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Abstract—This paper proposes an i-vector generation scheme
with conditional generative moment-matching networks (MMNs)
for speaker verification. In this scheme, multiple i-vectors for
each enrollment speaker are randomly generated from trained
MMNs and noise distributions. The randomly generated i-vectors
are assumed to represent diverse variations for each enrollment
speaker. Since this paper is aim to provide new possibility of the
i-vector augmentation with MMNs, i-vector-based preliminary
speaker verification evaluation with support vector machine
(SVM) are performed. The results of SVM classification show
that the generated i-vectors are contributed for estimation of
the accurate SVM classifiers of enrollment speakers. From the
experimental results, we also compare the distributions of the
generated i-vectors with those of the original ones and discuss
them.

I. INTRODUCTION

Speaker verification (SV), which offers a natural and flexible
system for biometric authentication, has been actively studied
in the past decades [1]–[4]. One of the important problems for
SV systems is to represent diverse variations such as speaking
styles, emotions, for each enrollment speaker. The other one
is to estimate reliable speaker models by using insufficient
amount of utterances. The state-of-the-art SV systems are
mostly based on or compared with i-vector-based frame-
work [2], which is a de-facto standard technique. However,
the i-vector-based methods are also suffered from the problem
about the amount of enrollment data for training speaker
dependent models. By now, in order to avoid the problems
and improve its robustness, several variability compensation
techniques such as Within-Class Covariance Normalization
(WCCN) [5], Linear Discriminant Analysis (LDA), Nuisance
Attribute Projection (NAP) [6], and Gaussian Probabilistic
LDA (GPLDA) [7] have been proposed as the back-end of the
i-vector-based framework. However, the robustness problem of
the i-vector representation has not been completely solved. For
example, the i-vector scatter diagram via the utterance length
variation as shown in [8] renders that it is difficult to find
the relation between the i-vector distribution and the utterance
lengths. This indicates that the conventional methods based on
the i-vector framework cannot deal with the utterance length
variation properly, and so sufficient performance has not been
obtained.

Meanwhile, deep learning (DL) approaches have proven to
be useful for a wide range of speech problems, and recently
started to be used also for speaker recognition [4], [9]–[11].

It is known that SV systems are required to work with
few utterances which have relatively short lengths both in
training and evaluation [12]. In the well-known NIST Speaker
Recognition Evaluation (NIST SRE) series [13], [14], such a
condition with few utterances has been discussed. Since DL
approaches with deep neural networks (DNNs) usually need
a large amount of training data, it is not straightforward to
utilize DNNs for SV problems.

In speech synthesis area, many techniques with DNNs
have been reported and the quality of synthesized speeches
remarkably has been improved [15]–[17]. On the other hand,
the techniques are required not only naturalness but also
flexibility for utterance variation in speaking styles for each
speaker. To obtain the flexibility, the sampling-based speech
parameter generation by using moment-matching networks
(MMNs) has been proposed [18]. In this method, speech
parameters are randomly sampled from noise distributions
and the synthesized speech can represent diverse variation.
It is possible to synthesize various speech close to specific
speaker’s one. Therefore, the use of synthetic speech can be
considered to increment the number of training utterances for
each speaker in i-vector based SV systems. However, it is
not guaranteed that an i-vector derived from the synthesized
speech is close to the speaker’s one, that is, the distribution
of the former i-vector is similar to that of the latter i-vector.

In this paper, we investigate a scheme of i-vector aug-
mentation by conditional generative MMNs to present di-
verse i-vector variations. In this scheme, i-vectors are directly
generated to minimize the objective function of conditional
maximum mean discrepancy (MMD) so that the distribution of
the generated i-vectors is similar to that of the original speaker.
The proposed scheme is evaluated by means of a speaker
verification system based on i-vectors for representation and
SVMs for classification. An analysis of the distribution of the
generated i-vectors, performed using low-dimensional spaces,
is presented.

The outline of this paper is as follows. Section 2 reviews
the i-vector paradigm and related topics, and the framework of
the MMNs is illustrated in section 3. Section 4 and 5 present
the experimental results and conclusions, respectively.

II. I-VECTOR EXTRACTION

An i-vector is a fixed low dimensional representation of
a speech utterance that preserves the speaker-specific in-
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Fig. 1. Sampling-based i-vector generation using moment-matching networks.

formation [2]. In the i-vector paradigm, a speaker-specific
Gaussian mixture model (GMM) mean supervector M s can
be represented in terms of a speaker and channel independent
supervector m, a low rank total variability matrix T , and a
vector ws as

Ms = m+ Tws, (1)

where s indicates a speaker index. In Eq. 1, ws is called
i-vector and the T matrix is learned using a large amount
of training data. An i-vector of an utterance represents its
coordinates in the total variability space (i.e. space spanned
by the columns of T ), extracted as the maximum a posteriori
(MAP) point estimates of ws given the utterance. In the back-
end process, each extracted i-vectors ws from all the training
utterances is used as a feature vector of support vector machine
(SVM) for a classification scheme.

III. DATA AUGMENTATION WITH MOMENT-MATCHING
NETWORKS

A. Deep generative models

A deep generative model is a generative model with DNNs,
and the well-known examples are generative adversarial net-
works (GANs) [19] and generative moment-matching net-
works (MMNs) [20]. The DNNs that can randomly generate
data samples are trained to represent the training data dis-
tribution. Input fed to the DNNs is a low-dimensional noise
vector that is randomly generated from a prior probabilistic
distribution (e.g., Gaussian or uniform distribution), and the
trained DNNs work to transform the prior noise distribution to
the training data distribution. The data samples are randomly
generated via sampling from the prior noise distribution.

GANs are trained with a minimax optimization technique. It
is known that the optimization requires tricky implementation
[21] and its generation accuracy is difficult to evaluate. On
the other hand, generative MMNs are in an easy-to-optimize
minimization problem. Also, the networks can be extended to
the conditional generative MMNs [22] (Section III-B2) condi-
tioned by the preferred information (e.g., speaker information).
The generative MMNs can model unconditional distribution,
and the conditional ones can model conditional distribution.

GAN-based data augmentation approaches were proposed
in image recognition [23] and audio event detection [24].
GANs that represent complicated data distribution help to
generate realistic data newly and to determine boundaries
of classification robustly. Its application of the GAN-based
data augmentation to speaker verification is straightforward.
However, the augmentation performance is strongly affected
by the GAN accuracies. Therefore, in this paper, we adopt
generative MMNs and investigate the relationship between the
data augmentation performance and the training accuracy. In
the following sections, we introduce general frameworks of
the generative MMNs and propose data augmentation with
the networks.

B. Generative moment-matching networks

1) Minimizing maximum mean discrepancy (MMD): Let
W = {wt}Tt=1 be a training data set. wt is the t-th feature
vector and T is the total number of the training data. A set
of low-dimensional noise vectors N = {nt}Tt=1, which is
fed to DNNs G (·), is randomly sampled from a standard
multivariate Gaussian distribution. The dimensionality of nt
is often smaller than that of wt. Let Ŵ = {ŵt}Tt=1 be a
set of data generated from DNNs, i.e., ŵt = G (nt). G (·) is
trained to minimize squared error between moments of W and
those of Ŵ . Using a kernel trick, the criterion is represented
using gram matrices, and is known as the square of kernelized
Maximum Mean Discrepancy (MMD) [20] as follows:

LMMD =
1

T 2

{
tr (1TKW ,W ) + tr

(
1TKŴ ,Ŵ

)
−2tr

(
1TKW ,Ŵ

)}
, (2)

where tr (·) denotes matrix trace. 1T is a T -by-T matrix
whose all components are 1. KW ,Ŵ is a T -by-T gram
matrix between W and Ŵ . {t, τ}-th component of KW ,Ŵ

is an arbitrary kernel function between wt and ŷτ . 0th-
through-infinite order moments are considered in training if
the Gaussian kernel is chosen.

2) Minimizing conditional MMD: The conditional gener-
ative MMNs [22] are trained in the same manner as in
Section III-B1. Let S = {st}Tt=1 be a set of conditioning
vectors, where st is a conditioning vector corresponding to
wt. Here, the conditioning vector means given parameters
for a conditional distribution. A set of concatenated vectors,
S̃ = {s̃t}Tt=1, is used for conditioning G (·). s̃t =

[
s>t ,n

>
t

]>
is fed to G (·) and ŵt is given as G (x̃t). The training criterion
to be minimized is

LCMMD =
1

T 2

{
tr
(
LS̃KW ,W

)
+ tr

(
LS̃KŴ ,Ŵ

)
−2tr

(
LS̃KW ,Ŵ

)}
, (3)

LS̃ =(KS̃ + λIT )
−1KS̃(KS̃ + λIT )

−1, (4)

where IT is the T -by-T identity matrix, λ is the regularization
coefficient, and KS̃ is a gram matrix of S̃, where {t, τ}-th
component of KS̃ is an arbitrary kernel function of st between
xτ . Note that the kernel function of KS̃ is different from that
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of KW ,Ŵ . When LCMMD = 0, the conditional distribution
of ŵt given st is completely match with that of wt given st.

C. Data augmentation with generative moment-matching net-
works

We apply the conditional generative MMNs to data augmen-
tation for i-vector-based SV. Figure 1 shows the diagram of
the MMNs for i-vectors. st and wt are the speaker vector (i.e.,
a vector representing speaker information) and corresponding
i-vector of the s-th speaker. st is given as a one-hot vector in
this paper. Namely, the dimensionality of st is the same to the
number of pre-stored speakers, and the s-th component of st
takes 1 and otherwise are 0.

In training, mini-batch learning method can be adopted.
A set of speaker vectors S and a set of corresponding i-
vectors W are randomly selected from a whole training
dataset, and N is randomly generated from the prior noise
distribution. The model parameters of DNNs are updated by
the stochastic gradient descent method. In generation, given a
speaker vector st of the s-th speaker and randomly generated
nt, i-vector for the speaker, ŵt, is randomly generated from
the trained DNNs. After generating a number of i-vectors for
all pre-stored speakers, the i-vectors are used as an augmented
training datasets for speaker verification.

The one-hot vector is a discrete representation for the
speaker information. Another choice of representations is an
averaged i-vectors as a continuous representation. A mean
vector of i-vectors is calculated speaker by speaker in advance,
and is used as st. We compared current one-hot vector-
based and this i-vector mean-based methods in terms of SV
accuracies, and the former one was chosen since it exhibited
a better performance.

IV. EXPERIMENTS

To evaluate the performance of the proposed i-vector aug-
mentation scheme, i-vector-based SV systems with SVMs
were conducted. These experiments were regarded as a pre-
liminary investigation for i-vector augmentation scheme with
the MMNs.

A. Experimental conditions

Table I shows the experimental conditions of the i-vector-
based SV system. In this experiments, since it assumed that
the amount of training data for each enrollment speaker was
limited, the duration of each data for extracting one i-vector
was segmented to about one second. Consequently about 130
i-vectors were prepared for each enrollment speaker. These
i-vectors were regarded as original i-vectors. 100 i-vectors
were used for enrollment data and 30 i-vectors were used for
evaluation data. The baseline system was used the original
i-vectors only for estimating the back-end classifier.

To construct feed-forward DNN architectures for i-vector
augmentation MMNs, several parameters of DNNs were used,
and the details were shown in Table II, where λ was a
regularization coefficient at Eq. (4). Thanks to [27], the DNN

TABLE I
EXPERIMENTAL CONDITIONS FOR I-VECTOR BASED SV SYSTEM

Feature extraction
Sampling rate 16kHz
Frame length 25msec
Frame shift 10msec

Feature vector 19-order MFCCs+∆ +∆∆
UBM, TV matrix

Database JNAS [25]
# of sentences 23,657 (female only)

mixture 1,024
i-vector dimension 200

Enrollment and evaluation
Database VLD database [26]

# of speakers 8

TABLE II
PARAMETERS OF DNN ARCHITECTURES

# of hidden layers 2, 3
# of hidden unit 128, 256, 512

Noise vector dim. 3, 5, 10
Regularization coef. (λ) 0.01, 0.001, 0.0001

Mini-batch size 300, 500
# of epoch 300, 500

Learning rate 0.001, 0.01, 0.05

parameters were optimized. The input of MMNs was a 8-
dimensional one-hot-vector1 and a randomly sampled noise
vector per i-vector. Rectified Linear Unit (ReLU) [28] was
used as an activation function of hidden layers, and the noise
vectors are sampled from N (0, I). The MMNs were estimated
from about 100 original i-vectors per enrollment speaker. The
parameter sets were obtained by combining the parameters
in Table II and over 700 parameter sets were used to train
the MMNs. For each enrollment speaker, 100 i-vectors were
sampled from the MMNs estimated from each parameter
sets. To calculate conditional MMD, a Gaussian kernel was
used as the kernel function for speech parameters y, i.e.,
exp{−‖yt− ŷτ‖2/σ2}. σ was set so that ‖yt− ŷτ‖2 < 1 for
all the training data [22].

The original and sampled i-vectors were used as feature
vectors for linear kernel SVM classification in the back-end of
i-vector-based SVM systems. In this experiment, the sampled
i-vectors from the MMN of speaker “A” were regarded as the
enrollment data of speaker “A.” For evaluation, the accuracies,
false rejection rate (FRR) and false acceptance rate (FAR) were
calculated with the estimated SVM classifier. To investigate
the tendencies between the evaluation scores and the MMD
value of final epoch in training the MMNs, each parameter
set was called with the MMD ranking. For example, “min1”
meant that the parameter set obtained the minimum MMD
among all parameter sets. “max5” meant that 5 parameter sets
which obtained the maximum MMD in the first to fifth were
combined into one set. “rand10” represented that 10 parameter

1As explained in Section III-C, one-hot-vector encoding of speaker infor-
mation had better performance for training data including eight speakers. We
expect that another choice of encoding will be required for training data
including a larger number of speakers.
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TABLE III
FARS AND FRRS OF EACH PARAMETER SET

Param. set FAR(%) FRR(%) Acc(%)
Baseline 3.0 22.0 95.2

min1 4.2 5.4 95.5
min5 2.5 8.3 96.7
min10 2.5 12.0 96.2
min20 6.6 15.0 92.3
min30 3.1 14.5 95.4
max1 14.2 0.0 87.5
max5 11.7 1.6 89.5

max10 8.6 7.5 91.5
max20 2.5 22.0 95.0
max30 2.5 25.4 94.5
rand5 5.5 17.5 92.9

rand10 2.6 15.8 95.6
rand20 2.9 13.3 95.7
rand30 3.3 15.0 95.1

min5+max5 2.8 11.6 96.0
min10+max10 2.7 15.4 95.6
min15+max15 3.2 15.4 95.2

sets were randomly selected.

B. Experimental results

Table III shows FARs, FRRs and accuracies for each param-
eter set. It mentioned that X of “minX,” “maxX” and “randX”
was the combination number of parameter sets. For example,
“min5” represented that 100 i-vectors were generated with 5
parameter sets, thus, totally 500 generated i-vectors were used
for the enrollment speakers. From the table, “min5” achieved
the highest accuracy and outperformed the baseline system,
and the FARs and FRRs of “minX” tended to obtain lower
scores than those of “maxX.” The accuracies of “minX” were
also increased than those of “maxX.” The results showed that
the parameter sets which obtained lower MMD values tend to
obtain the lower FARs. It indicated that these parameter sets
represented the high speaker similarity of enrollment speakers.
However, it was noted when the number of combinations was
over 10, the evaluation scores tend to be worse. By using
the MMNs for i-vector augmentation and adequate parameter
sets, the reliable classifier was able to be estimated. Moreover,
we used other combinations; “min+max” was combination
of “min” and “max” parameter sets. Even though “rand”
and “min+max” obtained the lowest values of FARs, their
corresponding FRRs were too high. It implied that an incorrect
choice of the parameter sets caused SVM performance to
degrade.

To discuss the characteristics of generated i-vectors, Fig. 2
plots the values of each i-vector dimension for 150 original and
50 generated i-vectors. The upper and lower figures of Fig. 2
show the case of the same speaker and different speakers,
respectively. From these figures, at the same speaker case, the
distribution of generated i-vectors were close to that of original
ones. And at the different speaker case, the distributions of
original and generated i-vectors were difference.

To visualize the original and generated i-vectors in low
dimensional space, t-distributed stochastic neighbor embed-
ding (t-SNE) [29] was performed. t-SNE is a technique that
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visualizes high-dimensional data by giving each datapoint a
location in a two or three-dimensional map. Figure 3 depicts
the two dimensional map from 100 original and 100 generated
i-vectors per speaker. The generated i-vectors were sampled
from the MMNs trained with the parameter sets of “min5
which obtained the best accuracy. The alphabets in Fig. 3
denote the speaker ID. The left and right figures were the
distributions of original and generated i-vectors, respectively.
From the left figure, almost all original i-vectors were dis-
tributed in each speakers area. The right figure illustrates that
some generated i-vectors were distributed in the originated
speaker’s distribution. However, the others were placed outside
of each speaker’s areas, and the outside i-vectors were mixed
in the close areas.

In the case of the other parameter sets (i.e., “max 30”
and “min15+max15”), the distributions were scattered outside
of each speakers area. It denoted that the parameter sets
which obtained lower accuracies contained weak speaker de-
pendency. These results suggested that the lower MMD values
represented the higher speaker similarity between the original
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and generated i-vectors.

V. CONCLUSION

This paper reported the preliminary investigations about
the capability of the generated i-vectors from the MMNs for
SV systems. By using MMNs and noise distributions, ran-
domly generated i-vectors were utilized for the i-vector/SVM
systems. Although the accuracy of each parameter set was
dependent on the parameter sets of the MMNs, the generated
i-vectors led to higher accuracies than the baseline system. For
the same speaker, the generated i-vectors were shown to be
close the original i-vectors, and the distributions of the original
and generated i-vectors were similar. Based on these findings,
the generated i-vectors were proven to represent the original
speaker characteristics.

Our future work includes evaluation of our scheme with
a large database and investigation of a method to effectively
estimate the parameters of i-vector augmentation. A practical
use of the generated i-vectors will be discussed.
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