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Abstract—Ipsilateral and contralateral head-related transfer
functions (HRTF), Hipsi(ω, r, φ, θ) and Hcontra(ω, r, φ, θ), are used
for creating the perception of a virtual sound source at an arbi-
trary distance r and azimuth-elevation tuple ψ = [θ, φ]T relative
to the median plane for a given frequency ω. Publicly available
databases use a subset of a full-grid of angular directions due to
time and complexity to acquire and deconvolve responses. In this
paper, we present a subspace-based technique for reconstructing
HRTFs at arbitrary directions for the IRCAM-Listen HRTF
database, which comprises a sparse set of HRTFs sampled
every 15◦ along the azimuth/elevation direction. The presented
technique includes first augmenting the sparse IRCAM dataset
using auditory localization blur, then deriving a set of lower-
dimensional compressed representation (using an autoencoder)
from the augmented HRTFs. The lower dimensional represen-
tations are then trained using a fully-connected neural network
(FCNN) for the corresponding directions. The reconstruction of
HRTF corresponding to an arbitrary direction ψ

p
is achieved

by applying the compressed output from the FCNN, for an
arbitrary direction, to a reconstruction system (viz., a decoder
of an autoencoder). The results demonstrate the autoencoder
approach provides good quality objective and subjective results.

I. INTRODUCTION

Measured Head-related Transfer Functions (HRTF) include
binaural cues for localizing a sound-source in a 3D-space.
These cues are introduced by the acoustic path, and the
reflection and diffraction effects from a listeners anatomical
structure. Binaural cues include (a) interaural time difference
(ITD) between the two-ears and is a function of the radii of
the human head a as well as the direction of arrival ψ, and (b)
interaural spectral differences arising due to the frequency de-
pendent shadowing effect of the head as well as the frequency
dependent reflection filtering due to the pinna, shoulders and
torso. Typically, these HRTFs are spatially sub-sampled to a
point where only a finite set are collected around a mannekin
or a human. It becomes critical to synthesize the missing
HRTFs for critical interactive applications such as in Vir-
tual Reality (VR)-where asymetrical rendering of high-quality
video and spatially inaccurate spatial audio would nonetheless
degrade the “presence.” There are multiple approaches for
synthesizing spatially sub-sampled HRTFs, including (a) para-
metric models, based on anthropometric features, [5],[2], [6],
[7], [11], [10], [8], [9], and (b) using measured HRTFs. In the
case of measured HRTFs, among various techniques to syn-
thesize via interpolation, (i) the approach of [12] incorporates

TABLE I
LOCALIZATION BLUR FOR HORIZONTAL DISPLACEMENT IN THE

HORIZONTAL PLANE RE: MEDIAN PLANE (∆(φ = 0)MIN )

Ref. Stimuli ∆(θ = 0)min

Klemm[18] Impulses (click) 0.75-2◦

King et al. [19] Impulse train 1.6◦

Stevens et al.[20] Sinusoids 4.4◦

Schmidt et al.[21] Sinusoids >1◦

Sandel et al.[22] Sinusoids 1.1-4◦

Mills [23] Sinusoids 1.1-3.1◦

Stiller et al.[24] Tone bursts 1.4-2.8◦

Boerger[25] Gaussian tone bursts 0.8-3.3◦

Gardner[26] Speech 0.9◦

Perrott[27] Tone bursts 1.8-11.8◦

Blauert[28] Speech 1.5◦

Haustein et al.[29] Broadband noise 3.2◦

a tetrahedral interpolation technique with barycentric weights
to synthesize HRTFs, with the technique being extensible
for sparse HRTF sets, (ii) functional representation used for
deriving HRTFs are obtained by fitting spatial characteristic
functions with a thin-plate spline with regularization [13],
(iii) state-space approach [14] for HRTF interpolation using
the MIT KEMAR data, (iv) wavelet transform [15] based
interpolation on the MIT Media Lab KEMAR dataset[1], and
(v) manifold learning using ISOMAP [16] on the dense CIPIC
HRTF dataset [2]. Additionally, synthesis of distance-based
HRTF cues (which is not considered in this paper) can be
found, as an example, in [3].

In the approach presented in this paper, we use the IRCAM
(Institute for Research and Coordination in Acoustics and Mu-
sic) Listen HRTF dataset [4]. The IRCAM dataset comprises
of HRTFs obtained at an angular spacing of 15◦. Given that the
human auditory resolution is tuned for discriminating sources
with a localization blur1 that is lower bounded on critical test
stimuli at 1◦ intervals in the frontal direction [17], the Listen
dataset constitutes a sparse set. Examples of localization blur
relative to the median plane are shown in Table 1 [17] with
corresponding mean and variance represented in Figure 1.
Furthermore, from the compilation of the results in [17], a
directional perspective to localization blur is shown in Fig. 1,
wherein the auditory system is able to discriminate sources

1Localization blur is the amount of displacement of the position of the
sound source that is recognized by 50% of experimental subjects as a change
in the position of the auditory event
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Fig. 1. Localization blur and localization in the azimuth relative to median
plane with white-noise pulses [17].

within ≈ ±3◦ in the front, while the sensitivity decreases by
≈ ±6◦ to the side and it decreases by ≈ ±3◦ to the rear.
Clearly, the Listen HRTF would benefit from an interpolation
scheme that is derived from perceptual cues based on the
spatial sensitivity of human hearing (i.e., localization blur).

In the next section, we present an approach to synthesize
the missing HRTFs from this sparse set. In this approach, we
determine a nonlinear compressed representation, using deep
learning architecture, involving a stacked autoencoder. The
compressed representation is then used to train an FCNN. The
reconstruction is performed by taking the lower-dimensional
output, for a given input direction, and applying it to the
autoencoder decoder to synthesize the HRTF. In section 3 we
present objective and subjective results, while conclusions and
future directions are presented in section 4.

II. LOCALIZATION BLUR AND NEURAL MODELS FOR
HRTF SYNTHESIS

The approach using an autoencoder is shown in Fig. 2. In
the first step the original sparse HRTFs are augmented using
the percept of localization blur.

A. HRTF Augmentation with Localization Blur

In this step a difference is determined between consecutive
HRTF magnitude responses whose envelope is then approxi-
mated by a second order discrete time-domain infinite impulse
response (IIR) filter, expressed as

Hblur(z) = 10G/20

∑2
k=0 bkz

−k∑2
k=0 akz

−k

bi = γ1(fc, fs, G); a0 = 1, ai = γ2(fc, fs) (1)

where fc is the -3 dB frequency, G controls the gain in dB,
and fs is the sampling frequency, and γ1 and γ2 are nonlinear
functions. Alternative models for such filters, also referred to
as shelf filters, can be found in [30]. An example of this
envelope-approximating shelf filter is shown in Fig. 3 for
fc = 2 kHz and G = 3 dB.

The envelope, between two consecutive HRTF sets, spaced
at 15◦ is interval-stepped in a non-uniform manner predicated
on the non-linear spatial auditory resolution (as interpreted by
the mean localization blur values, shown in Fig. 1) which is

Sparse HRTF setDatasetAcquisition

Augmented HRTFs(f,q,w) (dB)

Localization blur-predicated filters: H(z)

Augment

Dimensionality-reduction (e.g., stacked autoencoder): encoded/compressed values [ri(f,q)]
ML-model training with HRTF augmentationANN({-1,1}9;ri(f,q)); {i=1,..M}

Stacked Autoencoder: Decoder(W(M),b(M))

Trained ML-model ANN
Direction:[fj;ql]

Reconstruct
H(w,fj,qL)

Stacked Autoencoder: Decoder(W(M),b(M))
ri(fj,qL){i=1,…,M}

Minimum-phase FIR model
Interaural time difference 

Ipsilateral timeresponse

Contralateral response

Hypercube vertex map: {-1, 1}
Direction:[fj;ql]

Hypercube vertex map: {-1, 1}

Fig. 2. Stacked autoencoder based approach for HRTF synthesis using blur-
based augmentation

finer in the frontal and rear direction and less-refined towards
the sides. The HRTFs from the sparse set are merged with
the augmented set to create a system of HRTFs for use in the
subsequent ML model. While the finer details (viz., spectral
notches width, frequencies, and amplitudes) are not used for
the augmented set, in contrast to the envelope, it is expected
that an ML model would synthesize these finer representations
which are also important for localization.

B. Stacked Sparse Autoencoders for Signal Compression

In this step the augmented HRTF set is first reduced in
dimensionality using stacked sparse autoencoders [31], [32]
which are pretrained using a linear weighted combination
of (i) a mean-square error term between the input and the
estimated input (at the output of the decoder), (b) Kullback-
Liebler divergence measure between the activation functions
of the hidden layers and a sparsity parameter (ρ) to keep
some of the hidden neurons inactive some or most of the
time), and (c) with an L2 regularization on the weights of the
autoencoder to keep them constrained in norm. The structure
of the stacked autoencoder is shown in Fig. 4. The cost
function for optimization of the weights, W , of the sparse
and regularized autoencoder is,

E =
1

N
(

N∑
k=1

‖Xk − X̂k‖2|+αΩKL(ρ‖ρ̂hidden)) + β‖W‖ (2)

Adding a term to the cost function that constrains the values
of ρ̂hidden to be low encourages the autoencoder to learn a
representation, where each neuron in the hidden layer fires to
a small number of training examples. We will explore other
autoencoder optimization function involving, for example,
restricted Boltzmann machines (RBM) [33].The compressed
values, at the output of the deepest encoder layer, are used
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ML-model training with HRTF augmentationANN({-1,1}9;ri(f,q)); {i=1,..M}

Stacked Autoencoder: Decoder(W(M),b(M))
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Direction:[fj;ql]
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Fig. 3. Stacked autoencoder based approach for HRTF synthesis using blur-
based augmentation

for reconstructing the HRTFs at arbitrary directions in the
following step. Fig. 2 shows the architecture for synthesizing
HRTFs using the sparse autoencoders.

C. Function Approximation Model

While several models are available that perform function
approximation, we selected a multilayer fully-connected neural
network (FCNN) for developing the subspace synthesis model
due to its universal approximation properties (e.g., single
hidden-layer [34], multi-hidden layer [35]). The input to the
neural network is the direction of the HRTF ψ

p
and the

output vector corresponds to the M -dimension compressed
representation. The direction input transformed initially to
binary form with the actual values mapped to the vertices
of a q-dimensional hypercube (viz., V = {(v1, . . . , vq)|vi ∈
{−1, 1}(i = 1, . . . , q)}) in order to normalize the input
to the first hidden layer of the ANN. For example, with
φi, θi ∈ [0, 360] taking extremal values, the input to the hidden
layer with sigmoidal activation functions would result in
saturation and degrade convergence behavior during training2.
Accordingly, the input space is transformed to a binary repre-
sentation having 9-element input layer for the horizontal and
elevation directions3. Among the various training approaches,
we found the gradient descent with momentum term and
adaptive learning rate providing an acceptable balance in terms
of convergence time and approximation error on the training
data.

2The importance of normalization was studied, for example, in [36]
3The range 0-360◦ can be mapped to ±180◦ with positive angles represent-

ing the hemisphere to the right of the median plane and negative ψ angles the
left hemisphere, and for which the binary representation is expressed using
9 bits including an MSB as a sign bit corresponding to the left or right
hemispheres relative to the median plane
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Fig. 5. Stacked Autoencoder

III. RESULTS

Due to approximate symmetry between the left and right
half of the median plane, with respect to spatial hearing, the
synthesis for ipsilateral and contralateral HRTFs are demon-
strated for only the left half of the median plane and on the
horizontal plane. In the first step the envelope filter is esti-
mated between two consecutive Listen HRTFs. An example of
the difference in the ipsilateral magnitude responses between
0◦ and 15◦ is shown in Fig. 3, for subject 1008, along with
the plot of the envelope estimating filter. The augmented
HRTFs, as an example in this case, are derived at {3, 6, 9, 12}◦
with the angular spacing being ≈ 3◦ by first interpolating
Hblur(ω) linearly along the G (gain)-axis and applying these
filters to the Hipsi(ω, 0, 0) HRTF. The angular spacing in the
presented approach successively becomes wider towards the
side (e.g., the augmented HRTFs based on blur are derived
at {80, 85}◦ towards the side in between the Hipsi(ω, 75, 0)
and Hipsi(ω, 90, 0) yielding [Ripsi(ω, φ, θ),Rcontra(ω, φ, θ)] ∈
<1024×44.

A. Sparse Stacked Autoencoders

The number of stacked autoencoders used was set to two
for first achieving a compression from 1024 fft bins to 64
values and then from 64 dimension-representation down to
6-dimensional representation in the encoder part (this allows
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Fig. 6. Sample results: (a)-(d) Autoencoder+FCNN synthesis for ipsilateral
responses

comparison against the PCA-based approach described earlier
which used M = 6 principal components) with the sparsity
proportion set to 0.8 for the first encoder and 0.7 for the
second encoder. The multilayer neural network used in this
paper two hidden layers involving 29 and 15 neurons in
the first and second hidden layer, respectively, to perform
function approximation over the training set comprising the
input direction ∈ <9×44 (with 9 input neurons for the “8-
bit+MSB sign bit” binary directional representation and 44
horizontal directions) and output comprising the M = 6. Each
of the hidden and output neurons use the tanh .() function
since the maximum of each of the PC over all directions is
∈ [0, 1] and minimum is ∈ [−1, 0].

The autoencoder+FCNN results are shown, as examples,
in Figs. 5-8 for directions not in the training set. The blue
curve shows the synthesized HRTF (ipsilateral or contralat-
eral), whereas the red and green curve correspond to the
nearest HRTFs from the Listen dataset. The results show a
good objective performance where the synthesized HRTFs fall
within the limits established on the quantized (viz., original)
Listen/IRCAM HRTFs.

B. Time-domain Synthesis using ITD

The estimated magnitude response (for PCA and stacked
autoencoder approach) is then converted to a 512-point finite-
impulse-response (FIR) using the frequency resampling ap-
proach [37], and the appropriate interaural time-delay (ITD) is
inserted into the contralateral response based on the direction
ψp. The delay is modeled using the Woodworth-Schlossberg
formula [17] (a/c)(φp + sin(φp)) in seconds where a is the
average head-radii of 0.0875 m. In this paper we estimated the
response by cross-correlating the ipsilateral and contralateral
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Fig. 7. Sample results: (a)-(d) Autoencoder+FCNN synthesis for ipsilateral
responses
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Fig. 9. Sample results: (a)-(d) Autoencoder+FCNN synthesis for contralateral
responses

responses over the 15◦ separation Listen HRTF data. The
ITDs for arbitrary angles can be determined using polynomial
interpolation technique.

C. Subjective Testing

The testing was done using an interface shown in Figs. 9 (a)-
(b), with 18 subjects, where each subject annotated the angle
they perceived the stimuli (results in Fig. 10) at 30 degrees and
135 degrees (where 0 degrees is in the front and 90 degrees
is to the left). The testing was done with stimuli (pink noise,
speech, bandlimited noise, tone-burst) ordered randomly and
using Etymotic Research ER4SR reference in-ear headphones
with foam inserts, whereas the stimuli selected were pink
noise (spectrally 3 dB/octave roll-off but perceptually neutral),
speech (female voice), bandlimited pink noise centered at
2 kHz (corresponding to a high-sensitivity region as predi-
cated on the equal-loudness contours) with 1/3-octave wide
bandwidth, and tone-burst centered at 2 kHz with 1/3-octave
wide bandwidth. The results for the quality of the synthesized
stimuli was also tested and the results are shown in Fig. 11.
Each of the stimuli was ≈ 2 seconds long and was normalized
to a loudness of -26 LKFS using ITU-R BS. 1116-4 [38]. As
is evident for the frontal perception, the stacked autoencoder
mean localized angle is closer to the desired 30 degrees for
speech and tone bursts compared to the PCA approach. The
reference HRTF dataset, corresponding to subject 1008, was
perceived for each stimuli, having a mean localization angle
different than 30 degrees. In addition, there wasn’t a significant
difference between the mean localized values for the raw
IRCAM HRTF set, over the test stimuli. Fig. 11 shows the

(a) (b)

Fig. 10. Subjective testing: (a) Directional interface, (c) Qualitative interface.
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Left
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Avg of All Judges (18)

IRCAM StackedV4 IRCAM StackedV4

Directional Source A
(30 degrees Left)

Directional Source B
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Fig. 11. Comparison of localization performance between Original HRTFs
(IRCAM) and Autoencoder approach for 30 and 135 degrees.

qualitative performance (as judged by naturalness, audibility
of artifacts such as excess energy in certain frequency region,
temporal artifacts, and spatial imaging artifacts such as split
image) between the raw HRTFs and the synthesized HRTFs.
For the 30 degrees case, the stacked autoencoder approach was
judged on an average better than the raw IRCAM HRTFs for
broadband pink noise. For the side-rear localization percep-
tion, the mean results for the autoencoder show a close match
between the 135 degrees IRCAM and 135 degrees autoencoder
in the mean values for all stimuli (except speech).

IV. CONCLUSIONS & FUTURE DIRECTIONS

The modeling and synthesis of HRTFs from a sparse
dataset is an important problem in order to recreate the
perception of sound sources at arbitrary positions in 3D-space
for interactive applications such as VR. Developing a low-
complexity approach for synthesis, additionally, is important
for such interactive applications. In this paper we presented an
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test of various algorithm treatments designed by HP Labs.  
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IRCAM  (A)
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StackedV4 (B)
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Fig. 12. Comparison of qualitative performance between Original HRTFs
(IRCAM) and Autoencoder approach for 30 and 135 degrees.

approach involving auditory perception (viz., localization blur)
to create an augmented HRTF dataset, followed by a subspace
decomposition involving a stacked autoencoder to train a low-
complexity ML-model. The objective and subjective results
on an average that the stacked autoencoder approach performs
well in synthesizing HRTFs that were not in the original HRTF
sparse dataset. Future directions include exploring improve-
ments by hyper-parameter tuning of the ML-model, exploring
new architectures from deep learning as well as alternative
training models, synthesizing vertical responses, generalizing
over more test subject HRTFs from Listen listeners, and finally
generalizing to diverse datasets (including MIT, ITA, CIPIC,
etc.). Test stimuli as .wav files, and models (in .mat Matlab
format), Listen HRTFs in .mat, and a readme are located at:
https://github.com/bharitka/APSIPA2018.
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