
Online Sound Structure Analysis Based on
Generative Model of Acoustic Feature Sequences

Keisuke Imoto∗, Nobutaka Ono†‡, Masahiro Niitsuma∗, Yoichi Yamashita∗
∗ Ritsumeikan University, Japan, † National Institute of Informatics, Japan

‡ SOKENDAI (The graduate university for advanced studies)

Abstract—We propose a method for the online sound structure
analysis based on a Bayesian generative model of acoustic feature
sequences, with which the hierarchical generative process of the
sound clip, acoustic topic, acoustic word, and acoustic feature
is assumed. In this model, it is assumed that sound clips are
organized based on the combination of latent acoustic topics, and
each acoustic topic is represented by a Gaussian mixture model
(GMM) over an acoustic feature space, where the components of
the GMM correspond to acoustic words. Since the conventional
batch algorithm for learning this model requires a huge amount
of calculation, it is difficult to analyze the massive amount of
sound data. Moreover, the batch algorithm does not allow us to
analyze the sequentially obtained data. Our variational Bayes-
based online algorithm for this generative model can analyze the
structure of sounds sound clip by sound clip. The experimental
results show that the proposed online algorithm can reduce
the calculation cost by about 90% and estimate the posterior
distributions as efficiently as the conventional batch algorithm.

I. INTRODUCTION

The amount of media information, such as sound, video,
and text data, has increased recently, and it has become
more important to analyze them and explain their structure
automatically. Acoustic scene analysis is such a technique
for analyzing the sound structure and extracting valuable
information (e.g., What is someone doing and where and
when? Who is this someone?) from different types of sounds
(e.g., environmental sounds, voice, music), in which much
interest has been expressed recently [1], [2], [3], [4]. Par-
ticularly, some methods are focused on the fact that many
sounds are characterized by a combination of multiple types
of sounds. For example, the sound of ”cooking” is marked
by a combination of sounds including “cutting with a knife,”
“heating a skillet,” and “running water.” On the basis of this
idea, Kim et al. [5], Lee et al. [6], and Imoto et al. [7], [8]
proposed generative probabilistic models of acoustic word se-
quences (that consist of multiple acoustic words) for analyzing
the sound structure, which are called acoustic topic models
(ATMs). Note that an acoustic word is defined as a label
of the sound type given time-frame-by-time-frame. Conven-
tional ATMs preliminarily estimate acoustic word sequences
from long-term sound clips time-frame-by-time-frame using
Gaussian mixture models (GMMs) or hidden Markov models
(HMMs). They then model a probabilistic generative process
of an acoustic word sequence over sound clips and analyze the
sound structure with the models. However, these conventional
ATMs model the generative process of acoustic words and
acoustic features separately; therefore, they do not capture the
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Fig. 1. Relation between sound clip, acoustic topic, acoustic word, and
acoustic feature sequence

acoustic similarity between acoustic words or the variance
of each acoustic word in the generative model. To address
this problem, Imoto et al. [7] proposed a generative model of
acoustic word sequences that can precisely capture the acoustic
similarity between acoustic words and the variance of each
acoustic word, as shown in Figs. 1 and 2. They called their
model latent acoustic topic and event allocation (LATEA).

These models require estimating the posterior distributions
after the entire sound corpus has been observed; therefore,
it is difficult to apply them to sequentially obtained acoustic
signals. Moreover, they incur high calculation cost to estimate
the optimal posterior distributions because it is necessary
to run the estimation algorithm iteratively over an entire
sound corpus. On the contrary, online learning algorithms in
ATMs were proposed by Kim et al. [9] and Imoto et al.
[10]. However, it can model only a generative process of
the acoustic word sequence except for the acoustic similarity
between acoustic words or the variance of each acoustic word
in the model.

For this study, we propose an online sound structure analysis
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Fig. 2. Graphical model representation of LATEA

algorithm based on LATEA that can be applied to sequentially
obtained acoustic signals and precisely capture the relations
among sound clips, acoustic topics, acoustic words, and acous-
tic features.

The rest of this paper is structured as follows. In Section
2, we introduce LATEA and a batch parameter estimation
algorithm for the model. In Section 3, the parameter estimation
algorithm for LATEA based on an online variational Bayes
(VB) is described. In Section 4 and 5, we discuss experimental
results and conclude this paper.

II. GENERATIVE MODEL OF ACOUSTIC FEATURE
SEQUENCES

LATEA [7] is a generative probabilistic model of acous-
tic feature sequences for modeling the latent structures of
acoustic topics and words simultaneously. An acoustic topic is
defined as a latent structure time-frame-by-time-frame, which
represents the sound structure in an unsupervised manner. As
shown in Figs. 1 and 2, LATEA models a generative process of
acoustic feature sequences hierarchically; it represents sound
clips as categorical distributions over acoustic topics, acoustic
topics as categorical distributions over acoustic words, and
acoustic words as Gauss-Wishart distributions over acoustic
features. This means that we regard each acoustic word as a
Gaussian component of a GMM and represent acoustic topics
as the mixture weights of the GMM in the acoustic feature
space. Following the stochastic method, we can describe these
relations with a fully Bayesian approach, as shown in Fig. 2.
The definitions of the variables in this paper are listed in
Table I.

In the generative process of LATEA, zs,i is first sampled
from categorical distribution θs for every fs,i in fs, where θs
has a Dirichlet prior of parameter α. This zs,i then samples
ws,i from categorical distribution ϕzs,i over acoustic topics as-
sociated with zs,i, where ϕzs,i has a Dirichlet prior of parame-
ter β. This ws,i samples an fs,i from a N (µws,i ,Λws,i), where
N (µws,i ,Λws,i) has a Gaussian-Wishart prior of parameters
β0,µ0, ν0 and B0. This generative process is repeated for Ns

to generate fs. The joint distribution of LATEA is expressed

TABLE I
DEFINITIONS OF VARIABLES IN THIS PAPER

Symbol Definition
z Latent acoustic topic variables
w Latent acoustic word variables
f Set of all acoustic feature sequences
θs Acoustic topic distributions over sound clip s
ϕt Acoustic word distributions over topic t
µm,Λm Acoustic feature distribution over word m

(Mean and variance of Gaussian distribution)
α, γ Hyperparameter of Dirichlet distribution
β0,µ0 Hyperparameter of Gaussian distribution
ν0,B0 Hyperparameter of Wishart distribution
Cm Regularization term of Wishart distribution
nst acoustic word counts assigned to t in s
ntm acoustic word counts assigned to m in t
S, s Total number and index of sound clips
T, t Total number of classes and index of acoustic topic
M,m Total number of classes and index of acoustic word
D, d Dimension and dimension index of acoustic feature
Ns, n Total number and index of acoustic features in s
D(·) Dirichlet distribution
C(·) Categorical distribution
N (·) Gaussian distribution
W(·) Wishart distribution
Γ(·) Gamma function
ψ(·) Digamma function
τ0 Time shift coefficient
κ Forgetting factor

by the following equation,

p(f) =
S∏

s=1

Ns∏
i=1

p(fs,i|θs,ϕt,µm,Λm, α, γ, β0,µ0, ν0,B0)

=
S∏

s=1

Ns∏
i=1

T∑
t=1

M∑
m=1

C(zs,i|θs)D(θs|α)C(ws,i|zs,i,ϕzs,i)

·D(ϕzs,i |γ)N (fs,i|ws,i,µws,i ,Λws,i)N (µws,i |β0, µ0,Λws,i)

·W(Λws,i |ν0,B0)

=
S∏

s=1

Γ(Tα)

Γ(α)T

T∏
t=1

θα−1+nst
st ·

T∏
t=1

Γ(Mγ)

Γ(γ)M

M∏
m=1

ϕγ−1+ntm

tm

·
M∏

m=1

(βm|Λm|)1/2

(2π)D/2
exp

{
− βm

2
(µm−µ0)

TΛm(µm−µ0)
}

·Cm|Λm|(νm−D−1)/2 exp
{
− 1

2
Tr

(
BmΛm

)}
, (1)

where we hypothesize that there is no temporal relation
between acoustic features (acoustic words) because it can be
considered that they are temporally exchangeable; therefore,
we treat acoustic features as a “bag of acoustic features”,
which corresponds to the “bag of words” representation in
natural language processing [11].

A. Batch VB algorithm for LATEA

In LATEA, the true posterior distribution of all unknown
variables p(z,w,θ,ϕ,µ,Λ|f) is intractable. Therefore, we
estimate the posterior distribution with the VB method [12],
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which is faster in estimating these distributions than the
collapsed Gibbs sampling (CGS) [13], [14] or expectation
propagation (EP) methods [15]. With the VB method, the vari-
ational distribution q(z,w,θ,ϕ,µ,Λ) is defined to estimate
the true posterior distribution by iteratively approximating the
variational distribution to the true distribution.

According to the VB method for LATEA, the appropriate
variational parameters are obtained by maximizing the lower
bound F(f) of the logarithm likelihood of all parameters
through the update of q(z,w,θ,ϕ,µ,Λ). Specifically, to
obtain an appropriate lower bound on the log likelihood of
the distribution, Jensen’s inequality is used as follows,

L(f) ≡ log p(f |α, γ, µ0, β0, ν0,B0)

=

∫∫∫∫ ∑
z

∑
w

log q(w, z,µ,Λ,ϕ,θ)

·p(f ,w,z,µ,Λ,ϕ,θ|α, γ, µ0, β0, ν0,B0)

q(w,z,µ,Λ,ϕ,θ)
dµdΛdϕdθ

≥
∫∫∫∫ ∑

z

∑
w

q(w, z,µ,Λ,ϕ,θ)

· log p(f ,w, z,µ,Λ,ϕ,θ|α, γ, µ0, β0, ν0,B0)

q(w,z,µ,Λ,ϕ,θ)
dµdΛdϕdθ

≡ F [q]. (2)

It is then assumed that the variational distribution can be
expressed as follows using mean field approximation,

q(z,w,θ,ϕ,µ,Λ) = q(z,w)q(θ,ϕ,µ,Λ). (3)

By substituting Eq. (3) into (2), the appropriate variational
distributions can be expressed by

q(z,w) ≡ exp
{⟨

log p(f , z,w|θ,ϕ,µ,Λ)
⟩
q(θ,ϕ,µ,Λ)

}
(4)

q(θ,ϕ,µ,Λ) ≡ exp
{⟨

log p(f , z,w|θ,ϕ,µ,Λ)
⟩
q(z,w)

}
, (5)

where
⟨
log p(·)

⟩
q(·) is an expectation of log p(·) to q(·).

We obtain the variational posterior distributions by calculat-
ing Eqs. (4) and (5) iteratively until evidence of the lower
bound converges. Finally, the variational inference procedure
of LATEA is derived, as shown in Algorithm 1.

III. ONLINE INFERENCE
OF VARIATIONAL POSTERIOR DISTRIBUTION

The batch VB algorithm for LATEA requires calculating all
variational posterior distributions of whole sound clips in each
iteration. Although the batch VB algorithm generally requires
less calculation compared to the batch collapsed Gibbs sam-
pling [13], [14], even this algorithm becomes computationally
very slow as the sound corpus grows. Moreover, the batch VB
algorithm cannot model sequentially obtained sound clips. We,
therefore, propose an online algorithm that does not need to
calculate all distributions in each iteration nor to store all of
the sound clips.

In our online algorithm, better approximations of ϕ,µ, and
Λ are obtained by optimizing θs, z, and w in each sound

Algorithm 1: Batch VB algorithm for LATEA

[Step1] Initialization
set α0, γ0, β0, µ0, ν0, B0, h = 0

initialize N
(h)
st , α

(h)
st , N

(0)
tm , γ

(0)
tm ,µ

(0)
m , ν

(0)
m ,B

(0)
m , g

(0)
µm ,Σ

(0)
µm

[Step2] Parameter estimation based on batch VB algorithm
repeat

set h← h+ 1

for s, n, t,m = 1 to S,Ns, T,M do

usnm = 1
2

{∑
dψ

(
ν0+

∑
tN

(h)
tm +1−d
2

)
+D log 2− log |B(h)

m |
}

− 1
2
Tr

{
νmB−1

m

(
gµm

gµm−2
Σµm+ (fn− µm)(fn− µm)T

)}
+
∑

tRsnt

(
ψ(

∑
t γ

(h)
tm )− ψ

(∑
m

∑
t γ

(h)
tm

))
Usnm = exp{usnm}

/∑
m exp{usnm}

rsnt =
∑

mUsnm

(
ψ(γ

(h)
tm )−ψ

(∑
mγ

(h)
tm

))
+ψ(α

(h)
st )−ψ

(∑
t α

(h)
st

)
Rsnt = exp{rsnt}

/∑
t exp{rsnt}

N
(h)
st =

∑
nRsnt, α

(h)
st = α0 +N

(h)
st

end for
until convergence condition is satisfied
for t,m = 1 to T,M do

N
(h)
tm =

∑
s

∑
n UsnmRsnt, γ

(h)
tm = γ0 +N

(h)
tm

end for
for s, n, t,m = 1 to S,Ns, T,M do

f
(h)
sn =

∑
s

∑
nUsnmfsn∑
tN

(h)
tm

, ν
(h)
m = ν0 +

∑
tN

(h)
tm

µ
(h)
m =

β0µ0 +
∑

tN
(h)
tm fsn

β0 +
∑

tN
(h)
tm

, g
(h)
µm = ν

(h)
m + 1−D

B
(h)
m = B0 +

∑
s

∑
n

∑
tUs′nmRs′nt(fsn − f

(h)
sn )(fsn − f

(h)
sn )T

+
β0

∑
tN

(h)
tm

β0 +
∑

tN
(h)
tm

(µ0 − f
(h)
sn )(µ0 − f

(h)
sn )T

Σ
(h)
µm =

B
(h)
m

(β0 +
∑

tN
(h)
tm )g

(h)
µm

end for

clip. Our goal for our online algorithm is to estimate the
variational posterior distributions that maximize a summation
of the contribution of each sound clip in F [q] as follows,

F [q] ≡
∑
S

F [q(s)]. (6)

The online variational inference procedure of LATEA is
obtained, as shown in Algorithm 2. We iteratively repeat
the optimization of Us′nm, Rs′nt, and αs′t locally, while
holding the other parameters fixed then update other posterior
distributions with the optimized Us′nm, Rs′nt, and αs′t. The
updating weight is controlled by the repeated count k, time-
shift parameter τ0, and forgetting factor κ. We also introduce
a mini-batch technique [16] for denoising [17] the learning
dataset, which updates variational parameters with multiple
sound clips at the same time in this inference procedure. With
this mini-batch technique, we update N

(h)
tm and f

(h)

s′n with the
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Algorithm 2: Online VB algorithm for LATEA

[Step1] Initialization
set α0, γ0, β0,µ0, ν0,B0, τ0, κ, h = 0

initialize N
(0)
tm , γ

(0)
tm ,µ

(0)
m , ν

(0)
m ,B

(0)
m , g

(0)
µm ,Σ

(0)
µm , ρh = (τ0)

−κ

[Step2] Parameter estimation based on online VB algorithm
while sound clip is input do

initialize α(h)
s′t , N

(h)
s′t

repeat
for s′, n, t,m = 1 to S′, Ns, T,M do

us′nm = 1
2

{∑
dψ

(
ν0+

∑
tN

(h)
tm +1−d
2

)
+D log 2− log |B(h)

m |
}

− 1
2
Tr

{
νmB−1

m

(
gµm

gµm−2
Σµm+ (fn− µm)(fn− µm)T

)}
+
∑

tRs′nt

(
ψ(

∑
t γ

(h)
tm )− ψ

(∑
m

∑
t γ

(h)
tm

))
Us′nm = exp{us′nm}

/∑
m exp{us′nm}

rs′nt =
∑

mUs′nm

(
ψ(γ

(h)
tm )−ψ

(∑
mγ

(h)
tm

))
+ψ(α

(h)
s′t )−ψ

(∑
t α

(h)
s′t

)
Rs′nt = exp{rs′nt}

/∑
t exp{rs′nt}

N
(h)
s′t =

∑
nRs′nt, α

(h)
s′t = α0 +N

(h)
s′t

end for
until convergence condition is satisfied
for t,m = 1 to T,M do

N
(h)
tm =

S

S′

∑
s′

∑
n

UsnmRs′nt, γ̃
(h)
tm = γ0 +N

(h)
tm

γ
(h)
tm = γ

(h−1)
tm (1− ρk) + γ̃

(h)
tm ρk

end for
for s′, n, t,m = 1 to S′, Ns′ , T,M do

f
(h)
s′n =

S

S′
∑

s′
∑

nUs′nmfs′n∑
tN

(h)
tm

, ν
(h)
m = ν0 +

∑
tN

(h)
tm

µ
(h)
m =

β0µ0 +
∑

tN
(h)
tm fs′n

β0 +
∑

tN
(h)
tm

, g
(h)
µm = ν

(h)
m + 1−D

B
(h)
m =B0+

S

S′
∑

s′
∑

n

∑
tUs′nmRs′nt(fs′n−f

(h)
s′n)(fs′n−f

(h)
s′n)

T

+
β0

∑
tN

(h)
tm

β0 +
∑

tN
(h)
tm

(µ0 − f
(h)
s′n)(µ0 − f

(h)
s′n)

T

Σ
(h)
µm =

B
(h)
m

(β0 +
∑

tN
(h)
tm )g

(h)
µm

end for
set set h← h+ 1, ρh = (h+ τ0)−κ

end while

following equations:

N
(h)
tm =

S

S′
∑

s′
∑

nUs′nmRs′nt, (7)

f
(h)

s′n =

S

S′
∑

s′
∑

nUs′nmfs′n∑
t N

(h)
tm

, (8)

where S′ is the number of sound clips in a mini-batch. When
S′ = 1, this algorithm corresponds to the simple online VB
algorithm without the mini-batch technique, and when S′ = S,
it corresponds to the batch VB algorithm.

IV. EXPERIMENTS

We evaluated the performance of our proposed online
algorithm and its calculation efficiency by analyzing the

TABLE II
EXPERIMENTAL CONDITIONS

Sampling rate / quantization 16 kHz / 16 bits
Frame size / shift 512 / 256
Acoustic word size 8–256
Hyperparameter α / γ 1.0 / 1.0
Hyperparameter β0 / µ0 5.0 / O
Hyperparameter ν0 / B0 13.0 / I
τ0 / κ 2.0 / 0.75

TABLE III
RUNTIMES OF ONLINE AND BATCH LATEA ALGORITHMS (IN MIN.)

# acoustic word/topic Batch LATEA Online LATEA Online LATEA
(S′ = 10) (S′ = 50)

M = 8, T = 10 80.6 9.9 8.3
M = 16, T = 10 160.0 19.8 16.3
M = 32, T = 20 555.1 69.4 57.9
M = 64, T = 20 1,329.8 141.4 119.2
M = 128, T = 20 2,595.3 284.1 249.3
M = 256, T = 50 12,970.7 1,242.8 1127.0

sound structure using sounds recorded in a living room. We
used 1,504 real-life sounds, which included nine categories
of acoustic scenes: “chatting,” “cooking,” “eating dinner,”
“operating a PC,” “reading a newspaper,” “vacuuming,”
“walking,” “washing dishes,” and “watching TV,” though we
analyzed sound structure without these acoustic scene labels.
For acoustic features, 12-dimensional Mel-frequency cepstral
coefficients (MFCCs) were calculated from every segmented
sound clip with 50% overlap, and each sound clip was
composed of 1,000 acoustic features. The other experimental
conditions are listed in Table II. We also evaluated batch
ATM, online ATM [18], and batch LATEA as comparative
methods and used the same parameter set as the proposed
online LATEA.

Table III lists the runtimes of the batch and online LATEA
algorithms with various parameters. The experimental results
indicate that online LATEA can estimate posterior distributions
at about a 1/10 calculation cost. Moreover, it combines the
calculation efficiency and performance of the acoustic topic
estimation, as shown in Table III and Fig. 4. Figure 4 shows
the acoustic topic estimation results of a sound associated
with “cooking.” Actual acoustic scenes are depicted in the
upper part of the figures, and each color-coded acoustic signal
denotes the acoustic topic estimated with batch ATM, online
ATM, batch LATEA, and online LATEA. As shown in these
figures, online LATEA can extract a sound structure repre-
sented by an acoustic scene as well as batch LATEA because
the extracted acoustic topics agree equally well with actual
acoustic scenes in both algorithms, while the conventional
online ATM confused acoustic scenes in their acoustic topics.
These results indicate that online LATEA better represents
the acoustic similarity and variance between acoustic words
and enables the better description of the relationship between
acoustic scenes and topics.

We evaluated the perplexities for the LATEA algorithms that
determine their generalization performance; they are calculated
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Fig. 3. Acoustic topic estimation results in acoustic scene ”cooking” with
batch ATM (upper, T = 20,M = 256) and online ATM (lower, T =
20,M = 256, S′ = 50)

as follows,

Perplexity(f) = exp

[
−
∑S

s=1 log p(fs)∑S
s=1 Ns

]
. (9)

For the perplexity with the LATEA algorithms, we chose
T = 20, 30, 50, and M = 8, 16, 32, 64, 128, 256, and fit per-
sound clip parameters Us′nm, Rs′nt, and αs′t to test sound
clips preliminarily. As shown in Fig. 5, these test sounds
recorded in a living room can be modeled well with the
proposed online LATEA when using a few hundred classes of
acoustic words and a few dozens of acoustic topics because
the results are close to the perplexity in the batch LATEA.
Meanwhile, when using a few dozen classes of acoustic words,
the online LATEA results in higher perplexities because the
models confuse multiple classes of acoustic words, which is
supposed to be separated into different classes of acoustic
words. Moreover, when M = 8, it is estimated that the
acoustic word distribution has degenerated to a couple of
classes, and therefore, the perplexity falsely drop to a lower
value.

V. CONCLUSION

We proposed an online learning algorithm for LATEA that
can be applied to sequentially obtained acoustic signals and
used to analyze the sound structures that are organized by
the combination of the latent acoustic topics. In LATEA,
a generative process of acoustic feature sequences is mod-
eled hierarchically; it represents sound clips as categorical
distributions over acoustic topics, and each acoustic topic is
represented by a GMM over an acoustic feature space, which
can capture the acoustic similarity between acoustic words or
the variance of each acoustic word in the generative model. For
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Fig. 4. Acoustic topic estimation results in acoustic scene ”cooking” with
batch LATEA (upper, T = 20,M = 256) and online LATEA (lower, T =
20,M = 256, S′ = 50)
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Fig. 5. Averaged perplexity for batch and online LATEA

the online learning of LATEA, we derived a VB-based online
algorithm that sequentially estimates the appropriate posterior
distributions of every several sound clips. The experimental
results indicate that the proposed algorithm can estimate
posterior distributions as efficiently as batch LATEA at a
fraction of the calculation cost.
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