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Abstract—The sparsity-aware generalized eigen-subspace ex-
traction is a modern strategy to achieve better interpretability
than classical statistical data analysis, and has been realized,
as sparse PCA, sparse CCA and sparse FDA, etc, in signal
processing, machine learning and data sciences. For its broader
applications in the scenarios of adaptive signal processing,
the generalized orthogonality among the estimates of principal
generalized eigenvectors is certainly desired to be exploited
in the learning process. However, it seems that such adaptive
learning algorithms have not yet been reported so far. In this
paper, we present an algorithm by combining the idea of ℓ1-
penalized adaptive normalized quasi-Newton algorithm (Uchida
and Yamada, 2018) with Nested orthogonal complement structure
(NTY 2013, KYY 2017).

I. INTRODUCTION

The generalized Hermitian eigenvalue problem (GHEP) is
the problem of finding w ∈ CN\{0} and λ ∈ R such that

Ryw = λRxw (1)

where Ry,Rx ∈ CN×N are Hermitian positive definite
matrices, the scalar λ and the vector w are called respec-
tively the generalized eigenvalue and generalized eigenvector
corresponding to the matrix pencil (Ry,Rx). In a special case
where Rx is the identity matrix IN ∈ CN×N , the problem is
simply referred to as the Hermitian eigenvalue problem (HEP).
This matrix pencil has N positive generalized eigenvalues
λ1 ≥ λ2 ≥ · · · ≥ λN (> 0) and their corresponding
generalized eigenvectors vi (i = 1, · · · , N) can be chosen
to satisfy Rx-orthonormality, i.e.,

Ryvi = λiRxvi

s.t. vH
i Rxvj = δi,j (i, j = 1, 2, · · · , N)

(2)

where δi,j is the Kronecker delta function. The GHEP has
many applications which includes Principal component anal-
ysis (PCA), Canonical correlation analysis (CCA) and Fisher
discriminant analysis (FDA). These have been used extensively
in wide range of data sciences, e.g., signal processing, ma-
chine learning, pattern recognition, control engineering, etc.
We should remark that the principal generalized eigenvectors
vi of GHEP can also serve as the principal component of
the transformed observed data via tight frame [1], [2], e.g.,
Wavelet transform.

In the scenarios of adaptive subspace tracking (see, e.g.,
[3]–[7]), the matrix pencil (Ry,Rx) correspond respectively

to covariance matrices of given observed random input se-
quences (y(k))k∈N,(x(k))k∈N and are not available at time k.
In this case, the principal generalized eigenvectors vi must be
estimated at time k as w(k) from a certain estimated sequence
(Ry(l),Rx(l))0≤l≤k of (Ry,Rx). Such adaptive estimation
of vi is required and some effective adaptive estimators are
proposed (see, e.g., [5]–[7]).

On the other hand, especially in data science analyses,
despite the simplicity and popularity of these analyses, they
have one potential difficulty in the actual interpretation of their
results. For instance, in PCA, the principal components have
an actual physical meaning in many applications. Therefore,
for better interpretability of result, the sparsity of eigenvector
(suitable modifications of eigenvector) have been desired, and
algorithms for such sparsity-aware eigenvector analysis have
been reported, e.g., sparse PCA [8]–[12] and sparse gener-
alized eigenvalue problem (sparse GEP [13]–[15]). However,
in [12], it is pointed out that, although the advantages of an
orthogonal basis are well known, the orthogonality property
of the estimates is sacrificed for sparse solution in many of
the sparse PCA algorithms. Note that it is almost clear that a
generalized orthogonality (i.e., Rx-orthogonality) among the
estimates of principal generalized eigenvectors is important in
sparse GEP.

Based on the above background, we proposed an adaptive
algorithm to exploit the sparsity as a priori knowledge in
the estimation of the first principal generalized eigenvector
v1 (introduced in [16]). In this paper, aiming to exploiting
the sparsity in the estimation of vi without trading off their
Rx-orthogonality, we present multidimensional extension of
the idea of [16]. In fact, we first reduce the estimation
problem of vi(i = 1, · · · , r) of (Ry,Rx) to that of the
first principal generalized eigenvector v

(i)
1 ∈ CN−i+1 of

a certain smaller matrix pencil (R
(i)
y ,R

(i)
x )(i = 1, · · · , r)

by using the nested orthogonal complement structure [17],
[18]. To enhance the sparsity of vi in the original domain,
we introduce a sparsity promoting penalty to a non-convex
criterion employed in [7]. The proposed algorithm is naturally
in the frame of the normalized quasi-Newton’s strategy in a
similar idea to [16]. In numerical experiments, we demonstrate
that the following two points: (i)The proposed algorithm has
excellent tracking performance on sparsity-aware generalized
eigen-subspace extraction model. (ii)The proposed algorithm
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can also keep the Rx-orthogonality in adaptive estimation
scenario.

II. PRELIMINARIES

A. A Summary of Nested Orthogonal Complement Structure

Let (A,B) be an N×N Hermitian positive definite matrix
pencil. Denote its generalized eigenvalues by µi(µ1 ≤ µ2 ≤
· · · ≤ µN ) and their corresponding generalized eigenvectors
by ui ∈ CN\{0}. In [17], a scheme is proposed for tracking
the first r principal (or minor) generalized eigenvectors with
keeping the orthogonality. This scheme is designed by the
dimension reduction technique introduced in [19] for the case
B = IN , where IN ∈ RN×N is the identity matrix. The key of
the dimension reduction technique for generalized eigenvector
extraction is the B-orthogonal complement matrix defined as
follows.

Definition 1. [B-orthogonal complement matrix]
Let B ∈ CN×N be a Hermitian positive definite matrix. For
u ∈ C\{0},U⊥[B] ∈ CN×(N−1) is called a B-orthogonal
complement matrices of u if

(U⊥[B](u))
HBu = 0 and (U⊥[B](u))

H(U⊥[B](u)) = IN−1.
(3)

Fact 1. [Example of a B-orthogonal complement matrix]
One of B-orthogonal complement matrices of u can be
calculated as

U⊥[B](u) :=

(
IN−1 − 1

1+|ulow|uupu
H
up

−θ(ulow)uH
up

)
(4)

where uup ∈ CN−1 and ulow ∈ C are respectively the first
N − 1 components and the last component of a normalized
vector u := Bu/∥Bu∥, i.e., u = (uup, ulow)

T , and θ : C→
C is defined as

θ(ulow) :=

{
1 if ulow = 0,

ulow/|ulow| otherwise.
(5)

Fact 2. [Expression of non-first minor generalized eigenvec-
tors]
(a) Let U⊥[B](u1) be the B-orthogonal complement matrix
of u1 ∈ C and define

Â = (U⊥[B](u1))
HA(U⊥[B](u1)) ∈ C(N−1)×(N−1),

B̂ = (U⊥[B](u1))
HB(U⊥[B](u1)) ∈ C(N−1)×(N−1).

(6)

Then, (Â, B̂) is a Hermitian positive matrix pencil whose
generalized eigenvalues are given by (0 <)µ2 ≤ µ3 ≤ · · · ≤
µN . Moreover, ui(i = 2, · · · , N) can be expressed as

ui = (U⊥[B](u1))ûi−1 (7)

where ûi−1 ∈ CN−1 is the (i− 1)th generalized eigenvector
corresponding to µi of matrix pencil (Â, B̂) and satisfies
ûH
i−1B̂ûj−1 = δi,j .

(b) (Nested orthogonal complement structure)

Define N matrix pencils (A(i),B(i)) recursively as
(A(1),B(1)) := (A,B) and

A(i+1) := (U
(i)
⊥ )HA(i)(U

(i)
⊥ ) ∈ C(N−i)×(N−i),

B(i+1) := (U
(i)
⊥ )HB(i)(U

(i)
⊥ ) ∈ C(N−i)×(N−i),

(8)

where

U
(i)
⊥ := U⊥[B(i)](u

(i)
1 ) ∈ C(N−i+1)×(N−1) (9)

and u
(i)
1 ∈ CN−i+1 is the first minor generalized eigenvector

of (A(i),B(i)). Then, (A(i),B(i)) are Hermitian positive def-
inite matrix pencils whose generalized eigenvalues are given
by (0 <)µi ≤ µi+1 ≤ · · · ≤ µN . The ith minor generalized
eigenvector u(1)

i (= ui) of (A,B)(i = 2, · · · , N) is expressed
as

u
(1)
i = U

(1)
⊥ · · ·U (i−1)

⊥ u
(i)
1 =⊥i u

(i)
1 (10)

where

⊥i:=
i−1∏
s=1

U
(s)
⊥ . (11)

By combining Fact1,2 and any iterative algorithm for com-
puting the first minor generalized eigenvector of the matrix
pencil (A,B), we can estimate the first r minor generalized
eigenvectors in sequence. Note that the smallest generalized
eigenvalue of (A,B) is the inverse of the largest generalized
eigenvalue of the matrix pencil (B,A). Moreover, the minor
generalized eigenvector corresponding to the smallest general-
ized eigenvalue of (A,B) is the principal generalized eigen-
vector corresponding to the largest generalized eigenvalue of
(B,A).

B. Adaptive Normalized Quasi-Newton Algorithm (ANQNA)
We present a summary of the generalized eigen-pair es-

timator in [7]. This algorithm estimates a stationary point
(w, λ) ∈ CN × R of the following function ξ with Newton’s
strategy:

ξ(w, λ) := wHRywλ
−1 −wHRxw + lnλ. (12)

The stationary point of ξ is given as a zero point following
equation: (

∂ξ
∂w
∂ξ
∂λ

)
=

(
2Rywλ

−1 − 2Rxw
−wHRywλ

−2 + λ−1

)
. (13)

Hence, the stationary point (w, λ) satisfies Ryw = λRxw

wHRyw = λ
. (14)

This means that (w, λ) is a generalized eigen-pair of the
matrix pencil (Ry,Rx). When the stationary point of ξ is
obtained by using Newton’s method, the update formula can
be written as:(
w̃(k+1)

λ(k+1)

)
=

(
w(k)

λ(k)

)
− ηH[ξ]−1(w(k), λ(k))∇ξ(w(k), λ(k))

(15)
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where η > 0 is the step size parameter. At this time, we need to
calculate the gradient ∇ξ and the inverse of the Hessian matrix
H[ξ]−1 at each time. However, ξ is a non-convex function,
so it can’t be said that H[ξ] is a regular matrix. Even if H[ξ]
has its inverse at [w(k), λ(k)] ∈ CN × R, the computational
complexity for the inversion of this Hessian matrix is O(N3).
Then, it is not practical for many online applications. In [7], it
has been shown that the inverse of this can be approximated
as follows:

H̃−1
p (w, λ) =

1

2

(
1
2wwH −R−1

x −wλ
−wHλ 0

)
≈

(
∂2ξ
∂2w

∂2ξ
∂w∂λ

∂2ξ
∂λ∂w

∂2ξ
∂2λ

)−1

= H[ξ]−1(w, λ)

(16)

in the estimation of the largest generalized eigenvalue λ1 and
the principal generalized eigenvector v1. Therefore, we can
acceptably calculate the quasi-Newton step at each time in
acceptable cost. By combining the following normalization
step

w(k+1) =
w̃(k+1)

∥w̃(k+1)∥Rx

(17)

with the above quasi-Newton step (15) (16), an effective algo-
rithm for GHEP (see [7, Algorithm1]). Moreover, in [7], the
effectiveness of its adaptive implementation, with replacement
of (Ry(k),Rx(k)) by (Ry,Rx) at time k, has been discussed
in the scenarios of subspace tracking.

C. ℓ1-penalized adaptive normalized quasi-Newton algorithm

In [16], we have reported an ℓ1-penalized extension of the
Adaptive normalized quasi-Newton algorithm (ℓ1-penalized
ANQNA) which aims to exploit effectively the sparsity as a
priori knowledge for efficient subspace tracking and is also
motivated by recent sparsity-aware eigenvector analysis in data
sciences. We have newly designed an objective function by
adding to ξ in (12) ℓ1-norm as a sparsity promoting penalty
ψ, i.e.,

ζ(w, λ) := ξ(w, λ) + ψ(w), (18)

where

ψ(w) := −ρ
N∑
i=1

|wi| (19)

where ρ ≥ 0. Note that ψ is nonpositive valued in (19). This
is because ξ in (12) is locally maximized in the estimation of
v1 in [7]. In order to derive a quasi-Newton type algorithm
for locally maximizing ζ, the ℓ1-penalized ANQNA is derived
by applying a quasi-Newton step which an approximation of
the gradient and inverse of Hessian matrix are used to the
criterion ζ followed by normalization step. By using the ℓ1-
penalized ANQNA, we can obtain a certain modified solution
in estimation of v1. Our proposed algorithm is based on this
idea, so the details are described in the next section.

III. NESTED ℓ1-PENALIZED ADAPTIVE NORMALIZED
QUASI-NEWTON ALGORITHM

In this section, we propose a Nested ℓ1-penalized adaptive
normalized quasi-Newton algorithm (Algorithm 1) to exploit
sparsity in generalized eigen-subspace extraction. For simplic-
ity, we focus on the pair of real symmetric positive matrices
throughout this paper.

From the dimension reduction idea of Nested orthogo-
nal compliment structure and (12), we define a non-convex
optimization criterion ξ(i) of which stationary point cor-
responds to the generalized eigen-pair of (R

(i)
y ,R

(i)
x ) ∈

R(N−i+1)×(N−i+1) as

ξ(w(i), λ) := (w(i))TR(i)
y w(i)λ−1 − (w(i))TR(i)

x w(i) + lnλ.
(23)

Algorithm 1 can be derived with a extension similar to (18)
and (19) by modifying an objective function ξ(i) as

ζ(i)(w(i), λ) := ξ(i)(w(i), λ) + ψ(i)(w(i)) (24)

with ℓ1 norm as a sparsity promoting penalty:

ψ(i)(w(i)) := −ρ∥ ⊥i w
(i)∥1 (25)

where ρ ≥ 0. A natural extension of the normalized quasi-
Newton’s strategy, for finding the stationary point of ζ would
be

(
w̃

(i)
(k+1)

λ(k+1)

)
=

(
w

(i)
(k)

λ(k)

)
− ηH̃[ζ]−1(w

(i)
(k), λ(k))∇̃ζ(w

(i)
(k), λ(k))

w
(i)
(k+1) =

w̃
(i)
(k+1)

∥w̃(i)
(k+1)∥Rx

,

(26)

where ∇̃ζ(w(i), λ) and H̃−1[ζ](w(i), λ) are the approxima-
tions of the gradient of ζ(i) and the inverse of Hessian of ζ(i),
respectively, η > 0 is a step size parameter. Let C(i) be

⊥i=: C(i) = [c1, c2, · · · , cN−i+1]
T ∈ RN×(N−i+1). (27)

Then, as the approximation of the gradient of ζ(i), we use a
subgradient of ζ(i) given by

∇̃ζ(i) :=
(
2R

(i)
y w(i)λ−1 − 2R

(i)
x w(i) − ρg(i)

−(w(i))TRyw
(i)λ−2 + λ−1

)
(28)

where g(i) := (g1, g2, · · · , gN−i)
T and gl =∑N−i+1

j=1 sgn(cjw
(i))cjl. As a fair approximation of

H[ζ(i)]−1(w(i), λ) at (w(i), λ) ≈ (v
(i)
1 , λ

(i)
1 ), from [7], we

can use

H̃[ζ(i)]−1(w(i), λ) :=
1

2

(
1
2w

(i)(w(i))T −R−1
x −w(i)λ

−(w(i))Tλ 0

)
(29)

where (v
(i)
1 , λ

(i)
1 ) is the generalized eigen-pair of (R(i)

y ,R
(i)
x ).

Hence, it is not hard to see that Algorithm 1 for the case of
η = γ can be derived by using this quasi-Newton type update
(26), (28) and (29).
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Algorithm 1 : NESTED ℓ1-PENALIZED and NORMALIZED QUASI-NEWTON ALGORITHM

With R
(i)
x -normalized vector w(i)

(0) ∈ R(N−i+1) and λ(0) > 0, generate the sequence (w
(i)
(k), λ(k))(k = 0, 1, ...) by

w̃
(i)
(k+1) := w

(i)
(k) +

η

λ(k)

{
(R(i)

x )−1R(i)
y w

(i)
(k) − (w

(i)
(k))

TR(i)
y w

(i)
(k)w

(i)
(k) +

ρ(k)

4

[
w

(i)
(k)(w

(i)
(k))

T − 2(R(i)
x )−1

]
g
(i)
(k)λ(k)

}
(20)

w
(i)
(k+1) :=

w̃
(i)
(k+1)

∥w̃(i)
(k+1)∥R(i)

x

(21)

λ(k+1) := (1− γ)λ(k) + γ(w
(i)
(k+1))

TR(i)
y w

(i)
(k+1) −

ρ(k)γ

2
(w

(i)
(k+1))

Tg
(i)
(k)λ(k) (22)

where gl =
∑N−i+1

j=1 sgn(cjw)cjl, η > 0 and γ ∈ (0, 1) are the step sizes, ρ(k) ≥ 0 is sparsity inducting parameter, and
(w(k), λ(k)) are the estimates of the first sparse principal generalized eigenvector and eigenvalue.

By combining Nested orthogonal complement structure
strategy, we can extend the idea of the ℓ1-penalized ANQNA
[16] to sparsity-aware generalized eigen-subspace extraction
without trading off their orthogonality. We establish the fol-
lowing scheme (Scheme 1) for estimation of the first r sparse
principal generalized eigenvectors and also present an adaptive
version of Scheme 1 as Scheme 2.1

Scheme 1. [Extraction of the first r sparse generalized
eigenvectors of the matrix pencil (A,B)]

1) Set A(1) = B and B(1) = A.
2) For i = 1, · · · , r,

a) Extract the first principal generalized eigen-
vector u

(1)
1 with (A(i),B(i)) Algorithm1

b) If i ̸= r, compute the B(i)-orthogonal com-
plement matrix U

(i)
⊥ of u(i)

1 .

c) If i ̸= r, set A(i+1) := (U
(i)
⊥ )TA(i)(U

(i)
⊥ ),

B(i+1) := (U
(i)
⊥ )TB(i)(U

(i)
⊥ ).

3) For i = 2, · · · , r, compute u
(1)
i by (10),

i.e., u(1)
i =⊥i u

(i)
1 .

1In adaptive estimation, the matrix Ry is unknown and has to be estimated.
In many cases, Ry is the covariance matrix of random input sequence
{y(k)}N. In this paper, the sample covariance matrices R̃y(k) is one-rank
updated with the recursions [7], [20]:

R̃y(k+1) = βR̃y(k) + y(k+1)y
T
(k+1), (30)

R̃x(k+1) = αR̃x(k) + x(k+1)x
T
(k+1) (31)

where α, β ∈ (0, 1). In this case, by using the matrix inversion lemma [21]
and [17, Corollary 2], we can obtain the inversion of Q(i)

x(k)
:= (R̃

(i)
x(k)

)−1

as:

Q
(1)
x(k+1)

=
1

α

[
Q

(1)
x(k)

−
Q

(1)
x(k)

x(k+1)x
T
(k+1)

Q
(1)
x(k)

α+ xT
(k+1)

Q
(1)
x(k)

x(k+1)

]
, (32)

Q
(i+1)
x(k+1)

= (U
(i)
⊥ )TQ

(i)
x(k+1)

(U
(i)
⊥ )− (U

(i)
⊥ )Tu

(i)
1 (u

(i)
1 )T (U

(i)
⊥ ).

(33)

By replacing R
(i)
y , R(i)

x and (R
(i)
x )−1 in Algorithm 1 with R̃

(i)
y(k)

, R̃
(i)
x(k)

and Q
(i)
x(k)

, we can derive adaptive implementation.

Scheme 2. [Adaptive implementation of Scheme 1]
1) k ← k + 1. Update the estimate (R̃

(1)
y(k), R̃

(1)
x(k)) of

(Ry,Rx)
2) For i = 1, · · · , r,

a) Perform only on update of Algorithm1 from
(R̃

(i)
y(k), R̃

(i)
x(k)) and w

(i)
1(k−1) and denote the

outcome by w
(i)
1(k).

b) If i ̸= r, compute the R̃
(i)
x(k)-orthogonal com-

plement matrix W
(i)
⊥(k) of w(i)

1(k).
2

c) If i ̸= r, set
R̃

(i+1)
y(k) := (W

(i)
⊥(k))

T R̃
(i)
y(k)(W

(i)
⊥(k)),

R̃
(i+1)
x(k) := (W

(i)
⊥(k))

T R̃
(i)
x(k)(W

(i)
⊥(k)).

3) For i = 2, · · · , r, compute
w

(1)
i(k) =

(∏i−1
s=1 W

(s)
⊥(k)

)
w

(i)
1(k).

4) Repeat steps 1-4 with w
(1)
i(k)(i = 1, · · · , r) converge.

IV. NUMERICAL EXPERIMENTS

In this section, we demonstrate numerically the performance
of the proposed algorithm. In this experiment, as performance
criterion, we use the Rx-direction cosine between w(k) and
v:

DCRx(w(k),v) :=
|⟨w(k),v⟩Rx |
∥w(k)∥Rx∥v∥Rx

. (34)

2w
(i)
(k)

=
R

(i)
x(k)

w
(i)
1(k)

∥R(i)
x(k)

w
(i)
1(k)

∥
,

W
(i)
⊥(k)

=

IN−i − 1

1+|w(i)
low(k)

|
w

(i)
up(k)

w
(i)T
up(k)

−θ(w
(i)
low(k)

)w
(i)T
up(k)

,

where w
(i)
(k)

=
[
w

(i)T
up(k)

, w
(i)
low(k)

]
, and the mapping θ is defined as (5).
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Fig. 1: Comparison of the performance of the proposed algorithm with the ANQNA (Section IV-A)

For precision, we observe Average Rx-direction cosine of (34)
over L independent runs,

ADC(k) :=
1

r

r∑
i=1

DCRx(wi(k),vi). (35)

We also measure the numerical stability of algorithms by the
sample standard deviation of the average direction cosine (35):

SSD(k) :=

√√√√ 1

L− 1

L∑
j=1

[ADCj(k) −ADC(k)]2, (36)

where ADCj(k) is the Rx-direction cosine of the jth indepen-
dent run (j = 1, · · · , L) and ADC(k) is the average of L(=
100) independent runs (i.e., ADC(k) := 1

L

∑L
j=1ADCj(k)).

Moreover, in order to evaluate the orthogonality of the esti-
mates, we observe the orthogonality error [5], [6], [17]:

Θ(k) := ∥W T
(k)Rx(k)W(k) − Ir∥2F (37)

where W(k) := [w1(k),w2(k), · · · ,wr(k)], and ∥ · ∥ stands for
the Frobenius norm.

A. Sparsity-aware subspace extraction

We compare the performance of the proposed scheme with
that of combination of the Adaptive normalized quasi-Newton
algorithm (ANQNA) [7] and Nested orthogonal complement
structure [17], in the situation where the covariance matrix
pencil of the input data has sparse principal generalized
eigenvectors. We refer to the procedure proposed in [10],
[14] to generate random data with a covariance matrix pencil
having sparse eigenvector. We generate a positive definite sym-
metric matrix pancil (Cy,Cx) as Cy = V −Tdiag(d)V −1,
Cx = V −TV −1 , where V ∈ RN×N has pre-specified sparse
vectors and the remaining columns are generated randomly.
Here, we choose N = 100, where the two sparse generalized
eigenvectors are specified as follows:

v1 :=

{
Vi,1 = 1√

5
for i = 1, ..., 5,

Vi,1 = 0 otherwise,

v2 :=

{
Vi,2 = 1√

5
for i = 6, ..., 10,

Vi,2 = 0 otherwise,

v3 :=

{
Vi,3 = 1√

5
for i = 11, ..., 15,

Vi,3 = 0 otherwise,

(38)

and the generalized eigenvalues are chosen as d1 = 40, d2 =
20, d3 = 10, di = 1(i ≥ 3).

In this subsection, the step size parameters is chosen as
η = λN/(λ1 − λN ) and γ = 0.5 in both algorithms, and
the sparsity inducting parameter of the proposed algorithm is
decreased as ρ(k) = 1√

k
(In the estimation of each vi(i =

1, · · · , 3), these parameter setting are all the same). w(0) and
λ(0) are randomly selected so as to satisfy ∥w(0)∥Rx = 1 and
λ(0) ∈ (0, 1). In Fig.1(a)(b)(c), we observe values and changes
of direction cosine between the estimated eigenvector w(k) and
the sparse eigenvectors v1, v2 and v3. Fig.1 shows that the
proposed scheme can achieve faster tracking than the existing
scheme by exploiting the sparsity as a priori knowledge.

B. Potential application (sparse principal component analysis
and its online version)

In this subsection, we can also see that it is found that
the proposed algorithm can provide a more stable estimate on
the online sparse PCA setting (a covariance matrix changes
with input at time k).3 As the existing method to compare,
we adopt Generalized Power Method (GPower) [11] which
is one of the most popular method for sparse PCA. In
[11], two algorithms are proposed as methods to estimate
single principal component with sparsity, named GPowerℓ1
and GPowerℓ0 . In this experiments, we choose GPowerℓ1
as benchmark algorithm because these GPower algorithms
have very similar performance in terms of (34), (36) and
(37).4 We construct a covariance matrix with the eigenvalue
decomposition Σ = V diag(d)V T , where V ∈ RN×N has
several pre-specified sparse orthonormal vectors, where V
has v1, v2 and v3 in (38) and the remaining eigenvectors
is defined to make its column vectors an orthonormal basis.
We choose N = 50 in this subsection. In addition, we generate
a input data sequence {y(k)}k∈N from a zero-mean normal
distribution with Σ, i.e., y(k) ∼ N (0,Σ) and add noise to
input for a SNR of -5dB.

In Fig.2, we observe values and changes of averaged direc-
tion cosine between the estimated eigenvector w(k) and the

3This setting suggests that we apply the proposed algorithm to a time-
varying covariance matrix pencil (R̃y(k), IN ) which is updated with the
recursion (30) and input data sequences {y(k)}k∈N in this experimants.

4The GPower algorithm has been proposed as a batch type algorithm. In
this experiments, we use its straightforward adaptive implementation with (30)
as the existing algorithm to make a comparison in online condition.
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Fig. 2: Comparison of the performance of the proposed algorithm with the GPower algorithm (adaptive case, Section IV-B)

sparse eigenvectors v1, v2 and v3, and Fig.2(b) shows the sam-
ple standard deviation of the direction cosine (36). Moreover,
Fig.2(c) shows the orthogonality error (37) of the estimates,
for each time k. In this experiments, the step size parameters
is chosen as η = 0.01 and γ = 0.25 in this subsection. The
sparsity inducting parameter is fixed as ρ(k) = 0.05. Note that
all algorithms have been initialized with Ry(0) = IN . w(0)

and λ(0) are randomly selected so as to satisfy ∥w(0)∥Rx = 1
and λ(0) ∈ (0, 1) in this subsection. We set the forgetting
factor as β = 0.998 in (30). GPowerℓ1 needs to set sparsity-
controlling parameters γGP1, · · · , γGP3 and weight parameters
µGP1, · · · , µGP3 (respectively introduced as γ and µ in [11]).
We choose them as γGPi = 0.1 (i = 1, · · · , 3) and µGPi = 1/i.
Fig.2(a) and Fig.2(b) suggests that the proposed algorithm can
provide more stable convergence and steady state performance
than the GPower in this online condition. From Fig.2(c), we
can see that the estimates by the proposed algorithm keep the
orthogonality in this online estimation.

V. CONCLUSION

In this paper, we have presented the Nested ℓ1-penalized
adaptive normalized quasi-Newton algorithm for sparsity-
aware generalized eigen-subspace extraction. In fact, we have
proposed an idea to extend our precious work on the algorithm
for the first sparse principal generalized eigenvector [16] by
adopting the Nested orthogonal compliment structure. Addi-
tionally, by imposing a sparsity-enhancing penalty function,
the proposed algorithm can achieve the sparse i-th generalized
eigenvector tracking for generalized eigenvalue problem with-
out sacrificing a general orthogonality (i.e., Rx-orthogonality)
among the solution. Numerical experiments have shown the
following two points: (i) The proposed algorithm can exploit
the sparsity in the case that the generalized eigenvectors have
sparse property. (ii) In adaptive case as well as batch case, the
proposed algorithm achieve keeping the orthogonality among
the estimates of the principal eigenvectors.
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