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Abstract—In recent decades, dictionary learning has been 

attracted strong attentions due to its great performances when 

applied in many applications such as signal reconstruction and 

scene classification. Conventional dictionary learning schemes 

have been developed to the scene classification but it hard to make 

a suitable tradeoff between accuracy and efficiency. This paper 

proposed an improved method of dictionary learning with cross-

label and group regularization, in order to achieve a tradeoff 

between accuracy of classification and efficiency of algorithm 

execution. Demonstrated by the experiment results on the Scene15 

dataset. Our proposed approach method is obviously improved 

owing to the algorithm can not only obtain a desired classification 

performance, but also decrease much of the computational time 

during the process of dictionary learning. 

Keywords: Cross-label suppression, dictionary learning, scene 

classification, compressive sensing. 

I. INTRODUCTION 

Dictionary learning has been revealed to achieve a good 

performance in signal processing over the past a few decades, 

and have been applied to many aspects, such as, signal 

reconstruction [1]–[3], cluster [4] and classification [5]. 

Moreover, dictionary learning is such a method to reconstruct 

a physical signal from its specific sparse representation through 

a learnt matrix which made up with the linear combination of 

representative vectors, where the significant learnt matrix is 

named dictionary and each column of the dictionary is called 

‘atom’. 

The method of SVD is adopted by the classic K-SVD to 

learn the atoms in dictionary one by one [6]. A structured 

dictionary model has been utilized in [7] to decrease the 

computational time in learning process. Supervised learning 

methods is demonstrated that to have more advantages for 

pattern classification, based on this, the sparse representation 

based classification (SRC) method proves it [5]. 

In most cases, ℓ0 -norm [8] or ℓ1 -norm [9] is commonly 

utilized to as a prior item avoid overfitting. However, the 

redundancy of computational time is obviously a major 

drawback in these works. Thus, ℓ2-norm can be adopted in 

dictionary learning to obtain an accurate solution with closed 

form, also smooth the iterative manner. Furthermore, cross-

label suppression as well as group regularization (CLS-GR) is 

adopted to achieve a higher accuracy in scene classification. 

In this paper, we propose an improved method in order to 

obtain a tradeoff between accuracy and efficiency with cross-

label suppression and group regularization. It is obviously 

observed that, if the dimension of the sparse codes is too few, the 

sparse representations do not have the ability to understand all 

the valid information of the physical signals. In contrast, if the 

dimension of the sparse representation is too high, then the 

computational complexity of the training samples will suffer a 

disastrous growth. What’s more, a quantitative relationship is 

built between sparse dimension and cost time without 

traversing the situation of all dimensions. Owing to the purpose 

of saving time, a model inspired by K-SVD is utilized to 

estimate the residuals of signal recovery without operating the 

algorithms. 

II. BASIC MODEL OF DICTIONARY LEARNING WITH CROSS –

LABEL AND GROUP REGULARIZATION 

In this section, we briefly introduce the basic model of 

dictionary learning model with cross-label as well as the group 

regularization, and the estimation model inspired by the classic 

dictionary learning method K-SVD.  

A. Generally Dictionary Model with CLS-GR [10] 

Assume that 𝐶  classes of samples are given in total, the 
CLS-GR of dictionary learning model [4] can be formulated as 
(1). 
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where 𝐘 ∈ 𝑅𝑚×𝑝  denotes the image samples of the facial 
features and the superscript 𝑐  represents that the sample 
belongs to the 𝑐-th class, 𝐃 ∈ 𝑅𝑚×𝑛  is the learnt dictionary 
obtained by learning of the training samples, 𝐗 ∈ 𝑅𝑛×𝑝  
represents the specific sparse codes, and 𝐏𝑐 ∈ 𝑅𝑛×𝑛   is the 
matrix for the cross-label and is defined as (2). 
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where 𝑐 = 1,2, … , 𝐶 , 𝐏𝑐(𝑚, 𝑛) denotes the (𝑚, 𝑛)-th entry 
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of  𝐏𝑐. Thus, the Laplacian matrix of an 𝑁-vertex is defined 
as (3). 

1 1 1 1
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where 𝐖 and 𝐌 are the adjacency matrix of the graph and the 
degree matrix, respectively. Moreover, with  𝐾 maps in total, 
the total variation ( 𝑇𝑜𝑡𝑎𝑙𝑉𝑎𝑟(𝑓) ) can be obtained as the 
following form. 
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In aspect of mathematics, the smaller 𝑇𝑜𝑡𝑎𝑙𝑉𝑎𝑟(𝑓) is kept, 

the smoother the map is, thereby reducing the differences 

between the images that belong to the same class. 

B. Corresponding dimensions of the residuals inspired by 

K-SVD 

Inspired by the classic K-SVD [1] and considering the CLS-
GR method of dictionary learning, the energy of sparse 
representations is concentrated on some particular areas of the 
structured matrix. Thus, the residuals can be described as (5). 
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Similarly, take 𝐘𝑐 separated by SVD, the residuals can be 
estimated as (6). 
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where 𝐃𝑐  is a matrix with 𝑠  columns; next, take 𝐘𝑐  to 

conduct the method of SVD, 𝐘𝑐 = 𝐔𝚲𝐕𝑇 . Inspired by the K-

SVD algorithm, we denote the first 𝑠  columns of 𝐔 

corresponding to the number of columns of 𝐃𝑐  with the 

notation 𝐃̅𝑐 , where 𝐔𝑐=𝑖  represents the i-th column in 𝐔 . 

Moreover, the diagonal matrix composed of the first 𝑠 singular 

values multiplying the transpose of the first 𝑠 columns in 𝐕𝑇 

corresponds to 𝐗𝐿𝑐
𝑐 , where 𝐗𝐿𝑐

𝑐  denotes the rows in 𝐗𝒄  that 

belong to the c-th Label. The residuals can be given as (7). 
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Particularly, 𝑠 denotes the dimension of sparse representation. 

According to the proposed estimation model inspired by K-

SVD with low complexity, the residuals can be predicted 

without practical experiments. 

III. IMPROVED MODEL OF DICTIONARY LEARNING 

A. Cubic fitting method for time estimation 

Considering the time complexity of each step, the time 

complexity of k-means [5] is O(𝑝 ∙ 𝑛 ∙ 𝑚), where 𝑝 represents 

the number of samples, 𝑛 represents the number of clusters as 

well as the number of atoms in dictionary, 𝑚 represents the 

number of features of each sample.  

In the part of initializing the sparse representations, given the 

initialized dictionary 𝐃0 by k-means, 𝐗0  can be obtained as 

(8). 
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where the time complexity of initial method is O(𝑛3).  
Instead of renewing the whole dictionary at the same time, 

the model updates the dictionary atom by atom to fully utilize 
those that have already been updated. The dictionary is updated 
by the formula as (9) and (10). 
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where  𝒅̂𝑖
𝑐   represents the estimated value of 𝑖 -th column 

which belongs to the 𝑐-th class, 𝐱̅𝑘 denotes estimated value of 
the 𝑘-th row in the whole code matrix 𝐗. Its time complexity 
is O(𝑝 ∙ 𝑛 ∙ 𝑚), where 𝑛 represents the number of atoms of the 
dictionary, 𝑚  represents the number of features of each 
sample, 𝑝  represents the number of samples. A parameter 
estimation method of LMS (least mean square) is adopted to 
update the sparse representation 𝐗𝑐  of the 𝑐 -th class, 
formulated as (11). 
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where the time complexity is O(𝑛3)  and 𝑛  represents the 

number of atoms of the dictionary matrix. According to this, 

the time cost can be obtained by (12). 
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where 𝜔1, 𝜔2, 𝜔3,  and 𝜔4 represent coefficients of the cubic 

function, and ∑ 𝑡𝑐
𝐶
𝑐=1  represents the total time cost of the 

algorithm. For the least-square solution, (12) can be rewritten 
as an optimization model as (13) and (14). 
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where 𝑡̂(𝑠) represents the estimated value of the total cost time 
of operating the method. Through determining a reasonable 
number of samples for cubic fitting, a more precise estimated 
value of the time cost of the algorithms can be obtained without 
traversing all the situations. 

B. Optimized object corresponding to the sparse dimension 
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In order to achieve a balance between residual and accuracy, 

the improved approach method for extracting the information of 

dimension can be defined as (15). 
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Mathematically, the LMS is utilized to obtain a solution of the 
above optimization model with closed form as (16). 
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where 𝛿′  is the normalization parameter to balance the 
magnitude of residuals and cost time, the value is defined as 
(17). 
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Thus, the normalized residuals and the cost time can be obtained, 

and the hyper-parameter 𝜹 is utilized to measure the influence 

of the cost time in the model. 

C. Global Coding Classifier 

A global coding classifier with reasonable sparse dimension 
(RSD-GCC) is adopted to predict the unknown label of 
samples. Given an scene image sample 𝐲 and the dictionary 𝐃 
learnt by the training samples, the sparse representation with a 
general model can be defined as 
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Due to the structured dictionary [7] is adopted in the 
proposed learning method, if the image in form of column 
vector 𝐲 belongs to the 𝑐-th class, the large coefficients shall 
be distributed in the particular rows of sparse matrix belonging 
to the 𝑐-th label, and the predicted label can be obtained from 
(19). 
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where 𝐗𝐿𝑐  represents the rows belonging to the 𝐿𝑐  of the 

sparse code corresponding to the image signal. 

IV. EXPERIMENTAL RESULTS AND DISCUSSIONS 

In this section, some experiments on Scene15 databases [12] 

are set for scene classification. Because both the efficiency and 

residuals are taken into consideration, we will show both the two 

aspects in our experiment; the performances of our approach are 

demonstrated in the following results. In the experiments, to 

fairly evaluate the computational efficiency, the proposed 

approach will be operated on the platform of MATLAB2017b 

applied in one PC with a 64-bit Windows 10 operating system 

and equipped with Intel i7-6700H 3.4 GHz CPU, and 8 GB 

memory.  

 

Fig. 1 . Accuracies of scene classification on the Scene15 dataset. 

 

 
 

In this section, the Scene15 dataset is considered by us, each 
category has 200 to 400 images with a total number of 4485, 

and the average image size is about 250 × 300 pixels. For a fair 

comparison, the 3000-dimensional SIFT based features applied 

by LC-KSVD [13] is adopted. 

In order to evaluate different algorithms fairly, the 

parameters 𝛽, 𝛾, 𝜆  are set to 2 × 10−3 , 1 and 2 × 10−1 

respectively, the value of 𝛿  is increasing from 0.6 to 1.2 

with a step of 0.2. In order to acquire a stable classification 

rate, each situation is operated for 30  times, performances of 

the two classifications scheme are shown from two parts 

including the average accuracies and the average time costs of 

training samples as the followings. 

According to Fig. 1 and Fig. 2, compared to GCC, our 

proposed approach method corresponding to a more reasonable 

sparse dimension can not only obtain a desired accuracy but 

also can decrease much redundancy during the process of 

computation on the Scene15 dataset. For example, in Fig. 1, 

our proposed RSD-GCC sacrifices about 0.1 to 2 percent of the 

classification accuracy, but save about 30 to 60 percent of the 

cost time. In another way, the accuracy function is convergent. 

Demonstrated by the experimental results, the dictionary 

learning model of CLS-GR dismisses the information of sparse 

dimension, and results in much computational redundancy. Our 
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proposed approach method solve the problem, and obtain a 

great tradeoff of between accuracy and efficiency. 

 

 

 

Fig. 2. Time costs of scene classification on the Scene15 dataset. 

V. CONCLUSIONS 

In this paper, a cubic fitting model was utilized for 

quantization of the time cost in dictionary learning methods, and 

an estimation method based on SVD was adopted to estimate the 

residuals in signal reconstruction, to consider the tradeoff 

between accuracy and computational complexity. The 

experimental results show that our proposed approach method 

can effectively improve the dictionary learning method of 

CLS-GR from both aspects of accuracy and efficiency. 

REFERENCES 

[1] M. Aharon, M. Elad, and A. Bruckstein, “K-SVD: An algorithm 

for designing overcomplete dictionaries for sparse representation,” 

IEEE Trans. Signal Process., vol. 54, no. 11, pp. 4311–4322, 

2006. 

[2] B. A. Olshausen and D. J. Field, “Sparse coding with an 

overcomplete basis set: A strategy employed by V1?,” Vision 

Res., vol. 37, no. 23, pp. 3311–3325, 1997. 

[3] Y. Li et al., “Sparse Adaptive Iteratively-Weighted Thresholding 

Algorithm (SAITA) for Lp-Regularization Using the Multiple 

Sub-Dictionary Representation,” Sensors, vol. 17, no. 12, pp. 

2920–2936, 2017. 

[4] F. Wang, N. Lee, J. Sun, J. Hu, and S. Ebadollahi, “Automatic 

Group Sparse Coding,” Proceedings of the Twenty-Fifth AAAI 

Conference on Artificial Intelligence (AAAI), San Francisco, 

California, USA, August 7-11, 2011. 

[5] J. Wright, A. Y. Yang, A. Ganesh, S. S. Sastry, and Y. Ma, 

“Robust face recognition via sparse representation,” IEEE Trans. 

Pattern Anal. Mach. Intell., vol. 31, no. 2, pp. 210–227, 2009. 

[6] M. E. Celebi, H. A. Kingravi, and P. A. Vela, “A comparative 

study of efficient initialization methods for the k-means 

clustering algorithm,” Expert Syst. Appl., vol. 40, no. 1, pp. 200–

210, 2013. 

[7] R. Rubinstein, M. Zibulevsky, and M. Elad, “Double sparsity: 

Learning sparse dictionaries for sparse signal approximation,” 

IEEE Trans. Signal Process., vol. 58, no. 3, pp. 1553–1564, 2010. 

[8] Q. Zhang and B. Li, “Discriminative K-SVD for dictionary 

learning in face recognition,” Proc. IEEE Comput. Soc. Conf. 

Comput. Vis. Pattern Recognit., pp. 2691–2698, 2010. 

[9] I. Ramirez, P. Sprechmann, and G. Sapiro, “Classification and 

clustering via dictionary learning with structured incoherence and 

shared features,” in Proceedings of the IEEE Computer Society 

Conference on Computer Vision and Pattern Recognition, 2010, 

pp. 3501–3508. 

[10] X. Wang and Y. Gu, “Cross-Label Suppression: A 

Discriminative and Fast Dictionary Learning with Group 

Regularization,” IEEE Trans. Image Process., vol. 26, no. 8, pp. 

3859–3873, 2017. 

[11] R. Xu and D. Wunsch, “Survey of clustering algorithms,” IEEE 

Trans. Neural Networks, vol. 16, no. 3, pp. 645–678, 2005. 

[12] S.Lazebnik, C.Schmid, and J.Ponce, “Beyond bags of 

features:spatial pyramid matching for recognizing natural scene 

categories," in Proc. IEEE Conf. Computer Vision and Pattern 

Recognition, pp. 2169-2178, 2007.  

[13] Z. Jiang, Z. Lin, and L. S. Davis, “Label consistent K-SVD: 

Learning a discriminative dictionary for recognition,” IEEE 

Trans. Pattern Anal. Mach. Intell., vol. 35, no. 11, pp. 2651–2664, 

2013.

 

304

Proceedings, APSIPA Annual Summit and Conference 2018 12-15 November 2018, Hawaii


		2018-10-19T10:54:32-0500
	Preflight Ticket Signature




