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Abstract—This paper proposes a framework of content-
adaptive image compressed sensing using deep learning, which
analyzes the image content and adaptively allocates samples
for different image patches accordingly. Experimental results
demonstrate that the proposed framework outperforms the state-
of-the-arts both in subjective and objective quality, especially
at low sampling rates. For example, when the sampling rate is
0.1, 1-6 dB improvement in peak signal to noise ratio (PSNR) is
observed. Moreover, the proposed work reconstructs images with
more details and less image blocking effects, leading to apparent
visual improvement.

I. INTRODUCTION

The theory of compressed sensing (CS) has achieved re-
markable progress [1], [2], [3], while its application in image
compression is rather challenging. Regarding images, block-
based CS (BCS) approaches are more suitable, as proposed
in [4] which divides an image into small patches. Various
improvements have been made, like [5] which combines
the BCS with smoothed projected landweber reconstruction
(BCS-SPL), and a multiscale variant of the original BCS-
SPL (MS-BCS-SPL) reconstruction provided in [6]. In [7],
multi-hypothesis prediction (MH-BCS-SPL) is employed to
obtain the residuals of CS in the random projection domain.
Moreover, [8] conducts compressed sensing by learning a
gaussian mixture model from measurements.

Another direction upon CS is based on deep neural networks
as described in [9], [10], [11]. The advantage of such an
approach is that the measurement matrix and the nonlinear
reconstruction operators can be jointly optimized during train-
ing, which therefore outperforms other available CS algorithms
regarding image CS. Generally speaking, the performance of
state-of-the-art is still limited, especially at very low sampling
rates. For example, obvious blocking artifacts and loss of
image details are always observed at very low sampling rates,
seriously affecting visual perception.

In block-based compressed sensing, each image patch is
generally assigned with the same number of samples. How-
ever, the sensitivity of human eyes to image distortion is
different for different content. Inspired by this spirit, this paper
proposes a way of content-adaptive image compressed sensing
using deep learning, which can adaptively allocate appropriate
number of samples for different image patches.

The rest of this paper is organized as follows. Section 2
provides a brief introduction on related work. The proposed
framework and method are described in section 3. Experimen-

tal results are given in section 4. This paper concludes with a
summary.

II. RELATED WORK

A. Block-based Compressed Sensing

In our work, the block-based CS sampling (BCS) will be
used. In BCS, the image is decomposed into disjoint patches
of size B × B. Each patch is sampled separately. Suppose
that xj ∈ RB2

is a vector representation of patch j of input
image, using a raster-scan fashion. Since xj can be expressed
as xj = Ψθj , in which θj is nearly sparse, the corresponding
measurement yj can be expressed as:

yj = ΦBxj = ΦBΨθj = Aθj . (1)

Here, ΦB is an MB × B2 orthonormal measurement matrix,
in which the sampling rate R = MB/B

2. Ψ is a certain
transformation matrix, and A is a sensing matrix.

Compressed sensing theory indicates that in order to re-
construct xj , the sensing matrix A needs to satisfy restricted
isometry property (RIP) [12]. The signal sparsity can be
described by ℓ0 norm, whereas it turns out to be an NP hard
problem. Regarding the situation that ℓ1 norm is equivalent to
the ℓ0 norm under certain conditions [2], the ℓ1 norm can
usually be used instead. Mathematically, CS reconstruction
means to solve the following optimization problems:

min ∥θj∥1 s.t. Aθj = yj . (2)

B. Compressed Sensing Based on Neural Network

References [9], [10], [11] have presented some deep neural
networks-based solutions to the problem of CS image sam-
pling and reconstruction, in which fully-connected or convo-
lution network (CNN) are utilized to conduct CS sampling and
reconstruction. The general CS structure based on network can
be illustrated in Fig. 1:

Fig. 1. Compressed sensing framework based on deep neural networks.

The first layer in Fig. 1, as a sampling layer, projects the
input image patch of size B × B into a vector of dimension
RB2, which is also the measurements obtained. Here R
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represents sampling rate. The second and third layer followed
by an activation function RELU [13] are mainly used to
conduct reconstruction operation. More in detail, the second
layer usually recovers some structure information from CS
measurements. For example, in [9], [11] a fully-connected
layer is employed to recover such information. Then the third
layer extracts more image details to enhance image quality.
Fully-connected layers and CNN layers are both available
ways in this part. The last layer, as an output layer, outputs
the reconstructed image patch of size B × B. Especially,
reference [9] provides a network structure which contains a
total of four fully connected layers, where fully connected
networks perform block-based linear sensing and nonlinear
reconstruction. Considering its excellent performance, we em-
ploy this framework in our simulation experiment latter.

III. PROPOSED WORK

Although deep neural networks have greatly improved CS
in sampling and reconstruction, the related subjective and
objective quality is still not satisfactory when the sampling
rate is relatively low. In non-adaptive CS sampling, the number
of sampled CS-measurements for each patch is always the
same at a fixed sampling rate, without considering the various
contents of different patches. As is known, a natural image
generally contains different contents in different regions. In
this section, we focus on the allocation of samples for various
patches, with reference to their contents, thus achieving a
higher sampling efficiency in the quality of images. Our
framework is illustrated as in Fig. 2.

Fig. 2. The proposed framework.

A. Content Analysis

In order to investigate the relationship between sampling
rates and image quality in CS based on deep neural networks.
Given an image, we utilize block-based compressed sensing,
in which the image is divided into image patches of size
B ×B. In our method, the mean square error (MSE) decline
curve is analyzed to distinguish the smooth and complex image
patches. In general, the slower the MSE declines, the smoother
the corresponding image patch is, where human eyes are
generally less sensitive to. Accordingly, few samples will be
assigned to smooth areas and, correspondingly, the areas with
more complex texture will be allocated with more samples,
which are in line with human visual characteristics.

B. Sample Rate Allocation

On the basis of content analysis, we propose a content-
adaptive sample rate allocation algorithm (CASRA) for
network-based compressed sensing. It can be briefly described
as: given a total number of samples assigned to an image,
when an image is divided into patches, these patches can

be adaptively assigned with appropriate number of samples
according to their characteristics. Provided with the assigned
number of samples, the corresponding network models are
employed for sampling and reconstruction. Fig. 3 illustrates
the flow graph of the proposed method.

Fig. 3. CASRA algorithm flow chart, in which SAM means sampling
map, N means the total number of samples.

How to find the best patch? Here we define the priority of
an image patch as follows:

△MSEh,w = max((MSEfp
h,w −MSEfp+5

h,w )/5, (3)

(MSEfp
h,w −MSEfp+10

h,w )/10,

(MSEfp
h,w −MSE255

h,w)/(255− fp)),

where h and w represent the position index of an image patch,
fp represents the number of samples to which the image patch
has been allocated, and MSEfp

h,w represents the MSE of the
current image patch when the number of samples is fp. The
larger the MSEh,w is, the greater the corresponding priority
is.

Given the same number of total samples, the proposed
sample allocation method achieves a more rational sample
allocation, resulting in improved image quality. In addition,
since the CASRA guarantees the maximum amount of MSE
descent as soon as possible when allocating samples, the
final PSNR of restored images can be advanced significantly.
Considering the number of samples of each patch is different,
after samples of each patch are encoded, a stop symbol will
be inserted to separate samples of different patches.

Specific steps are as follows:
(1) Initialize by assigning 5 samples to each image patch

uniformly to get an initial sampling allocation map (SAM).
(2) Find the best patch with the highest priority and add 5

samples to it. Then update the SAM.
(3) If the sum of the SAM is smaller than the total number

of samples N , repeat step (2) to continue assigning samples.
Otherwise, go to step (4).

(4) The allocation is completed, the current SAM is the final
allocation.
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TABLE I
PSNR FOR RECONSTRUCTED IMAGES, IN WHICH RATE IS SAMPLING RATE (DISPLAYED AS PSNR (dB)).

Rate Method Lena Barbara Peppers Mandrill Goldhill Cameraman Boat Bridge Mean

0.05

BCS-SPL-DDWT 24.62 21.42 24.68 19.67 24.98 22.81 22.77 21.1 22.76

Gaussian ReconNet 25.93 21.3 25.85 19.07 25.11 24.81 23.18 21.09 23.29

Adaptive ReconNet 29.14 23.37 29.59 20.98 27.92 28.37 26.07 23.59 26.13

Network in [9] 29.74 23.77 30.79 21.21 28.72 29.4 26.83 23.94 26.80

Proposed 32.33 24.72 33.08 21.49 29.52 33.39 28.26 24.12 28.36

0.1

BCS-SPL-DDWT 27.49 22.61 28.39 20.53 26.76 25.48 24.97 22.47 24.84

Gaussian ReconNet 28.05 22.94 28.2 19.68 26.67 27.64 25.03 22.44 25.08

Adaptive ReconNet 31 23.73 31.34 21.68 29.34 31.35 27.74 24.9 27.64

Network in [9] 31.63 24.24 33.49 22.04 30.28 32.11 28.68 25.17 28.46

Proposed 36.09 27.46 36.26 23.14 31.96 38.45 31.36 26.1 31.35

0.2

BCS-SPL-DDWT 31.08 23.81 32.55 21.75 29.02 29.45 27.9 24.14 27.46

Gaussian ReconNet 31.13 22.88 31.43 20.86 28.82 31.41 27.79 24.3 27.33

Adaptive ReconNet 34.11 24.38 34.68 23.08 31.56 35.17 30.5 26.78 30.03

Network in [9] 34.97 25.11 36.65 23.89 32.93 36.8 31.79 27.36 31.19

Proposed 41.15 32.51 40.31 25.6 35.39 45.43 35.33 28.72 35.56

Fig. 4 shows the sampling allocation for Lena, which con-
firms our suppose that smooth patches are generally assigned
with less samples. The reason is that these patches always
”fail” in competition due to their slow MSE decline so that
fewer samples are assigned.

Fig. 4. Lena and its SAM map. Left to right: Original image; SAM map.

C. Network-based CS
Besides sample rate allocation, considering the fact that

network-based CS outperforms the state-of-the-art, we decide
to utilize this method to conduct sampling and reconstruction.
We reference the network model in [9], with four fully-
connected layers, in which the first fully-connected layer
is used as sampling layer, the remaining three layers are
reconstruction layers. In our simulation experiment, we train
51 networks, corresponding to 5, 10, 15, ..., 255 samples
respectively. We randomly select 20,000 images from the
LabelMe dataset [14] and generate 5,000,000 patches of size
16×16 as the training set, which is different from the test set
used in experimental results.

IV. EXPERIMENTAL RESULTS

This section provides the testing results of eight 512× 512
images, i.e. Lena, Barbara, Peppers, Mandrill, House, Bridge,

et. al. Images are divided into non-overlapping patches of size
16×16, and then independently sampled and reconstructed by
BCS-SPL-DDWT [5], Gaussian ReconNet [10] (in which, CS
measurements are obtained through a Gaussian matrix, then
a fully-connected layer along with 6 CNN layers followed to
recover images), Adaptive ReconNet [11] (in which, a fully-
connected layer is used to sample CS measurements, then
reconstruction layers are similar to the Gaussian ReconNet),
network-based CS in [9] and our content-adaptive sample rate
allocation (CASRA) respectively. Table 1 tabulates the PSNR
and results in the range of R=0.05, 0.1, 0.2.

From Table 1, the network-based CS [9] is better than BCS-
SPL-DDWT, Gaussian ReconNet and Adaptive ReconNet al-
gorithms, which is proven to be an efficient way to conduct
CS. It is also seen that compared with the existing compressed
sensing methods, our proposed CASRA has obvious perfor-
mance advantages. For example, when R=0.2, our proposed
method gains an average of 4.3 dB and up to 7.4 dB in PSNR
over the method in [9].

Fig. 5 illustrates Lena’s subjective visual images and details.
It is seen that the proposed method restores more image details
so that the overall image quality has been improved. Therefore,
we can conclude that the proposed framework is with advanced
performance in both subjective quality and objective quality
of the reconstructed CS images. More experiment results will
be exhibited on the last page.

V. CONCLUSIONS

In this paper, we propose a CS framework and a new method
to adaptively allocate sampling numbers for different image
patches, considering their various contents. The proposed work
can automatically allocate fewer samples on smooth patches
without affecting visual effects, while more samples are allo-
cated to the others with more complex texture. As the result,
the objective quality of restored images is improved, while the
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(a) Original Image. (b) BCS-SPL-DDWT. (c) Gaussian ReconNet.

(d) Adaptive ReconNet. (e) Network in [9]. (f) Proposed.

Fig. 5. Reconstruction of ’Lena’ at sampling rate R=0.1, (a)Original image;(b)BCS-SPL-DDWT(27.49dB);(c)Gaussian ReconNet(28.05dB);
(d)Adaptive ReconNet(31dB);(e)Network in [9] (31.63dB);(f)Proposed(36.09dB).

subjective quality is also enhanced since the proposed work
complies with the characteristics of the human visual system.
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(a) Original Image. (b) BCS-SPL-DDWT. (c) Gaussian ReconNet.

(d) Adaptive ReconNet. (e) Network in [9]. (f) Proposed.

Fig. 6. Reconstruction of ’Cameraman’ at sampling rate R=0.05, (a)Original image;(b)BCS-SPL-DDWT(22.81dB);(c)Gaussian ReconNet(24.81dB);
(d)Adaptive ReconNet(28.37dB);(e)Network in [9] (29.4dB);(f)Proposed(33.39dB).

(a) Original Image. (b) BCS-SPL-DDWT. (c) Gaussian ReconNet.

(d) Adaptive ReconNet. (e) Network in [9]. (f) Proposed.

Fig. 7. Reconstruction of ’Barbara’ at sampling rate R=0.2, (a)Original image;(b)BCS-SPL-DDWT(23.81dB);(c)Gaussian ReconNet(22.88dB);
(d)Adaptive ReconNet(24.38dB);(e)Network in [9] (25.11dB);(f)Proposed(32.51dB).
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