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Abstract—In recent years, the application of unsupervised
learning techniques has become of growing importance in a
number of fields, e.g., feature selection, clustering etc. While an
array of fast supervised learning algorithms have been developed
over the years, the number of fast unsupervised learning algo-
rithms is lacking. In this paper, we present a fast unsupervised
kernel affine projection algorithm using a least-squares one-class
support vector machine framework and coherence sparsification
criterion. A kernel NLMS type algorithm is then developed as a
special case. To validate the efficacy of the proposed algorithms,
we then perform simulations to detect outliers in datasets.

I. INTRODUCTION

With the advances in data acquisition technology, data is
increasingly being gathered and stored from a multitude of
sources, e.g., power grid, industrial systems, financial markets,
computer networks, etc, for a variety of applications ranging
from social networks to health care to environmental studies.
Labeling all the collected data would require a considerable
amount of time and resources making this a daunting proposi-
tion. Therefore, the data is often unlabeled. Extracting useful
information from the unlabeled data require applications of
unsupervised learning methods. Thus, unsupervised learning
plays an important role in machine learning.

Unsupervised learning methods have been developed for
many batch learning algorithms where learning takes place
offline such as clustering or principal component analysis [1].
Unsupervised learning has also been successfully used to
improve learning for deep neural networks as better represen-
tations are obtained in the hidden layers [2], [3]. In many cases
however, there are preferences to learn in real-time using un-
supervised online learning methods. Some key considerations
in online learning are learning speed, performance of learning
algorithm, and computational complexity. While there is a rich
body of literature concerning online supervised learning (e.g.,
linear adaptive filtering with a desired target) [1], [4], there is
much less work for online unsupervised learning algorithms.
Our previous work with online density estimation performed
well in outlier detection application, but the learning com-
plexity was high [5]. We found a much lower complexity
solution by using an online least-squares one-class support
vector machine (SVM) [6], [7].

In this paper, we discuss implementation of online unsu-
pervised learning algorithms for outlier detection using kernel
methods, extending our work in [6], [7]. The proposed algo-
rithms are based on least-squares one-class SVM classifiers.

The one-class SVM is an unsupervised learning method,
proposed in [8] to extract regions in the input space where
most of the training objects lie. A least squares (LS) version
of the one-class SVM was proposed by Choi in [9] such that
the solution can be obtained by solving a linear system instead
of a quadratic programming problem in the standard one-class
SVM. However this advantage comes at the cost of loss of
sparsity of the support vectors (SVs). Several approaches to
sparsification of kernel-based solutions have been proposed in
the literature [10]–[14]. In this paper we utilize the subspace
method [14] to obtain a sparse representation of the decision
hyperplane in least-squares one-class SVM. To further reduce
the computational complexity, we then develop a kernel affine
projection (KAP) [16] based solution. As a special case of the
KAP algorithm, a kernel NLMS type is also proposed.

The rest of the paper is organized as follows: Section II dis-
cusses the least-squares one-class SVM and presents the kernel
subspace method for inducing sparsity. Section III presents
the proposed kernel affine projection based algorithms. The
efficacy of the proposed algorithms in detecting outliers in
the power grid is examined in Section IV. Finally, Section V
provides the concluding remarks.

Notation: Upper and lower case letters denote random
variables and their realizations, respectively; underlined letters
stand for vectors; boldface upper case letters denote matrices,
and In is the n × n identity matrix; (·)T denotes matrix
(vector) transpose; |·| denotes the absolute value and matrix
determinant for scalars and matrices, respectively; ‖·‖ denotes
the L2 norm of vectors.

II. SPARSE ONLINE LEAST-SQUARES ONE-CLASS
SUPPORT VECTOR MACHINE

The LS one-class SVM proposed by Choi in [9] gives a
hyperplane that maximizes the distance from the origin and
minimizes the distance to the training objects in least squares
sense. The distance from this hyperplane may then be used as
a measure to determine which objects resemble the training
objects better than others. For training data x1, . . . , xn ∈ Rd,
the optimization problem for LS one-class SVM is [9]

min J =
1

2
‖w‖2 − ρ+

C

2
‖ξ‖2, (1)

subject to w = Φα (2)

ξ = 1nρ−ΦTw, (3)
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where matrix Φ=[φ(x1), . . . , φ(xn)] and 1n is a n×1 vector
of all ones. φ(·) :Rd→H is the mapping to a high dimensional
feature space such that the dot product in H can be computed
by evaluating a kernel k(x, y) = φ(x)Tφ(y). The parameter
C is predefined and ξ is a vector of slack variables.

A. Kernel Subspace Method

In an online learning scheme we sequentially process a
stream of incoming data points. As more data become avail-
able, the memory and processing requirement increases. The
subspace method [14] produces a sparse solution for the LS
one-class SVM that allows the solution to be stored in a
compact form and reduces the number of linear equations to
be solved. At time step n−1, let X (n−1)

D = {xD,1, . . . , xD,m}
be a subset of the training samples chosen as the support
vectors for the LS one-class SVM, such that m < n − 1.
The corresponding feature matrix is denoted by ΦD,(n−1) =
[φ(xD,1), . . . , φ(xD,m)].

Given the constraints on the training samples, we can now
rewrite the optimization problem (1) as an online optimization
problem:

min
ŵn,ρ̂n,ξn

Jn =
1

2
‖ŵn‖2 − ρ̂n +

C

2
‖ξ
n
‖2 (4)

subject to ŵn = ΦD,(n)α̂n, (5)

ξ
n

= 1nρ̂n −ΦT
n ŵn. (6)

Let KD,(n) = ΦT
D,(n)ΦD,(n) be the kernel matrix of the

support vectors. Let ΦD̄,(n) denote the matrix containing
the mapping of the sample points not in the support vector
dictionary. Then we can rewrite Φn =

[
ΦD,(n) ΦD̄,(n)

]
by

rearranging the columns. Then Substituting ŵn and ξ
n

into
(4), and defining ΦT

nΦD,(n) = KS,(n), we have

Jn =
1

2
α̂TnKD,(n)α̂n − ρ̂n +

C

2
‖1nρn −KS,(n)α̂n‖2. (7)

Taking the derivatives of (7) with respect to α̂n and ρ̂n,
and setting equal to zero, we obtain the following set of linear
equations:[

1Tn1n −1TnKS,(n)

−KT
S,(n)1n Pn

] [
ρ̂n
α̂n

]
=

[
1
C

0m

]
, (8)

where

Pn
∆
= KD,(n)/C + KT

S,(n)KS,(n). (9)

Applying block matrix inversion lemma [15],

ρ̂n =
(
C1Tn

(
In −KS,(n)P

−1
n KS,(n)

)
1n
)−1

, (10)

α̂n = P−1
n KT

S,(n)1n
(
C1Tn

(
In −KS,(n)P

−1
n KS,(n)

)
1n
)−1

.

(11)

B. Recursive Computations of α̂n and ρn
In an online data stream application, ρn and α̂n need

to be updated at every time step when a new data point
becomes available. Using (10) and (11) as update formulas
requires computing the inverse of the matrix Pn. This matrix

inversion step has computational complexity O(m3) which
dominates the total complexity of the algorithm. To reduce
the computational complexity of the algorithm we need to find
recursive update formula with lower complexity for updating
α̂n and ρ̂n. The developed algorithm has similarities to the
recursive least squares (RLS) algorithm developed for linear
adaptive filters [4]. The main difference is that here we are
working in the dual space where dimensionality of the space
depends on the number of support vectors, m.

We start by defining

q
n

∆
= KT

S,(n)1n, (12)

rn
∆
= P−1

n KT
S,(n)1n. (13)

Then (10) and (11) become

ρ̂n =
1

C
(n− qT

n
rn)−1, (14)

α̂n = rnρ̂n. (15)

Once the vectors q
n

and rn are known, ρ̂n and α̂n can be
computed in O(m) time. Hence, we wish to obtain a recursive
formulas for computing q

n
and rn.

At time step n, when the new data point xn becomes
available, based on the support vector selection criterion, one
of the following two cases can happen:

Case 1: Data not added as SV: When the new data is not
added as a support vector, the matrix KD remains unchanged.
The matrix KS,(n) is updated. Then using (9) and applying
the Sherman-Morrison formula [15] we can compute P−1

n

recursively as

P−1
n = P−1

n−1 − snk
T
nP−1

n−1, (16)

where

sn =
P−1
n−1kn

1 + kTnP−1
n−1kn

. (17)

Then q
n

and rn can be recursively computed as

q
n

= q
n−1

+ kn, (18)

rn = rn−1 + sn

(
1− kTn rn−1

)
. (19)

Case 2: Data added as SV: In this case we have X (n)
D =

X (n−1)
D ∪ {xn} and m = m+ 1. Accordingly, KD is updated

as follows:

KD,(n) =

[
KD,(n−1) kn

kTn knn

]
, (20)

where knn = k(xn, xn) = φ(xn)Tφ(xn). Then from (9),
the recursive formulas for updating P−1

n can be obtained
by applying Sherman-Morrison formula and the block matrix
inversion lemma [15]:

P−1
n =

[
Tn 0m−1

0Tm−1 0

]
+
vnv

T
n

β
, (21)
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where

Tn =
(
Im−1 − snk

T
n

)
P−1
n−1, (22)

vn =

[
Tnun
−1

]
, (23)

β =
knn
C

+ kTnkn + k2
nn − uTnTnun, (24)

sn =
P−1
n−1kn

1 + kTnP−1
n−1kn

, (25)

un = kn(1/C + knn) + KD,(n−1)kn. (26)

Using (20)–(25), we obtain the recursive formulas for q
n

and rn as follows:

q
n

=

[
q
n−1

+ kn
kTn1m−1 + knn

]
, (27)

rn =

[
rn−1 + sn

(
1− kTn rn−1

)
0

]
+
vTn qn
λ

vn. (28)

Finally, ρn and α̂n are updated using (14)–(15).
The overall computational complexity of the update equa-

tions is O(m2). The recursive solutions α̂n and ρn for
optimization problem (4) subject to error constraints on all
n observed data points. The recursive solution with further
reduced complexity may be obtained by limiting the error
constraint to most recent p observations. Similar algorithms
have been proposed in linear adaptive filter theory [16], [17]
and supervised learning methods [12]. These algorithms are
classified as Affine Projection algorithms [17]. We develop a
similar algorithm next.

III. KERNEL AFFINE PROJECTION SOLUTION

We can formulate the affine projection problem as an
optimization that minimizes the squared L2 norms of the
change in the weight vector and the bias term, subject to
constraint on most recent p data points. The minimization
problem at time step n is given by

min
α,ρ
‖α− αn−1‖2 + (ρ− ρn−1)2 (29)

subject to 1pρ = KT
p,(n)α,

where Kp,(n) = [kn,, kn−1, . . . , kn−p+1]. At time step n,
when new data point xn becomes available, we have two cases:

Case 1: Data not an SV: Problem (29) can be solved by
minimizing the Lagrangian function,

L(α, ρ, λ)=‖α−αn−1‖2+(ρ−ρn−1)2+λT
(

1pρ−KT
p,(n)α

)
,

(30)
where λ is the Lagrange multiplier. Solving the Lagrangian,
we obtain the update equations for αn and ρn as

αn = αn−1 + µKp,(n)

(
KT
p,(n)Kp,(n) + 1p1

T
p + εIp

)−1

×

×
(

1pρn−1 −KT
p,(n)αn−1

)
, (31)

ρn = ρn−1 − µ1Tp

(
KT
p,(n)Kp,(n) + 1p1

T
p + εIp

)−1

×

×
(

1pρn−1 −KT
p,(n)αn−1

)
, (32)

where µ is the step-size control parameter and ε is the
regularization parameter.

Case 2: Data added as SV: In this case the new data is
added to the support vector dictionary. To accommodate the
new support vector, we modify the optimization problem (29)
as

min ‖α−
[
αn−1

0

]
‖2 + (ρ− ρn−1)2 (33)

subject to 1pρ = KT
p,(n)α. (34)

The Lagrangian function is given by

L(α, ρ, λ) =

∥∥∥∥α− [αn−1

0

]∥∥∥∥2

+ (ρ− ρn−1)2+

+ λT
(

1pρ−KT
p,(n)α

)
. (35)

Solving the Lagrangian, we obtain the update equations for
αn and ρn as:

αn =

[
αn−1

0

]
+ µKp,(n)

(
KT
p,(n)Kp,(n) + 1p1

T
p + εIp

)−1

×

×
(

1pρn−1 −KT
p,(n)

[
αn−1

0

])
, (36)

ρn = ρn−1 − µ1Tp

(
KT
p,(n)Kp,(n) + 1p1

T
p + εIp

)−1

×

×
(

1pρn−1 −KT
p,(n)

[
αn−1

0

])
. (37)

The complexity of the affine projection update is O(p2m).

A. Special Case: Projection Order p = 1

Now consider a special case when the projection order p is
1. In this case, the minimization problem (29) is constrained
by only the most recent observed data point xn. Then the
recursive update equations (31)-(32) and (36)-(37) become

1) Data not a support vector:

αn = αn−1 + µ

(
ρn−1 − kTnαn−1

)
1 + kTnkn

kn, (38)

ρn = ρn−1 − µ

(
ρn−1k

T
nαn−1

)
1 + kTnkn

, (39)

where µ is a step-size control parameter.
2) Data added as a support vector:

αn =

[
αn−1

0

]
+ µ

(
ρn−1 − kTnαn−1

)
1 + kTnkn + k2

nn

[
kn
knn

]
, (40)

ρn = ρn−1 − µ

(
ρn−1 − kTnαn−1

)
1 + kTnkn + k2

nn

, (41)

where µ is the step-size control parameter.
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IV. EXPERIMENTS

To study the feasibility of the proposed algorithms, we
perform simulations on the IEEE 14 bus test system [18] in
an outlier detection setting and compare the performance of
the proposed methods with the normalized residual (rNmax)
test based on traditional AC state estimation in the power
grid [21]. The least-squares one-class SVM find the hyperplane
that minimizes the squared distances to the training points in
the feature space. Therefore, the distance from the hyperplane
can be used as a measure of resemblance between a data point
and the training set. For new data xn, we perform the following
threshold test:

d(xn) =
|α̂Tn−1kn − ρn|√
α̂Tn−1KD,(n−1)α̂n−1

≥ dth =⇒ Outlier.

In the proposed sparse online LS one-class SVM our goal
is to build a diverse support vector dictionary to approxi-
mate the input space while inducing sparsity. In this paper,
for the subspace method we utilize the coherence criterion
δn = max(kn) ≤ threshold, γ proposed in [12] for adding
support vectors to the dictionary. To moderate the addition
of support vectors into the dictionary, we introduce another
threshold γ′ < γ. After comparing the distance threshold,
before a data point is added as a support vector we have three
cases:
• δn > γ: very similar to dictionary; only hyperplane

updated.
• γ ≥ δn ≥ γ′: somewhat similar; both dictionary and

hyperplane updated.
• δn < γ′: very dissimilar; discard without updating either

dictionary or hyperplane.
A similar approach has also been used in [13].

In power grid, the measurement vector xn consists of real
and reactive power measurements. In the traditional state
estimation, these measurements are collected from different
parts of the grid and processed in a centralized manner to
estimate the system states and detect outliers using the rNmax
test [21]. At time step n, the AC state estimator employs the
nonlinear measurement model given by [21]

xn = h(vn) + en, (42)

where vn is the state vector, h(·) is a nonlinear vector function
relating measurements to states and en is the iid measurement
error with mean 0 and covariance R. The vector vn usually
consists of the steady state bus voltage magnitudes and phase
angles [21]. The weighted least squares (WLS) estimate v̂n
is obtained using the Gauss-Newton method by the following
iterative procedure [21]:

G
(
v`n
)

∆v`+1
n = H

(
v`n
)T

R−1
[
xn − h

(
v`n
)]
, (43)

v`+1
n = v`n + ∆v`+1

n , (44)

where G
(
v`n
)

=
(
H
(
v`n
)T

R−1H
(
v`n
))

is the gain matrix;

H
(
v`n
)

=
[
∂h(vn)
∂vn

]
vn=v`n

is the Jacobian matrix; ` is the

iteration number. The covariance matrix of the estimate of
the measurement, x̂ = h(v̂) is given by

T = HG−1HT , (45)

where H =
[
∂h(v)
∂v

]
v=v̂

.

The measurement residual is calculated as

r = x− x̂, (46)

which is a white Gaussian process of zero mean and has
a covariance matrix given by the difference between the
measurement error covariance and the measurement estimate
covariance [21], i.e., Ω = R−T.

In the rNmax test, r is normalized and the largest normalized
residual is compared with a threshold:

max
|ri|√
Ω[i, i]

≤ threshold. (47)

If the i-th measurement violates the threshold, then it is
suspected as bad data, removed from the measurement set and
the state estimation process is repeated with the reduced set.

A shortcoming of the residual test is the detection of bad
data in multiple interacting measurements [21]. In addition,
data injection attacks can be designed that are undetectable by
the rNmax test [19], [22]. For instance, if an attacker designed
an attack vector as a = h(v̂ + c) − h(v̂) and changed the
measurement to xbad = v + a, then a can pass the bad
data detection test [19]. The AC state estimator will yield an
erroneous state vbad = v̂ + c.

On the other hand, the proposed algorithm does not require
any information about the system states and depends entirely
upon the historical observations. Thus, outlier detection can
be performed before the data is sent to a central station.
By dividing the system into smaller subsystems, we can
perform outlier detection in each subsystem, thus reducing
communication overhead. This decentralized method of outlier
detection is demonstrated next.

A. Bad data detection

We first implemented the proposed algorithm for bad data
detection in the IEEE 14 bus test system [18]. Fig. 1 shows
the network diagram of the test system. For distributed bad
data detection using least-squares one-class SVM, we divide
the 14 bus system into two subsystems and shown in Fig. 1.
For our simulations, we only consider bad data detection in
the region enclosed in blue lines.

In the simulations, we assume that the system is operating in
a quasi steady state. We created a data stream of 2000 samples
by adding 2% measurement noise to the true measurements.
For outlier detection using least-squares one-class SVM, we
consider the measurement vector X = [P1, P2, P3, P1−2,
P1−5, P4−7, P4−2, P4−5, P4−9, P2−5, P5−6]T . To study the
efficacy of the proposed methods in detecting bad data, we
randomly injected 200 bad data in the interacting pair P1 and
P1−2 with gross errors of magnitudes 10 − 30% of the true
measurement.
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Fig. 1. IEEE 14 bus test system [18]. The blue line shows the area under
consideration.
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Fig. 2. Comparison of bad data detection rates in IEEE 14 bus test system.
The projection order for KAP algorithm is set to 1.

Fig. 2 shows the comparison of the detection rates of
rNmax test, least-squares one-class SVM subspace method
and the kernel affine projection method, averaged over 100
simulations.For the affine projection method we only consider
projection order 1. We observe that rNmax test has low positive
detection rate for interacting bad data. The added measurement
noise also causes high false positive detection rate in the rNmax
test. In contrast, the both of the proposed online algorithms
have high positive detection rates in interacting bad data while
achieving a low false detection rate.

B. False data attack detection

In AC state estimation, an attack vector a can pass the
traditional rNmax test, if it satisfies a = h(x̂+ c)−h(x̂), where
c is the change in the estimated state vector [19]. Two types of
data attacks are usually studied in the literature: attack on state
variable(s) and attack on certain measurements [19], [20].

To successfully alter any of the state variables without being
detected, the attack must change all the measurements that
depend upon that state variable [19], [20]. Once it has been
determined which measurements need to be altered, the real

and reactive power flows from bus i to j can be calculated
from [21]

Pij = V 2
i (gsi + gij)− ViVjgij cos(θi − θj)

− ViVjbij sin(θi − θj), (48)

Qij = −V 2
i (bsi + bij)− ViVjgij sin(θi − θj)

+ ViVjbij cos(θi − θj), (49)

where gsi, bsi, gij and bij are network parameters. The power
injected at bus i is then

Pi =
∑
j Pij and Qi =

∑
j Qij . (50)

An injected false data vector will contain altered power mea-
surements that differ from the other data in current operating
conditions, hence it will be an outlier. In the traditional rNmax
test, if the attack vector is a = h(x+c)−h(x), then the attack
becomes unobservable [19]. On the other hand, this alteration
in the power measurements is detectable in our data driven
approach. By choosing a proper mapping function φ(·), we
can obtain ‖φ(x+ a)− φ(x)‖ ≥ threshold. Thus, we can use
a similarity measure in the feature space to detect false data
injection attacks.

To study the feasibility of the proposed LS one-class SVM
methods for detecting malicious data attacks, we performed
simulations on the IEEE 14 bus system [18], using a Gaussian
kernel k(x1, x2) = exp(−‖x1 − x2‖/σ2), and compared per-
formance with the rNmax test. We used the state estimator in the
MATPOWER toolbox [23] for the rNmax test. For distributed
bad data detection using least-squares one-class SVM, we
divide the 14 bus system into two subsystems as shown in
Fig. 1. For our simulations, we only consider attack detection
in the region enclosed in blue lines with the measurement
vector X = [P1, P2, P3, P1−2, P1−5, P4−7, P4−2, P4−5,
P4−9, P2−5, P5−6]T .

We investigate attacks targeting one state variable from the
set A = {V2, V3, V4, V5, θ2, θ3, θ4, θ5}. To simulate attack
on a state variable in A, we generate a data stream of 2000
observations where the last 200 observations are malicious
data containing measurements to alter the state variable by 5−
10% of its true value. We repeat this procedure for each of the
state variables in A. The parameters used for the kernel RLS
solution to online LS one-class SVM are C = 2, σ2 = 0.5,
γ = 0.8, γ′ = 0.1. For the kernel affine projection algorithm,
the parameters are σ2 = 0.5, , p = 1, γ = 0.8, γ′ = 0.1,
µ = 0.01. Using the aforementioned parameters, we performed
100 simulations for each of the variables in A and compared
the average detection rates of the proposed methods with the
detection rates of the rNmax test. As expected from the attack
design, the rNmax test fails to detect any of the attacks. On
the other hand, our algorithms achieved a 100% success rate
in detection of the false data injection attacks. Since all the
power measurements related to a state is altered, this translates
to a large deviation from the learned hyperplane. Thus, our
methods are able to achieve high true positive detection rates
while minimizing false positive detection rates.
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V. CONCLUSION

This paper presents kernel subspace and kernel affine pro-
jection methods for online unsupervised learning in a least-
squares one-class SVM framework. In both methods we used
the coherence criterion for choosing support vectors. Simula-
tion experiments show that the proposed methods work well
in detecting bad data in sensor measurements and malicious
data injection attacks in the power grid. In our future work,
we will investigate the performance of the kernel subspace and
kernel affine projection methods on other datasets. There are
many other possible directions for potential future research.
One possible direction is considering changes in the data
distribution. It is possible that the underlying distribution of
the collected data may slowly change over time. In that case a
low complexity method needs to be developed to discard old
uninformative data. Another possible direction is to consider
multiple kernels for improving learning rate.
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