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Abstract—Deep learning architectures particularly Convolu-
tional Neural Network (CNN) have shown an intrinsic ability
to automatically extract the high level representations from big
data. CNN has produced impressive results in natural image
classification, but there is a major hurdle to their deployment in
medical domain because of the relatively lack of training data
as compared to general imaging benchmarks such as ImageNet.
In this paper we present a comparative evaluation of the three
milestone architectures i.e. LeNet, AlexNet and GooglLeNet and
propose our CNN architecture for classifying medical anatomy
images. Based on the experiments, it is shown that the proposed
Convolutional Neural Network architecture outperforms the
three milestone architectures in classifying medical images of
anatomy object.

I. INTRODUCTION

Medical images obtained from different image modalities
contain vital information about various states of the patient
and are an extremely important part of the diagnosis process in
medical institutions [1]. Recent advances in medical imaging
techniques such Computed Tomography (CT), Magnetic Res-
onance Imaging(MRI), X-Rays, Positron Emission Tomogra-
phy(PET) have led to enormous increase in the volume of these
images [2] and an increase in the stipulation for automatic
methods of classifying, indexing, annotating and analyzing
these medical images. From the radiology workflow perespec-
tive, following picture acquisition course of action, the images
are usually archived within Picture archiving and Commu-
nication Systems (PACS) [4]. In order to make diagnosis, a
radiologist retrieves an image from PACS. Retrieving similar
cases from a large archive may be a daunting task and is one
among the key problems within the quickly increasing domain
of content-based medical image retrieval [5]. In classifying
medical image anatomies, there are two main issues: intra class
variability vs inter class variability [6] and data disproportion
[7]. The first problem is due to the fact that images belonging
to different anatomy object classes might look very similar as
shown in Figure 1.
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Fig. 1: Example images depicting visual variability belonging to same
class i.e. heart and kidney a) CT heart, b) MRI heart, c) CT Kidney,
d) MRI Kidney

The work of image classification has been conducted in a
single specific domain of anatomies and modalities, such as
CT lung images [8], X-ray and CT images of different body
parts i.e. skull, breast, chest, hand etc [9], breast ultrasound
images [10]. Although a variety of feature representation have
been proposed for classifying medical images, these feature
representations are domain specific, that cannot be applied
to other classes keeping in mind the variability in medical
images. In this study we propose a Convolutional Neural
Network (CNN) architecture for automatically classifying
anatomy in medical images by learning features at multiple
level of abstractions from the data obtained.

The contribution of this paper is on a comprehensive evalu-
ation of the three milestone CNN architectures, i.e. LeNet,
AlexNet and GoogleNet for classifying medical anatomy
images. The findings from the performance analysis of these
architectures advocates the need of a modified architecture
because of their poor performance for medical image anatomy
classification. Hence, a modified Convolutional Neural Net-
work architecture for classifying anatomies in medical images
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is proposed.

The rest of the paper is organized as follow: Section 2
discusses the related work, Section 3 highlights our proposed
CNN while Section 4 presents the evaluation of three mile-
stone CNN architectures and our proposed CNN architecture
for classifying medical image anatomies. The paper is con-
cluded in Section 5.

II. RELATED WORK

Over the past decades, a number of low level feature
descriptors have been proposed as an image representation
ranging from global features, such as shape and texture
features as reported in [11] for classification of pulmonary
nodules in lung ct images, edge features [12] to the recently
used local feature representations, i.e SIFT with Bag of Visual
Words [13].

On the other hand deep learning have shown promising
results in image classification. Deep learning alludes to a cat-
egory of machine learning techniques, where numerous layers
of information processing stages in hierarchical architectures
are exploited for pattern classification and feature learning.
LeCun [14] adopted the deep supervised back-propagation
Convolution Neural Network (CNN) for digit recognition suc-
cessfully. After that, the deep Convolutional Neural Networks
(CNNs) proposed in [15] turned out to be a breakthrough,
that was declared first in the image classification task of
ILSVRC-2012. The model was trained on more than one
million images, and has achieved a successful top-5 test error
rate of 15.3% over 1000 classes. Since then, more work have
been done by improving CNN models to improve the image
classification results. Specifically, the CNN model consists of
many convolutional layers and pooling layers, that are stacked
up with one on top of another. The convolutional layer shares
several weights, and the pooling layer sub-samples the output
of the convolutional layer and reduces the data rate from the
layer below. The weight sharing in the convolutional layer, in
conjunction with suitable chosen pooling schemes, subsidizes
the CNN with some invariance properties e.g. invariance to
translation.

On the other hand, CNNs have made a sound advancements
in biomedical applications [18] too. Recent work has shown
how the implementation of CNNs can significantly improve
the performance of the state-of-the-art computer aided detec-
tion systems (CADe) [19-21]. However, in terms of research
for classifying anatomies in medical images, there are only a
few studies have been carried out using CNN [22-24].

One of the drawbacks of these studies is that they do not
provide extensive evaluation of milestone deep nets [22, 23]
and are just focused on single modality, such as only CT im-
ages were used in [22]. In order to overcome these limitation,
an architecture that can be generalized to various anatomies
with different modalities is needed which leads to the main
focus of this study.

III. PROPOSED MODEL

The anatomical classification problem is an important step
in Computer Aided and Diagnosis Systems (CADs) [23].
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Anatomical structures vary dramatically between individuals
i.e normal lung structure as compared to deformed shaped
due to pathological intervention, also small lumbar spine bone
structure in one individual and same bone structure in other
individuals appear to be elongated due to the advancement
in the diseases. As a result, a robust Convolutional Neural
Network (CNN) architecture is required to achieve better
accuracy and that should generalize to all medical image types
regardless of normal or abnormal.

Our proposed model of the CNN architecture is a modifica-
tion of the basic architecture of AlexNet [15]. This architecture
contains four convolutional layers (conv) followed by two fully
connected layers (fc). The first convolutional layer i.e convl
subjected to local response normalization, with kernel size 11,
which depicts that each unit in each feature map is connected
to 11 x 11 neighborhood in the input and stride of 4, which
means after every four pixels perform the convolution on the
input images. The output of the first convolution layer are 96
feature maps. The first layer i.e. convl layer is followed by
pooling. The kernel size for the pooling is set to 3 with stride
2. Pooling is followed by convolution conv2 with kernel size
5 and stride 2. The pooled feature maps are again convolved
in layer conv3, with parameter setting of kernel size equal to
3, stride of 2. These convolved features are again convolved
in layer conv4 with parameter setting same as in layer conv3.
Which is followed by fully connected layers (fc), i.e. fc5, fc6.
In the layer fc6 in Alexnet two operations are applied, i.e.
relu6 and drop6. While as in our proposed architecture, fully
connected layer 5 (fc5) is only subjected to rectified linear
unit operation. The output of of our con4 layer are 256 where
as in AlexNet 384 feature maps are generated. The layer fc5
is followed by fully connected layer while fc6 which results
in 4096 dimensional vector for each image.

The architecture of the proposed CNN used for medical
image anatomy classification is as shown in Figure 2 while
the hyperparameter specifications of the proposed CNN frame-
work are given in Table I.

TABLE I: Hyperparameter Specifications of the proposed CNN
framework in units.

HyperParameter | Layerl Layer 2 | Layer 3 | Layer 4
Number of filters | 96 256 384 256
kernel size 11 x11 | 5% 5 3 x3 3 x3
stride 4 2 2 2
Learning rate 0.01

Momentum 0.9

Weight Decay 0.0005

Training epochs 30-60

Number of 4096
units in  fully

connected layer

In AlexNet [15], five convolutional and three fully con-
nected layers were used, whereas our architecture contains
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Fig. 2: Proposed CNN architecture

only four layers with two fully connected layers (fc): fc5
and fc6. We did not use the dropout layers that have been
used with fc6 and fc7 layers in AlexNet, because looking at
the visualization of the feature maps most of the activations
are dumped out in higher layers. The result of which it does
not control any overfitting but rather adds complexity to the
network. Outputs from the convolution layer 4 are calculated

as:
m—1m—1

l -1
V=303 War X0 (1
a=0 b=0

The features maps resulted from convolution are subjected
to rectified linear unit operation as follows:

yi; = max {0,Y;} 2

In AlexNet, layers fc6 and fc7 are subjected to dropout for
regularization. Dropout prevents co-adaptation of hidden units
by randomly dropping out i.e., setting to zero a proportion
p of the hidden units during forward back-propagation. That
is, given the penultimate layer | = [I1,...... ,Im], where m
represents the filters. The dropout is formulated as :

y=w(lor)+b, 3)

where © is the element-wise multiplication operator and r €
R,, is a masking vector of Bernoulli random variables with
probability p of being 1.

Gradients are backpropagated only through the unmasked
units. So if the Drop out masks the maximum unit it will
cause the weights to update in such a way that the neuron
will never activate on any data point again. If this happens,
then the gradient flowing through the unit will forever be zero
from that point on. So these activated units will ultimately
vanished during training process.

In our modified architecture, this does not subject to fully
connected layer, fc5 to drop out operation, rather feed it
with the output of the conv4 layer, as shown in a simplified
expression,

y=w.l+b @)
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IV. EXPERIMENT AND RESULTS DISCUSSION

Experiments were conducted with a machine incorporated
with NVIDIA GeForce GTX 980M, using a data set acquired
from the U.S. National Library of Medicine, National Institutes
of Health, Department of Health and Human Services[23].
The open accessed medical image database contains thousands
of anonymous annotated medical imaging data. Anatomical
images that are used in this experimentation consist of CT,
MRI, PET, Ultrasound and X-ray modalities. This database
contains images with various pathologies. For our experimen-
tal evaluation, we adopted 37198 images of five anatomies to
train the CNN models. For testing, we used 500 images other
than that in the training set, i.e. 100 images per anatomy.
So a total of 37698 images were used in the experiments.
The anatomies considered in our experiments were lung, liver,
heart, kidney and lumbar spine. Sample images are shown in
Figure 3.

Heart

Lumbar Spine

Kidney Liver Lung

Fig. 3: Example images of five anatomies from various modalities.
First row corresponds to CT modality, Second row corresponds to
MRI modality and third row corresponds to PET modality.

The normal and pathological images were used, so that these
frameworks should be generalized to classify any image of the
same organ if it varies in shape or contrast.

The dataset was tested with the three milestone architec-
tures, i.e LeNet [14], AlexNet [15] and GoogLeNet [17].
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The comparative results after applying these CNN archi-
tectures on our dataset are shown in Figure 4, 5 and 6
respectively. The validation accuracy and validation losses
are computed from the last layers of each architecture i.e.,
LeNet, AlexNet and GoogLeNet respectively. There are three
different accuracies in GooglLeNet, i.e., lossl/accuracy(val),
loss2/accuracy(val) and accuracy(val) that correspond to three
different classifiers that this GoogleNet network uses during
training. In this network, loss1/accuracy(val) is evaluated after
inception layer 4a and loss2/accuracy(val) is evaluated after in-
ception layer 4d. This is the naming convention in GoogLeNet
architecture and the final accuracy (accuracy(val)) is evaluated
at the end of the net which has been used in this study.

Accuracy (%)

M loss {train} W accuracy (val] W loss {val)
Fig. 4: Training and Validation error with each epoch for LeNet[14]
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Fig. 5: Training and Validation error with each epoch for AlexNet
[15]

All these CNNs have been trained with Stochastic Gradient
Descent algorithm. After evaluating these three milestone
architectures, that clearly depicts from the above results that
these CNNs over fits for the task of medical image classi-
fication. To figure out what is the reason for over fitting,
we visualized the filters and feature maps of these three
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Fig. 6: Training and Validation error with each epoch for GoogLeNet
(17]

architectures as shown in Figure 7, Figure 8 and Figure 9
respectively.

Analyzing these visualizations clearly depict that the filters
learned by LeNet and GoogleNet are not distinguishable
enough to depict the edge like features, that are supposed to be
learned by the first convolutional layer as there is lot of noise
in filters as shown in Figure 7 and Figure 8. After progressing
through the convolutional layers, the visualization shows that
most of the feature maps in LeNet does not clearly figure out
the structure representation of the anatomical structure. Where
as most of the features maps are dumped out in GoogLeNet
convolutional layers as shown in Figure 8. These visualizations
clearly depict that these architectures are not learning the
representations effectively.

On the other hand looking at the visualizations from
AlexNet. It is shown that the weights learned by AlexNet
as shown in Figure 9 are comparatively distinguishable than
LeNet and GoogLenet as it able to capture the edge like fea-
tures and also the most of the feature maps are retained through
various convolutional layers. But looking at its training and
validation process this network is also over fits because of its
large number of parameters as they progress through higher
layers.

Based on the comparative performance of AlexNet with
other architectures and to overcome its overfitting problem, we
modified the basic architecture of AlexNet. The visualizations
from proposed framework are shown in Figure 10 and Figure
11.

The visualizations clearly shows that the modified architec-
ture learns better representations than other architectures and
also training and validation graphs depicts the same behavior.
The training and validation results from the proposed CNN
architecture is shown in Figure 12.

It is evident from Figure 12 that the proposed CNN gives
good validation accuracy with low training loss and validation
loss.

For evaluating the performance of proposed CNN and three
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Fig. 7: Filter and feature map visualization of LeNet for analyzing the training and validation process

Conv 2 Feature Maps

Inception 2

Fig. 8: Filter and feature map visualization of GoogLeNet for
analyzing the training and validation process
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Conv & Featurs Maps

Fig. 9: Filter and feature map visualization of AlexNet for analyzing
the training and validation process
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Fig. 10: Filter visualization of proposed framework

Fig. 11: Filter and feature map visualization of proposed framework
for analyzing the training and validation process
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Fig. 12: Training and Validation error with each epoch for Proposed
CNN architecture for classifying medical image anatomies

milestone architectures, we conducted 7 different experiments
using CNN, by using varying sizes of training sets and
recorded the result classification accuracy. Each experiment
was validated using the randomly selected 20% data from the
training data set. The comparative performance of these three
milestone architectures with increasing number of datasets is
shown in Figure 13. It clearly showed that larger sets of train-
ing data leads to increased accuracy in classification which
supports our claim that CNN are data intensive architectures
and relatively lack of training data in medical imaging needs
the modification of the milestone architectures. Since these
three milestone architectures have been used for the natural
image classification, a subtle treatment to the parameter tuning
and layer formulation is needed. Therefore, we came up with
the modified CNN architecture, in which the modifications
have been carried out on [15]. In [15], five convolutional
and three fully connected layers were used. However, our
architecture contains only four convolutional layers with two
fully connected layers.

CLASSIFICATION ACCURACY ACCORDING TO INCREASING SIZE OF
DATASETS

—o—leMet
- AlexNet
—a—Googlellet

CLASSIFIACTION ACCURACY

Proposed architecture

5 10 20 50 100 200 000 7000
TRAINING SIZE

Fig. 13: Classification Accuracy According to the Increasing Size of
Datasets

The summary of the comparative performance of the pro-
posed CNN and the three milestone architectures in terms of
runtime, training loss, validation accuracy and test accuracy is
given in Table II. It can be seen that our proposed CNN out-
performs other three milestone CNN architectures by having
81% accuracy while AlexNet achieved only 74%, followed by
LeNet 59% and GoogleLeNet 45%.
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TABLE II: Comparative performance of proposed CNN with LeNet,
AlexNet and GoogLenet in terms of runtime, training loss, validation
accuracy and test accuracy

Model Runtime | Validation Validation Ac- | Test Ac-
in Loss curacy (%) curacy
seconds (%)

LeNet[14] 1655 1.3 58 59

AlexNet[15] 33466 1.39 65 74

GoogLeNet[17] | 52470 1.2 55 45

Proposed CNN 16728 0.67 76.6 81

The results in Table II shows that the architectures used for
natural image classification cannot be generalized on medical
images of anatomies. It is evident from the above results, that
modification of the basic CNN architecture in terms of number
of layers, the normalization function and subtle tuning of hyper
parameters shall yield better results for the task of medical
image anatomy classification.

V. CONCLUSION

In this paper, we proposed a modified CNN architecture that
combines multiple convolution and pooling layers for higher
level feature learning. The experiments for medical image
anatomy classification has been carried out and it shows that
the proposed CNN feature representation outperforms the three
baseline architectures for classifying medical image anatomies.
The modification of CNN has been done on the basis of
experimentation, that is carried out with the three milestone
architectures. These models overfit due to the number of layers
and the hyper-parameters used in these architectures have been
used for large set of natural images. However, medical image
datasets are different in terms of their acquisition medium and
less availability because of privacy and security policies as
compared to natural images. In this paper, We also provide an
insight into the deep features that have been learned through
training, that will help in analyzing various abstraction of
features ranging from low level to high level and their role
in final classification.

Our future work will extend to recognition and classification
of pathological structures from these classified anatomies,
leading to a fully automated medical image classification
system.
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