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Abstract—Takahashi and Murakami introduced a theoretical
framework to define and evaluate a measure of information
gained through a biometric matching system, called the Biometric
System Entropy or BSE. The BSE enables us to understand
and evaluate the personal identification capability of biometric
information from an information theoretical point of view.
However, there are limitations when evaluating the BSE for actual
systems and biometric information; (1) the BSE cannot be applied
to evaluation of biometric information entropy of individuals,
(2) it requires a strong and unrealistic assumption regarding
statistical distributions of biometric information. In this paper,
we generalize the theory of the BSE and give a new measure of
biometric information so that we can evaluate both individual
and average entropy of any kind of biometric information and
verification system without unrealistic assumptions.

I. INTRODUCTION

Biometric verification technologies for identifying individ-
uals based on measurement data of physical or behavioral
characteristics such as fingerprints, faces, irises, veins, gaits,
etc., are becoming popular. The most widely used measures
for quantitatively evaluating the individual identification per-
formance of a certain biometric verification system are the
false rejection rate (FRR) and the false acceptance rate (FAR).
However, these error rates change depending on the threshold
parameter t for the matching score (i.e., distance or similarity
between the biometric information for enrollment and verifi-
cation). Thus, it is standardized to describe the accuracy using
the DET (Decision Error Tradeoff) curve [1]. The DET curve
is defined as the locus of the set of points (FAR(t), FRR(t))
parametrized by t. Although the DET curve can describe the
accuracy of the biometric verification system in detail, it is
not easy to understand intuitively. For example, when the
DET curves of two systems intersect each other, it will not
be straightforward to tell which is better.

On the other hand, several attempts have been made to
evaluate individual identification performance of biometric
verification systems based on the entropy of biometric infor-
mation [2], [3], [4], [7]. These approaches enable quantitative
comparison not only between different biometric systems but
also with passwords, personal identification numbers, etc.,
so that the discrimination ability can be more intuitively
understood.

In particular, the BSE (Biometric System Entropy) pro-
posed by Takahashi and Murakami [7] has various “natural”

properties as the entropy of biometric information, such as
nonnegativity, subadditivity, relationship with Bayes classifi-
cation error and with the DET curve. In addition, the BSE can
be practically evaluated for an arbitrary biometric verification
system (although it is an asymptotic approximation). In this
sense, it can be said that the BSE combines practicality and
theoretical support.

However, there are limitations when evaluating the BSE for
actual systems and biometric information. Firstly, the BSE of
a system S is defined for a user set U (with probabilistic
distribution over it) and thus it represents the average entropy
for personal identification over U . Therefore, although the
BSE can be used as a information theoretical measure to
evaluate the identification performance of S itself, it cannot be
used to evaluate entropy of individual biometric information.
Furthermore, in deriving a practical evaluation measure and
procedure of the BSE, a too ideal assumption is made in [7]
where all users follow the same matching score distribution,
and there is room for discussion about the validity thereof.

In this paper, we generalize the theory of the BSE and
provide a new framework to evaluate a measure of biometric
information entropy of each individual and of average entropy
of any kind of biometric system without unrealistic assump-
tions. Our contributions are summarized as follows:

1) We propose a new definition, called the Biometric
System Entropy of Individual (BSEI), as a measure of
biometric information of each individual to be consistent
theoretically with the conventional definition of the BSE.
We show useful properties to understand the BSEI.

2) Since it is difficult to evaluate and calculate the BSEI
directly according to our new definition in practice, we
derive an approximate measure of the BSEI that can be
easily evaluated and calculated for actual systems.

3) We provide a practical evaluation protocol for the ap-
proximated BSEI.

4) We provide a new formula for approximated evaluation
of the (conventional) BSE in consideration of individual
distributions without unrealistic assumptions.

II. BIOMETRIC SYSTEM ENTROPY (BSE)

In this section we overview the definition and properties of
the BSE and point out several issues.
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A. Modeling of a Biometric Verification System

In the theory of the BSE a biometric verification system S
is modeled as a (mathematical) function which takes a pair of
biometric information (b1, b2) ∈ B2 as inputs and outputs a
real number x ∈ X as a score, i.e.,

S : B2 → X ⊆ R ( S(b1, b2) = x ), (1)

Here the biometric information bi ∈ B may be a “raw data”
such as an image or a “feature data” extracted from the row
data, and the score x ∈ X may be a similarity, a distance or
a decision result such as x = 1 (OK) and x = 0 (NG).

Note that the above model does not require any assumption
on the type of biometric data, the structure of the feature
space or the feature distribution on the space. Since the BSE is
defined for a system modeled above, it does not depend on the
internal structure of the system S and thus can be evaluated
only based on the distribution of the output score x, so that it
enables “black-box evaluation” and can be widely applied to
any biometric verification system.

In contrast, most existing attempts to define and evaluate
the entropy of biometric information mentioned above limit
the feature data to specific types and formats such as a
minutia set of a fingerprint or an iris code. Furthermore,
these attempts assume that the feature distributions of actual
biometric systems can be represented and estimated explicitly,
despite it is extremely difficult or impossible in practice.

B. Definition of the BSE

Consider the amount of information for individual identifi-
cation that can be gained by measuring biometric information
b ∈ B. Let U = {u1, · · · , uN} be the set of users of the
biometric authentication system S, and let U be the random
variable representing the user ID. Assume that the biometric
information (template) bi of each user ui ∈ U is already
enrolled on the system. In the identification phase, the only
and best way to identify an unidentified user U based only on
his/her biometric information b and the verification system S
is to match b and each user’s template bi, and make decision
based on the score sequence:

x = (x1, x2, · · · , xN ), xi = S(b, bi). (2)

Let X be a random variable and x be a realization of X .
The BSE of a biometric verification system S with respect to
the user set U is defined as follows,

BSE (U , S) = I(U ; X). (3)

Since I(U ; X) = H(U)−H(U |X), the BSE defined above
can be interpreted as the decrease of ambiguity (entropy) about
the identity of the (unidentified) user U caused by observing
the score sequence x; in other words the BSE can be viewed
to represent how much identification information about U was
gained through S.

C. Properties of the BSE

The BSE has various interesting properties that can be
naturally and intuitively interpreted as the amount of “per-
sonal identification information” gained through a biometric
verification system. In this section, we briefly overview these
properties.

1) Nonnegativity:

Theorem 1.

BSE (U , S) = I(U ; X) ≥ 0, (4)

with equality if and only if U and X are independent.

2) Subadditivity: Let us consider a multimodal biometric
system S consisting of two subsystems S1, S2 that uses
different biometric information b1, b2 such as a fingerprint and
an iris. Such a system S will be represented as follows:

S((b1, b2), (b1
i , b

2
i )) = T (S1(b1, b1

i ), S
2(b2, b2

i ))

where T (x1, x2) is a score fusion function.
As for the BSE of the multimodal biometric system S and

the subsystems S1, S2, the following theorem holds.

Theorem 2 ([7]). If the two score sequences xi =
(Si(b, b1), · · · , Si(b, bN )) (i = 1, 2) are statistically in-
dependent for each fixed user u (i.e., p(x1,x2|u) =
p(x1|u)p(x2|u)), then the following inequality holds:

BSE (U , S) ≤ BSE (U , S1) + BSE (U , S2), (5)

with equality if and only if X1 and X2 are independent and
X = T (X1,X2) is a sufficient statistic of U .

3) Other Properties: The following properties related to the
BSE are also shown in [7].

• If two biometrics verification systems have the same DET
curve, they also have the same BSE.

• Let ϵU and ϵU |X be Bayes error rates with respect to user
identification prior and posterior to the observation of X .
Then the following inequality holds:
Proposition 1 ([8]).

ϵU |X ≥ 1 +
I(U ;X) + log 2

log(1 − ϵU )
(6)

= 1 − I(U ;X) + log 2
logN

(7)

(when U is uniformly distributed)

D. Asymptotic approximation of the BSE

There are two problems to use the BSE (U , S) = I(U ; X)
directly as a measure. Firstly, it depends on the set of users
U ⊂ Ω. Secondly, it is hard to estimate the distribution of
the score vector X and to calculate the mutual information
I(U ; X), especially when N is large. To make the measure
easy to evaluate, in [7], it is shown under certain assumptions
that BSE(U , S) can be asymptotically approximated by the
Kullback-Leibler divergence

D(fG ∥ fI) =
∑

x

fG(x) log
fG(x)
fI(x)

, (8)
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where fG(x) is the genuine score distribution and fI(x) is
the impostor score distribution of the system S with respect
to the user set U .

Theorem 3. If the prior distribution U over U is uniform
(i.e., p(ui) = 1/|U| for all ui ∈ U) and each score
xi = S(b, bi) (i = 1, 2, · · · , N) follows fG(x) if U = ui

and follows fI(x) if U ̸= ui independently, the following
convergence holds:

BSE (U , S) → D(fG ∥ fI) (|U| → ∞).

III. A MEASURE OF INDIVIDUAL BIOMETRIC

INFORMATION

As described above, the BSE is defined for a pair of user set
U and a biometric verification system S. In this section, we
provide a new definition of a measure of biometric information
with respect to each individual ui ∈ U to be consistent with
the definition of BSE.

A. Definition

We define Biometric System Entropy of Individuals (BSEI)
of a biometric verification system S with respect to a user ui

as follows:

BSEI (ui, S) = D(p(X|ui) ∥ p(X))

=
∑

x∈XN

p(x|ui) log
p(x|ui)
p(x)

. (9)

B. Properties of the BSEI

The average of the BSEI of a system S with respect to the
users ui ∈ U is equal to the BSE with respect to the set U ,
i.e.,

Proposition 2.

EU [BSEI (U, S)]

=
∑
ui∈U

p(ui)
∑

x∈XN

p(x|ui) log
p(x|ui)
p(x)

=
∑
ui∈U

∑
x∈XN

p(x, ui) log
p(x, ui)
p(x)p(ui)

= I(U,X)nonumber (10)

= BSE (U, S) (11)

This proposition is obvious from the definition.
The following is another property:

Proposition 3. If H(X|U) = 0, for each ui ∈ U , there exists
only one x satisfying p(x|ui) = 1. Furthermore, if we denote
the above x as xi, then BSEI (u, S) = − log p(xi).

This property means that if x is decisional information
such as a password of an individual, and not probabilistic
(or “fuzzy”) data such as a set of fingerprint minutiae or
an iris code, then BSEI (u, S) is equal to the self-entropy
of x. In the concept of password entropy [6], the strength
of each password can be evaluated as its own self-entropy.
In this sense, the BSEI can be interpreted as an extension

of the password entropy to probabilistic information such as
biometric data.

C. Asymptotic approximation of the BSEI

It is difficult to evaluate the BSEI directly according to
the definition (9) in practice since it requires the explicit
knowledge of the distribution p(x|u) of score vector x for each
user u ∈ U . To solve this problem, we derive an approximate
measure of the BSEI that can be easily evaluated for actual
systems.

Let a user set U of a system S be an arbitrary subset of
the user population Ω with cardinality N (i.e., |U| = N ). Let
x = (x1, · · · , xN ) be an output of S when identifying an
unknown user U .

We make the following two assumptions:

(i) p(x|U) = ΠN
j=1p(xj |U). This means that the scores

xj = S(b, bj) (j = 1, 2, · · · , N) are conditionally
independent given U .

(ii) Conditional distribution p(xj |ui) of the score xj can be
described as follows:

p(xj |ui) =

{
f

(i)
G (xj) (i = j)
f

(i)
I (xj) (i ̸= j).

(12)

(iii) p(ui) = 1/N (i = 1, · · · , N).

Note that the above assumption (ii) takes into account the
difference of distributions among the users, whereas in [7]
it is assumed that the genuine and impostor distributions
fG(x), fI(x) are identical regardless of the user ui, i.e.,
f

(1)
G = · · · = f

(N)
G and f (1)

I = · · · = f
(N)
I .

Now the following theorem holds:

Theorem 4.

BSEI (ui, S) → D(f (i)
G (x) ∥ f (i)

I (x)) (N → ∞). (13)

(Proof)

BSEI (ui, S) = D(p(X|ui) ∥ p(X))

=
∑

x∈XN

p(x|ui) log
p(x|ui)
p(x)

=
∑

x∈XN

p(x|ui) log
p(x|ui)∑N

i=1 p(x|ui)p(ui)
.(14)

From the assumption (ii),

p(x|ui) =
N∏

j=1

p(xj |ui) =
f

(i)
G (xi)

f
(i)
I (xi)

N∏
j=1

f
(i)
I (xj). (15)

Let F (x) =
∏N

j=1 f
(i)
I (xj) and g(x) = f

(i)
G

(xi)

f
(i)
I

(xi)
. Then from

3

Proceedings, APSIPA Annual Summit and Conference 2018 12-15 November 2018, Hawaii



eq. (14) (15),

BSEI (ui, S) =
∑

x∈XN

F (x)g(xi) log
F (x)g(xi)∑

j F (x)g(xj)/N

=
∑

x∈XN

F (x)g(xi) log
g(xi)∑

j g(xj)/N

=
∑

x∈XN

F (x)g(xi) log g(xi)

−
∑

x∈XN

F (x)g(xi) log

 1
N

∑
j

g(xj)

 .

(16)

Here, the first term of the right side can be expanded as
follows: ∑

x∈XN

F (X)g(xi) log g(xi)

=
∑

xi∈X

f
(i)
I (xi)g(xi) log g(xi)

∏
j ̸=i

∑
xj∈X

f
(i)
I (xj)

=
∑

xi∈X

f
(i)
G (x) log

f
(i)
G (xi)

f
(i)
I (xi)

∏
j ̸=i

1

=
∑
x∈X

f
(i)
G (x) log

f
(i)
G (x)

f
(i)
I (x)

= D(f (i)
G ∥ f (i)

I ). (17)

On the other hand, if we let

yi = g(xi), ȳ−i =
1

N − 1

N∑
j ̸=i

yj , (18)

x−i = (x1, · · · , xi−1, xi+1, · · ·xN ), (19)

F−i(x) =
∏
i̸=j

fI(xi) (20)

then the second term of the right side of eq (16) can be
transformed as follows:

−
∑

x∈XN

F (x)g(xi) log

 1
N

∑
j

g(xj)


= −

∑
xi∈X

fG(xi)
∑

x−i∈XN−1

F−i(x) log
( yi

N
+ ȳ−i

)
= −EfG(xi)

[
EF−i(x−i)

[
log

(
yi

N
+
N − 1
N

ȳ−i

)]]
.(21)

From the law of large numbers, if xi follows the distribution
fI(x), then the following stochastic convergence holds:

ȳ−i
p−→ EfI(x)[g(x)] =

∑
x∈X

fI(x)g(x)dx

=
∑
x∈X

fG(x) = 1 (N → ∞).(22)

Therefore the term in the log() of the right side of eq. (21)
also converges stochastically as follows:

yi

N
+
N − 1
N

ȳ−i
p−→ 0 + 1 = 1 (N → ∞). (23)

Since log y is continuous at y = 1, from the continuous
mapping theorem,

log
( yi

N
+ ȳ−i

)
p−→ log 1 = 0 (N → ∞), (24)

and thus

EF−i(x−i)

[
log

( yi

N
+ ȳ−i

)]
→ 0 (N → ∞). (25)

Therefore the right side of eq. (21) also converges to 0 as
follows:

−EfG(xi)

[
EF−i(x−i)

[
log

( yi

N
+ ȳ−i

)]]
→ −EfG(xi)[0] = 0.

(26)
From eq. (16) (17) (21) (26),

D(p(X|ui) ∥ p(X)) → D(f (i)
G (x) ∥ f (i)

I (x)) (N → ∞).
(27)

.
As mentioned before, it is hard to experimentally evaluate

the BSEI defined as D(p(X|ui) ∥ p(X)) directly for a certain
system S and set U . In contrast, the asymptotic approximation
formula D(f (i)

G (x) ∥ f (i)
I (x)) of the BSEI can be evaluated

experimentally without difficulties, as shown in the following
subsection. Thus, we propose to use D(f (i)

G (x) ∥ f (i)
I (x)) as

an approximation of the BSEI.

D. Evaluation Protocol of the Approximated BSEI

In this section, we provide an evaluation protocol for the
approximated BSEI D(f (i)

G (x) ∥ f
(i)
I (x)) for a system S

and a user ui. Since the true distributions f
(i)
G (x), f (i)

I (x)
are unknown, we collect samples of biometric information,
calculate the scores using S and the sample set, estimate
the distributions based on the score set and calculate the
divergence D(f (i)

G (x) ∥ f (i)
I (x)).

1) Sample Collection and Verification: Firstly, we collect
multiple biometric samples (or “shots”) xk

i (k = 1, · · · ,M)
of the same biometric characteristic (such as the right index
fingerprint) of a user ui and perform round-robin verification
to calculate a genuine score set XG (|XG| = M ). Next, we
collect biometric samples xj (j = 1, · · · , N) from N users
other than ui, and verify them to each xk

i to calculate an
impostor score set XI (|XI | = MN ). In order to increase
the statistical reliability of the evaluation result, it is desirable
to make M,N as large as possible. If different biometric
characteristics of a user such as index and middle fingerprints
can be considered to be independent, we can treat them as of
different users.
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2) Estimation of Distributions and KL-divergence: Here
we describe several methods to estimate the KL-divergence
D(f (i)

G (x) ∥ f (i)
I (x)) from the sample sets XG, XI .

When the score x is discrete, the histogram method can
be applied. For example when x is a binary score with x = 1
(“matched”) and x = 0 (“unmatched”), the f (i)

G (x) and f (i)
I (x)

are Bernoulli distributions and can be estimated as follows:

f̃
(i)
G (1) = p, fG(0) = 1 − p,

f̃
(i)
I (1) = q, fI(0) = 1 − q,

where p = nG/|XG|, q = nI/|XI | and nG, nI are the
numbers of 1 contained in XG, XI respectively. In this case
the KL-divergence is calculated as follows:

D(f̃ (i)
G ∥ f̃ (i)

I ) =
∑

x=0,1

f̃
(i)
G (x) log

f̃
(i)
G (x)

f̃
(i)
I (x)

= p log
p

q
+ (1 − p) log

1 − p

1 − q
. (28)

On the other hand, if x is continuous, the KL-divergence
estimator can be classified into two approaches, i.e., parametric
and non-parametric methods.

A simple example of the parametric method is to as-
sume f

(i)
G (x) and f

(i)
I (x) to follow parametric distribution

models (such as Gaussian distributions) and estimate the
parameters via e.g., maximum likelihood estimation. Then the
KL-divergence can be numerically calculated. Although this
method is simple and easy to implement, the statistical relia-
bility of the results may be degraded when the true distribution
of f (i)

G (x), f (i)
I (x) largely deviate from the models.

A representative non-parametric KL-divergence estimator
is the Nearest Neighbor (NN) estimator. For example, the
following k-NN estimator introduced by Wang et.al., [9] is
known to be asymptotically unbiased and consistent.

D̂(fG ∥ fI) =
1
N

N∑
i=1

{
log

νki(i)
ρli(i)

+ ψ(li) − ψ(ki)
}

+ log
M

N − 1
, (29)

where ρli(i) (νki(i)) denotes the distance (i.e., absolute value
of difference) from xi to the li-th (ki-th) nearest neighbor of
the set XG \ {xi} (XI ). li (ki) denotes the number of values
contained in XG \ {xi} (XI ) and the interval [xi − ϵ, xi + ϵ]
where ϵ = max{ρ1(i), ν1(i)}. Here ψ(n) is the Digamma
function [10] defined as follows:

ψ(n) = −γ +
n−1∑
k=1

1
k
, (30)

where γ ≈ 0.577 is the Euler-Mascheroni constant.
There are advantages and disadvantages to these estimation

methods, and it is necessary to choose an appropriate method
depending on the size and statistical properties of the score
sets.

IV. APPROXIMATED EVALUATION OF THE BSE IN

CONSIDERATION OF INDIVIDUAL DISTRIBUTIONS

In this section, based on the discussion so far, we derived a
new approximate evaluation measure of the BSE considering
individual score distributions.

As described in Sec. II-D, the previous work requires a
strong assumptions that the genuine (impostor) distribution
fG(x) (fI(x)) is identical regardless of the users ui, is required
to derive the approximate expression of the BSE in [7]. Let
(A1) be the above (conventional) assumption.

On the other hand, in this paper, we relaxed the assumption
to more realistic and general one as eq. (12) that means
the genuine (impostor) distribution f

(i)
G (x) (f (i)

I (x)) can be
different for each user ui. Let (A2) be the above (new)
assumption.

Since the average of the BSEI with respect to the users ui ∈
Ω is equal to the BSE with respect to the set U (Proposition 2),
we can say that the average of the approximated BSE,∑

i

1
N
D(f (i)

G ∥ f (i)
I ), (31)

is a better approximation of the BSE than the conventional one
(i.e., D(fG ∥ fI)) in the sense that it is based on the more
realistic and general assumption (A2) instead of (A1).

In the followings, we discuss the relationship between the
conventional approximations of the BSE and the proposed one
(eq. (31)).

In the evaluation protocol according to the conventional
approximation, we collect biometric samples from N users,
perform round-robin verification to calculate genuine and
impostor score sets, and then estimate the KL-divergence
D(f̃G ∥ f̃I) under the assumption (A1).

In the case of new approximation (eq. (31)), the evaluation
protocol is the same as conventional one until calculating the
score sets. However, unlike the conventional protocol, the KL-
divergence D(f̃ (i)

G ∥ f̃ (i)
I ) is estimated under the assumption

(A2) and the approximated BSE is calculated as the average
of the KL-divergence.

Notice that which of (A1) and (A2) (or neither) is estab-
lished does not matter to perform evaluation. The difference
between the two protocols is whether to define the score
distributions of each user as the average distributions over the
user set or as individual distributions. It will be clear that the
following relationship holds for the two ways of definition: 1

fG(x) =
1
N

∑
i

f
(i)
G (x), fI(x) =

1
N

∑
i

f
(i)
I (x). (32)

Then, the following inequality holds between the two approx-
imations:

Theorem 5.
1
N

∑
i

D(f (i)
G ∥ f (i)

I ) ≥ D(fG ∥ fI). (33)

1Although this equation does not necessarily holds for estimated distribu-
tions, the error between both sides will become smaller as the estimation
accuracy of the distributions increases.
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(Proof) From the log sum inequality,

1
N

N∑
i=1

f
(i)
G (x) log

f
(i)
G (x)

f
(i)
I (x)

≥ fG(x) log
fG(x)
fI(x)

. (34)

By taking summation of both sides of the above inequality
with respect to x, we can obtain eq.(33). .

The theorem suggests that it will be possible to extract more
information for personal identification from biometrics by
designing the decision logic considering the score distribution
of each user rather than of common one. In addition, we can
see that the theorem explains the reason, from the viewpoint
of information entropy, why normalization of a score by
considering the distribution for each user improve the total
accuracy, as empirically known to be effective [12].

V. CONCLUSION

In this paper, we extended and refine the theory of the BSE
(Biometric System Entropy) which is an information theoretic
measure of personal identification performance of a biometric
verification system S. Specifically, we newly defined the
BSEI (Biometric System Entropy of Individuals) representing
the entropy of individual biometric information whereas the
BSE represents the average entropy over the user set U , and
showed several properties. We also proved that the BSEI
asymptotically converges to D(f (i)

G ∥ f (i)
I ) under some natural

assumption so that it can be used as an approximate evaluation
measure of the BSEI, and proposed a practical protocol to
evaluate the BSE of a system S experimentally. Finally, we
derived a more sophisticated approximate evaluation measure
of the BSE considering individual score distributions.

Experimental evaluation of the BSEI for an actual biometric
verification system and individual biometric information is one
of the future works. In addition, further studies are needed
in order to investigate the optimal decision algorithm which
derives information for identification from various kind of
biometric data to the limit.
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