theory and therefore especially suited
for music information analysis based on chord progressions.

For this paper, we used 25 chord classes: 12 major chords,
12 minor chords, and a “no chord” class. The training data
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TABLE II
PARAMETERS OF THE LSTM NETWORK TRAINING PROCESS

Tempo 120bpm
Tonic key C Major
Number of stacked LSTM layers 3
Number of training epochs 5000
Number of musical pieces 8

TABLE III
EXPERIMENTAL RESULTS (CHORD RECOGNITION)

(1)SBi (2)SBiED (3)CSBiED
Accuracy (%) 76.5 85.8 82.3

was available in MIDI and WAVE format where the MIDI
onset timings correspond as closely as possible to the real
performance recorded in the WAVE data. In our experiments,
we used the MIDI data and transposed every piece to C-Major.
In a second step, we converted the MIDI data to audio data
after scaling each MIDI file to a tempo of 120 beats per
minute. Lastly, the audio data was split into segments each
4 seconds long. The LSTM networks were then trained to
recognize the chord progressions of these 4 second segments.
Table II shows the parameters of the neural network training
process.

Each LSTM network was trained a data set containing
around 1000 segments taken from the 8 classical pieces used
for training. The chord recognition accuracy was evaluated
using approximately 120 segments of the validation piece. The
evaluation results are shown in Table III. The stacked bidirec-
tional encoder-decoder LSTM network achieved the highest
chord recognition accuracy rate. The result of the conditional
stacked bidirectional encoder-decoder LSTM network was was
relatively close, and one can see that neural network structures
utilizing an encoder-decoder model performed significantly
better than a simple stacked bidirectional LSTM network. A
possible reason for the worse performance of the CSBiED
LSTM network in comparison with its simpler SBiED LSTM
counterpart could be the significant increase of neural network
weights leading to overfitting due to the relatively small
amount of available training data.

V. CONCLUSION

We evaluated 3 types of chord recognition LSTM network
architectures which utilize the bidirectional LSTM structure
as well as the encoder-decoder model. During preprocessing,
our system applied specmurt analysis to suppress overtone fre-
quencies in the audio spectrograms. The experimental results
showed that the encoder-decoder model is effective for the
recognition of chord progressions.

However, there is still room for improvement: We used the
approximation that the magnitudes of overtone frequencies
decrease simply inversely with increasing distance from the
fundamental frequency. However, the exact overtone frequency
distribution is dependent on the musical instrument as well
as the recording environment and even slightly differs for

different pitches. If one estimates the overtone frequency dis-
tribution from data, the performance of the specmurt analysis
could increase, resulting in more effective suppression of
overtone components [18]. Another possibility for improving
preprocessing could be the use of non-negative matrix fac-
torization (NMF), which has been used in recent research on
multi pitch analysis and a sound source separation [19].
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