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Abstract—This paper presents an accelerated constant-time
Gaussian filter (O(1) GF) specialized in short window length
where constant-time (O(1)) means that computational complexity
per pixel does not depend on filter window length. Our method
is extensively designed based on the idea of O(1) GF based on
Discrete Cosine Transform (DCT). This framework approximates
a Gaussian kernel by a linear sum of cosine terms and then
convolves each cosine term in O(1) per pixel using sliding
transform. Importantly, if window length is short, DCT-1 consists
of easily-computable cosine values such as 0, ± 1

2
and ±1. This

behavior is not satisfied in other DCT types. From this fact, our
method accelerates the sliding transform by employing DCT-1
focusing on short window length. Experiments show that our
method overcomes naive Gaussian convolution and existing O(1)
GF in terms of computational time. Interestingly, the results also
reveal that, without truncating negligible terms, our method runs
faster than convolution.

I. INTRODUCTION

Gaussian filter (GF) is one of the fundamental tools in
signal processing and computer vision. It has been widely used
in a variety of tasks including object recognition [1], stereo
matching [2], visual saliency [3], edge-preserving smoothing
[4], [5], [6], [7], [8]. Since the GF is implemented in general
as convolution, its computational complexity is proportional to
the length of filter window. This behavior is a severe problem
for applications that require large filter window length, e.g.,
scalespace analysis [9] and high-resolutional image process-
ing.

In order to address the problem, constant-time GF (O(1)
GF) has been discussed in the past where O(1) means that
computational complexity per pixel is independent of window
length. Existing O(1) GF algorithms can be categorized into
two representative groups: recursive filter approximation [10],
[11], [12], [13] and cosine approximation [14], [15], [16], [17].
We focus on the latter one because so far it has achieved
the highest performance trade-off between computational com-
plexity and approximation accuracy. This framework first
approximates Gaussian kernel by a linear sum of few cosine
terms and then convolves each cosine term with an input
sequence in an O(1) manner. The kernel approximation is
generally derived via Discrete Cosine Transform (DCT). It
is well known that DCT has eight types of definition, called
DCT-1, 2, . . ., 8. Existing methods employed different DCT
types based on different concepts. For instance, Elboher and
Werman [14] selected DCT-1 and proposed an efficient fil-
tering technique using integral images [18], [19] for convo-
lution. Sugimoto and Kamata [8], [20] employed DCT-5 and

accelerated convolution by deriving a sliding transform based
on second-order shift property [21]. Charalampids [22] used
DCT-3 and presented how to derive more accurate transform
coefficients that maintain both unity and variance of Gaussian
kernel. We mention that, although a variety of DCT types have
been employed depending on the researches, they show almost
the same approximate accuracy and computational complexity.

As mentioned, a major motivation for exploring O(1) GF
was originally for accelerating the case of long window
length. However, as [16] showed, the computational time is
significantly faster than convolution even for short window
length. We further explore this result by focusing on DCT-1
that tends to consist of many easily-computable cosine values
such as 0, ± 1

2 , and ±1 when window length is short. This
implies that it is possible to reduce more multiplications by
replacing them to addition/subtraction/shift operations. This
advantage enables us to design a faster O(1) GF algorithm
based on DCT.

This paper presents an accelerated O(1) GF algorithm
specialized in short window length using DCT-1. After sum-
marizing Gaussian convolution, Section 2 describes O(1) GF
based on DCT-1 and specifies our key idea for acceleration
specialized in short window length. Section 3 compares naive
convolution, existing O(1) GF, and our method in terms of
computational time and approximate accuracy through some
experiments using a natural image. These results reveal that,
our method can run faster than naive convolution without
truncating negligible cosine terms even if window length is
short. This fact implies that our method can run faster if
we deal with arbitrary even-symmetric kernels whose short
window length.

II. PROPOSED METHOD

A. Gaussian convolution

Let xt ∈ R (t = 0, 1, . . .) be a one-dimensional input
sequence and hn ∈ R (n = −N+1, . . . , N−1) be a Gaussian
kernel. The Gaussian kernel is defined by

hn = η−1e−
n2

2σ2 , η =

N−1∑
n=−N+1

e−
n2

2σ2 , (1)

where σ is the standard deviation of the kernel. This definition
followed the sampled Gaussian kernel in [23]. Convolution
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between xt and hn is described as

(x ∗ h)t =
N−1∑

n=−N+1

xt+nhn. (2)

In general, N has to be appropriately determined from the
parameter σ, e.g., N = d3σe + 1. Obviously, this operation
requires (2N − 1) multiplications per pixel, i.e., O(N) per
pixel. This means that the wider window length causes the
longer computational time. This behavior is a severe problem
for applications that require large filter window length, e.g.,
scale space analysis and high-image filtering.

B. O(1) Gaussian filter based on DCT-1

An efficient solution to the above problem is O(1) GF
where O(1) means its computational complexity per pixel is
independent of window length. Because of the even symmetry
of (2), we decompose Gaussian kernel into

hn =

N−1∑
k=0

ĥ(k)C(k)
n , C(k)

n = cos

(
π

N − 1
kn

)
, (3)

where ĥ(k) is a transform coefficient. Note that C(k)
n is related

to DCT-1 and introduced for simplicity. By substituting (3) for
(2), we obtain

(x ∗ h)t =
N−1∑

n=−N+1

N−1∑
k=0

xt+nĥ
(k)C(k)

n =
N−1∑
k=0

ĥ(k)x̂
(k)
t , (4)

where

x̂
(k)
t =

N−1∑
n=−N+1

xt+nC
(k)
n . (5)

We call x̂(k)t a short-time transform coefficient of the input se-
quence xt at time t. Note that short-time transform coefficients
are slightly different from short-time DCT-1 coefficients, due
to a difference from the range of the summation. Since the
spectrum of Gaussian kernel has also a Gaussian shape, the
coefficients ĥ(k) decreases exponentially. Hence, we can well
approximate (3) by truncating the terms at K(<< N) where
K is the number of cosine terms used for approximation.

The short-time transform coefficients are computable in
O(1) time per pixel as follows: Between three adjacent short-
time transform coefficients x̂(k)t−1, x̂(k) and x̂(k)t+1, the following
relationship holds:

x̂
(k)
t−1 + x̂

(k)
t+1 = C

(k)
1 {2x̂

(k)
t − (−1)kχt,N−1}+ (−1)kχt,N ,

(6)

where χt,N = xt−N +xt+N . By using (6), we can recursively
compute x̂

(k)
t+1 from the already-computed x̂(k) and x̂

(k)
t−1 in

O(1) time per pixel. This operation is generally called sliding
transform. The relationship between the three adjacent coeffi-
cients is called second-order shift-property [21] in particular.
Evidently, (6) requires one multiplication, one shift operation,
and several additions/subtractions. As discussed later, we can
reduce more operations using look-up table technique.

TABLE I
PARAMETERS OF ALL DCT TYPES

DCT type T k0 n0

DCT-1 (inverse DCT-1) 2N − 2 4 0 ♦ 0 ©
DCT-2 (inverse DCT-3) 2N 4 0 ♦ 1/2
DCT-3 (inverse DCT-2) 2N 4 1/2 0 ©
DCT-4 (inverse DCT-4) 2N 4 1/2 1/2
DCT-5 (inverse DCT-5) 2N − 1 0 ♦ 0 ©
DCT-6 (inverse DCT-7) 2N − 1 0 ♦ 1/2
DCT-7 (inverse DCT-6) 2N − 1 1/2 0 ©
DCT-8 (inverse DCT-8) 2N + 2 4 1/2 1/2

TABLE II
THREE SPECIAL CASES OF (6)

C
(k)
1 right hand side of (6)
0 (−1)kχt,N

± 1
2

±x̂(k)t ∓ 1
2
(−1)kχt,N−1 + (−1)kχt,N

±1 ±2x̂(k)t ∓ (−1)kχt,N−1 + (−1)kχt,N

C. Advantages of DCT-1 over the other DCT types

The use of DCT-1 provides the following advantages over
the other DCT types. In order to replace multiplications
to additions/subtractions/shift operations (ADD/SUB/SHIFT),
cosine values and their phases to be computed require to be
cos 0◦ = 1, cos 60◦ = 1

2 , cos 90◦ = 0 and so on. Let us
analyze phases of each DCT using the general form

hn =
N−1∑
k=0

ĥ(k) cos

(
2π

T
(k + k0)(n+ n0)

)
(7)

where T, k0, n0 are parameters that characterize DCT type, as
Table I listed. First of all, because Gaussian kernel is even-
symmetric at n = 0, i.e., hn = h−n, the DCT types satisfying
this condition can be applied to approximate Gaussian kernel
(©). Second, if the initial phase starts from 0◦, i.e., k0 = 0,
the phases tend to locate on horizontal and/or vertical axis
(♦). Third, each DCT divides 360◦ by T . If T is even, the
cosine values could be symmetric at horizontal and/or vertical
axes (4). In order to graphically understand these differences,
we show some phases used in DCT-1, 2, . . . 8 in Fig. 1
where N = 4 and k = 1. Obviously, since DCT-1 satisfies
all the conditions simultaneously, it is the most appropriate
for eliminating multiplications.

Let us observe some specific cases of (6) that are simplified
by the fact mentioned above. Table II shows the right hand side
of (6) in the case of C(k)

1 = 0, ± 1
2 , and ±1. Evidently, we

reduce many multiplications in these cases. Table III shows the
number of operations required in the case of N = 2, 3, . . . , 7
where ACCESS means the number of pixel loading operations
of input sequences. It is clear that all the operations in these
cases can be implemented as ADD/SUB/SHIFT. Thus, DCT-1
provides fast computation if N is small.

D. Policy of implementation

We here describe how to determine the parameters K,
N , and ĥ(k). Given σ, Gaussian kernel with any σ can be
accurately-approximated using K = 2, 3, 4. This parameter is
determined in terms of acceptable computational time. Then,
as [16] did, the optimal value of N can be found via error
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Fig. 1. DCT-1 tends to produce easily-computable cosine values such as cos 0◦ = 1, cos±60◦ = ± 1

2
, cos±90◦ = 0 and cos±180◦ = −1 while DCT-2,

3, . . . 8 do not. The red, orange, yellow and green points correspond to n = 0, 1, 2, and 3, respectively.

TABLE III
THE NUMBER OF OPERATIONS FOR SMALL N

N k SHIFT ADD/SUB MUL ACCESS
2 0,1 1 5 0 4
3 0,2 1 5 0 4

1 0 2 0 2
4 0,1,2,3 1 5 1 4

0,4 1 5 0 4
5 1,3 1 5 1 4

2 0 2 0 2
6 0,5 1 5 0 4

1,2,3,4 1 5 1 4
0,2,4,6 1 5 0 4

7 1,5 1 5 1 4
3 0 2 0 2

minimization. Using the computed values of K and N , we
compute transform coefficients ĥ(k) in a least-squares manner.
For achieving more accurate approximation, we adjust ĥ(k) to
maintain the surface area of the kernel as one, i.e., the unity of
Gaussian kernel. Note that these parameters are computable in
advance and the computational time is negligible as compared
with main filtering process. For faster filtering, ĥ(k) and its
related constant numbers, e.g., C(k)

1 are precomputed and then
stored in look-up tables.

III. EXPERIMENTS AND DISCUSSION

This section confirms practical performance of our method
through several experiments using a natural image. Throughout
all the experiments, the test image is “N3” provided in
ISO/JIS SCID [24], where it has 2560 × 2048 pixels and we
transformed the original RGB color to 8-bits grayscale. Test
environment consists of Intel Core i5 2.67GHz CPU and 8GB
main memory. We implemented all the methods in C++ and
do not explicitly use parallel computation architecture such as
multi-core/vector computing.

A. Evaluation in truncating-frequency case

We evaluated performance of our method in truncating-
frequency case where K = 2. Fig. 2 plots computational
time of the naive Gaussian convolution, the existing O(1) GF
based on DCT-1 (existing method), and our method under a
variety of σ in column, row, or both directions. Our method
outperformed the existing method in row-direction filtering.
Importantly, in image filtering, the existing method and our
method can run significantly faster than naive Gaussian con-
volution even if window length is small. This is because both
methods requires the fewer number of pixels to be loaded than
Gaussian convolution.

Fig. 3 plots computational time and Peak Signal-to-Noise
Ratio (PSNR) of O(1) GF with DCT-1, 3, 5, 7 (DCT-1, 3, 5,
7 method) [17] where the DCT-1 means our method. PSNR
indicates value between ideal and real output images where we
assume as the output of ±6σ-supported Gaussian convolution
are ideal output images. The saw-tooth-like steep changes of
PSNR in Fig. 3 are caused by change in the window length.
Our method is slightly slower than the DCT-3 method in term
of computational time. This is because a sliding transform of
the DCT-3 method references only two input pixels by some
features of DCT-3, i.e., C(k)

+N−1 = C
(k)
−N+1, C(k)

+N = C
(k)
−N = 0.

The sliding transform of the DCT-3 method is given as

x̂
(k)
t−1 + x̂

(k)
t+1 = 2C

(k)
1 x̂

(k)
t + C

(k)
N−1χt,N . (8)

In PSNR, our method outperforms the DCT-3 method. These
experimental results demonstrated that our method outperform
the O(1) GF of other DCT-type in term of computational time
and PSNR.

B. Evaluation in full-frequency case

We evaluated computational time and PSNR in full-
frequency cases, i.e., K = N , as Fig. 3 shows. Interestingly,
our method was still faster than naive convolution. Specifically,
it showed significant superiority to convolution when σ < 1.6.
This performance comes from the number of reference pixels:
naive convolution requires (2N − 1) reference pixels but our
method only four reference pixels. Since it is time-consuming
for modern CPU to perform memory access, our method with
less memory access runs faster than the convolution. The
DCT-based O(1) GF has achieved O(1) filtering by truncating
negligible cosine terms using the parameter K in 3. However,
these results revealed that our method has high potential for ef-
ficiently filtering arbitrary even-symmetric kernels whose short
window length without truncating frequency. In approximate
accuracy, PSNR is higher than 60 dB for all the cases, which
means it is sufficiently acceptable for visual perception.

IV. CONCLUSIONS

This paper presented O(1) GF with DCT-1 specialized
in short window length. Our experiments revealed that our
method accelerated O(1) GF based on DCT-1 and outper-
formed the O(1) GF of other DCT-type considering com-
putational time and PSNR. Moreover, we found that, in the
case of Gaussian kernel, our method in full-frequency case
was able to run faster than convolution. As future tasks, we
will evaluate real performance of our method for other even-
symmetric kernels and volume data filtering.
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Fig. 2. The figures show evaluation of the convolution, the existing method and our method. Our method is about 20 % faster than the existing method over
σ = 0.8052 ∼ 2.2776, i.e., N = 2, 3 . . . 7 because MUL and ACCESS are reduced as compared with the existing method.
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Fig. 3. (a) Our method is about 11 % slower than the DCT-3 method. (b) Our
method showed about 13 % higher PSNR than the DCT-3 method.
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Fig. 4. Our method could run faster than convolution if N ≤ 5 and the kernel
is even-symmetric. This is because full-frequency case (K = N ) is about 50
% faster than the convolution over σ = 0.8052 ∼ 1.6105, i.e., N = 2, 3, 4, 5
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