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Abstract—Epilepsy is a chronic disorder of the brain. In-
tracranial electroencephalogram (iEEG) recorded from cortex
is the most popular measurement for not only the diagnosis of
epilepsy, but also the focus localization that is crucial for the
surgery. In recent years, the machine learning methods have been
rapidly developed and applied successfully to various real world
problems. Given sufficient number of samples, the powerful deep
learning methods can achieve high performance for epileptic
focus localization. However, it is a challenging task to obtain large
amount of labeled iEEG regarding focal/non-focal channels, since
the annotations must be performed by multiple clinical experts
through visual judgment on the long term iEEG signals. In order
to reduce the necessary number of labeled training samples,
we introduce the positive unlabeled (PU) learning method for
classification of focal and non-focal epileptic iEEG signals. The
proposed method enables us to learn a binary classifier by using
small amount of labeled data containing only one class (i.e., focal
signals) and unlabeled data containing two classes (i.e., focal and
non-focal signals), which greatly reduces the workload of clinical
experts for annotations. Experimental results on Bern dataset and
iEEG recorded from Juntendo University Hospital demonstrate
the effectiveness of our method.

I. INTRODUCTION

Epilepsy is a chronic brain disease in the world which
caused by abnormal discharges in the brain [1]. According
to World Health Organization (WHO, http://www.who.int/),
approximately 50 million people worldwide have epilepsy,
making it one of the most common neurological diseases
globally. Usually we can control epileptic seizures through
medications, but some patients with epilepsy are resistant
to medications, hence the common treatment is to remove
epilepsy focus by surgery. Before the surgery, we first need
to locate the epileptic focus precisely by using the various
brain signals or neuroimaging measurements. As compared to
other brain signal recording methods, iEEG is widely used
for epileptic focus localization because of the advantage of
high temporal resolution [2]. The iEEG signals, recorded
from epileptogenic area, are called focal signal, while the
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signals, recorded from non-epileptogenic area, are called non-
focal signal. Many studies have shown that there are some
spike waves (sharp wave, spike, slow wave, etc.) in the focal
signals [3]. At present, the clinical experts diagnose epilepsy
through the visual judgment based on the spike waves, which
is an extremely time consuming and difficult process. In
addition, the qualified clinical experts for such diagnosis are
fairly scanty in Japan as well as other countries. Therefore, it is
an imperious demand to relieve the heavy workload of clinical
experts by applying powerful machine learning methods.

In recent years, many machine learning methods have been
proposed for the epileptic focus localization problem. The clas-
sification of focal and non-focal iEEG signals is studied in [4],
in which the discrete wavelet transform (DWT) is used for
feature extraction, leading to the best classification accuracy
of 84% by using some typical classifiers k-nearest neighbor
(KNN), probabilistic neural network (PNN), fuzzy classifier
and least squares support vector machine (LS-SVM). In [5],
the entropy is employed to extract features from epileptic
iEEG signals, resulting in the classification accuracy of 87%
by applying the classifier of LS-SVM. In [6], the authors apply
the empirical mode decomposition (EMD) to extract intrinsic
mode functions (IMFs), which can be also used as the inputs of
LS-SVM classifier. By using this approach, the classification
accuracy of 87% can be achieved.

All the methods mentioned above can achieve promising
results on epileptic focus localization. However, the significant
drawback in these methods is that a large amount of labeled
data must be provided by the clinical experts. To obtain such
labeled data, each 20 seconds iEEG signals must be judged
visually by multiple clinical experts to provide the final label
of this segment, which is still a time consuming and extremely
difficult process. Therefore, in the real scenarios, acquiring a
large amount of reliable and labeled epileptic data remains a
challenging task. This indicates that although the supervised
learning methods can obtain the excellent performance on
epileptic focus localization, but they are not practical for real-
world diagnosis.
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To tackle this challenging problem, this study mainly ad-
dress an issue that how to significantly reduce the necessary
amount of labeled data without deteriorating the performance.
To achieve this goal, we first formulate the epileptic focus
localization problem under the PU learning framework, which
can thus be solved by employing the PU algorithms. More
specifically, we can use the small amount of labeled data
containing only one class (focal signals) and a large amount
of unlabeled data containing two classes (focal and non-focal
signals) to train an unbiased classifier for classification of
focal/non-focal signals. Based on the classification results,
the focal locations can be precisely identified by the specific
clinical criteria. Therefore, our method is able to significantly
relieve the heavy workload of clinical experts, while achieving
the comparable performance on epileptic focus localization.

II. METHODOLOGY

The detection of focal or non-focal channels is often per-
formed on the segmentation of iEEG signals. Each segment is
usually 20 seconds, which can be visually diagnosed by the
clinical experts. Therefore, we follow the traditional clinical
diagnosis strategy to firstly perform the segmentation of iEEG
signals. Considering each 20 seconds segment of iEEG as one
sample, we can then collect many data samples for training
the machine learning method.

In this work, we employ the feature extraction method
proposed by [7], in which the relationship between frequency
band and entropy feature is discussed. By using the entropy
measurements on different bandpass filtered iEEG signals, we
can obtain not only the discriminative features but also the
physical interpretation that is much appreciated by clinical
experts. Therefore, we firstly use several bandpass filters to
process the iEEG segments, then calculate several different
entropies on the each filtered segments, which can thus be used
as the feature representation of each iEEG segment. Finally,
based on partially labeled focal segments, the PU learning is
employed for epileptic focus and non-focus classification. The
flowchart of our method is shown in the Fig. 1.

A. Dataset and Preprocess

In our paper, we use two datasets, one is the public dataset
(Bern-Barcelona Database) and the other dataset is recorded
from the patients at Juntendo University Hospital.

1) Bern-Barcelona Dataset: One iEEG dataset used in this
paper is obtained from the Bern-Barcelona iEEG database
(http://ntsa.upf.edu/downloads/andrzejak-rg-schindler-k-
rummel-c-2012-nonrandomness-nonlinear-dependence-and).
You can find a detailed description of this dataset in [8].
This dataset is collected from five patients suffering from
pharmacoresistant focal onset epilepsy, consists of 3,750 pairs
of focal signals and 3,750 pairs of non-focal signals, every
signal has 10,240 samples (20 seconds with 512 Hz sampling
frequency), and all the signals are bandpass filtered between
0.5 and 150 Hz by use a fourth-orders Butterworth filter.

Test sectionTraining section

Begin

Entropy

iEEG signal 
with label

Bandpass filter

Training classifier 
by using 

PU learning

End

Begin

Entropy

Bandpass filter

Classify with 
classifier

End

iEEG signal 
without label

Classifier Classified as 
focal or non-focal

Split the signal 
to 20-s

Split the signal 
to 20-s

Fig. 1: Flowchart of focal and non-focal signal classification.

2) Juntendo Dataset: The other iEEG dataset used in this
paper was recorded at Juntendo University Hospital (Tokyo,
Japan). This dataset is recorded from patients who are suf-
fering from temporal lobe epilepsy caused by focal cortical
dysplasia. In this paper, we use one patient’s data, which
includes 60 channels recored during two hours with sampling
rate of 2,000 Hz. The label of focal signal was assigned to the
channel judged to be a seizure onset electrode by experts, and
a non-focal label was given to the rest channels. A example
of focal and non-focal signals are visualized in Fig. 2.

B. Feature Extraction

In this paper, we use seven different bandpass filters and
eight different entropies for data features extraction. The
flowchart of feature extraction is shown in Fig. 3.

1) Split frequency band: iEEG signals are processed by
seven different bandpass filters, the frequency selection of
bandpass is based on the commonly used physiological values.
In this paper, seven different bandpass filters we used are as
follows: Delta (0.5-4 Hz), Theta (4-8 Hz), Alpha (8-13 Hz),
Beta (13-30 Hz), Gamma (30-80 Hz), Ripple (80-250 Hz) and
Fast Ripple (250-600 Hz).
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Fig. 2: Focal and non-focal signals

2) Entropy: After iEEG signals are processed by bandpass
filter, we calculate eight different entropies for each filtered
signal. The entropies we used are shown as follows: Shannon
entropy, Renee entropy, Generalized entropy [9] [10], Phase
entropy (two kinds) [11], Approximate entropy [12], Sample
entropy [13], Permutation entropy [14]. Each entropy can re-
flect different statistical properties of filtered iEEG signals. By
concatenating eight entropies under seven band-pass filtered
signals, we can obtain a 7× 8 feature representation for each
segment of iEEG signals.

C. PU Learning for Classification

The PU learning model is shown in Fig. 4. In this model,
only a small amount of data is labeled, which belongs to only
one specific class, and the other data are unlabeled. In contrast
to the supervised methods, PU learning only needs a small
number of labeled samples together with unlabeled samples.
Unlike the semi-supervised learning, PU learning does not
need the labeled data for both two classes.

More specifically, PU learning is defined as learning from
positive and unlabeled data, which can be regarded as a
two classes (positive and negative) classification method. At
present, according to the strategy how to deal with unlabeled
data, PU learning can be divided into two categories. One
category is to find the reliable negative data (RN) in unlabeled
data [15] [16] [17], based on which we can apply the standard
supervised learning methods for binary classifications. Another
category is to treat the unlabeled data as negative data, and give
a suitable weight for unlabeled data [18] [19] [20].

Let x be the input feature vector calculated from one
segment of iEEG, y ∈ {±1} be the class label, i.e., +1
denotes focal signal and −1 denotes non-focal signal. The
class conditional distributions for focal signals, denoted by
pp(x), and non-focal signals, denoted by pn(x), are defined
by

pp(x) = p(x | y = +1),

pn(x) = p(x | y = −1).
(1)

The prior probabilities for each class are denoted by πp =
p(y = +1) and πn = p(y = −1), respectively. Thus, it is
obvious that πn = 1− πp. In this PU learning method, πp is
assumed known in advance. By applying the Bayesian rules,

the marginal distribution of unlabeled data (i.e. the distribution
of both two classes data), denoted by p(x), can be written as

p(x) = πppp(x) + πnpn(x). (2)

To solve the PU problem, the most popular and successful
objective function is the empirical unbiased risk estimator that
is proposed by [21] [22] [23], which is

R̂pn(g) = πpR̂
+
p (g) + πnR̂

−
n (g), (3)

where R̂+
p (g) and R̂−

n (g) denotes the empirical risks for
focal and non-focal data, respectively. The g(·) denotes the
binary classification function and `(g(x),±1) denotes the loss
function. Thus, the empirical risk for focal signal, i.e., R̂+

p (g)
in (3), can be calculated by

R̂+
p (g) = Exvpp(x)`(g(x),+1), (4)

and the empirical risk for non-focal signal, i.e., R̂−
n (g), can

be calculated by

R̂−
n (g) = Exvpn(x)`(g(x),−1). (5)

Since the distribution of non-focal signal is unknown due to
that the labels are only given for focal signals, R̂−

n (g) in (5)
cannot be computed straightforwardly. As we can see from
(2), the distribution of non-focal signals can be represented
by using

πnpn(x) = p(x)− πppp(x). (6)

Hence, the empirical risk for non-focal samples can be com-
puted by

πnR̂
−
n (g) = R̂−

u (g)− πpR̂−
p (g), (7)

where R̂−
u (g) and R̂−

p (g) are the empirical risks under the
distribution of unlabeled data and focal data, respectively,
which are defined by

R̂−
u (g) = Exvp(x)`(g(x),−1),

R̂−
p (g) = Exvpp(x)`(g(x),−1).

(8)

Finally, the risk estimator in (3) can be approximated indirectly
by

R̂pu(g) = πpR̂
+
p (g) + R̂−

u (g)− πpR̂−
p (g). (9)

In general, g(x) can be any classifier functions, such as
linear discriminative analysis or support vector machines. Due
to the recent great success of deep neural networks, in this
study, we employ three fully connected layers based neural
network as the binary classifier function g(x). Based on the
objective function shown in (9), we can thus easily employ
the BP algorithm to learn the deep neural network for PU
problem.

III. EXPERIMENTAL RESULTS

In this paper, we use two datasets and each dataset is
performed by PU learning and fully connected neural network,
respectively.
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Processed by seven different of bandpass filters
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…… ……

Data feature (56 points) for 20-s signal segment[ 6.2931, 5.0722, 1.0223 ……  0.8267, 0.7521, 0.92191]

Split the iEEG signals into 20-s segments

Fig. 3: Flowchart of feature extract procedure

TABLE I: Model parameters (Bern-Barcelona Dataset)

Input Layer1 Layer2 Output Loss function Batch size Epoch
Fully connected neural network (Keras) 48 32 32 2 mean squared error 675 10,000

PU learning (Chainer) 48 64 32 1 logistic 800 2,000

Positive Negative

Supervised Learning

Positive Unlabeled

PU Learning

Fig. 4: Illustration of PU learning

A. Bern-Barcelona Dataset

In this dataset, we have 7,500 focal signals and 7,500 non-
focal signals. Note that because Bern-Barcelona dataset is
processed by the bandpass filter between 0.5 and 150 Hz, the
frequency selection of bandpass are as follows: Delta (0.5-
4 Hz), Theta (4-8 Hz), Alpha (8-13 Hz), Beta (13-30 Hz),
Gamma (30-80 Hz) and Ripple (80-150 Hz). We randomly
choose 90% data samples as training data and 10% samples as
test data when applying fully connected neural network. In PU
learning, 14% focal samples are randomly selected as labeled
data, while the rest of samples are selected as unlabeled data.
Each experiment is performed by 10 times and the averaged
results are provided.

The parameters of the model are manually chosen and
shown in Table I, and the classification results are shown in
Table III. The aim of the study is to use as small amount of

labeled data as possible. The performances obtained by using
different proportions of labeled data are shown in Table. IV.

B. Juntendo Database

In this dataset, there are 1,080 focal signals and 1,080 non-
focal signals. We randomly select 90% smaples as training
data and 10% samples as test data when applying three
layers neural network. In PU learning, 14% focal samples are
selected as labeled data, while the rest samples are selected
as unlabeled data. The parameters of the model are manually
chosen and shown in Table II. The experiments are performed
by 10 times, then the averaged results are given in Table V. To
investigate how many labeled samples can be reduced by using
PU learning, the averaged performances obtained by different
proportions of labeled data are shown in Table. VI. From the
experimental results, the PU learning method uses a small
performance loss, which in turn brings about a significant
reduction in the marking workload.

IV. CONCLUSION

In this paper, we propose a novel approach for the classifi-
cation of focal/non-focal iEEG signals. The feature extraction
is performed by seven bandpass filters and eight entropy
measurements. Then, our method is applied for classification
as compared to the standard deep neural network. Our main
contribution is to formulate the epileptic focus localization
problem under the PU learning framework, which can sig-
nificantly reduce the necessary number of labeled training
samples. Therefore, the proposed approach is more practical
than the popular supervised learning methods, especially when
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TABLE II: Model parameters (Juntendo Dataset)

Input Layer1 Layer2 Output Loss function Batch size Epoch
Fully connected neural network (Keras) 56 64 32 2 softsign 50 10,000

PU learning (Chainer) 56 64 32 1 logistic 800 2,000

TABLE III: Classification performance (Bern-Barcelona
Dataset)

Fully connected neural network PU Learning
Accuracy (%)

Mean (Std) 81.5 (0.269) 77.3 (0.568)

TABLE IV: Accuracies obtained by using different proportions
of labeled data (Bern-Barcelona Dataset)

6% 8% 10% 12% 14%
Accuracy (%) 74.9 75.2 76.4 76.6 77.3

the labeling task is difficult such as the annotations of the
epileptic focal. Because the accuracy of the PU learning
method is somewhat lower than that of supervised learning,
future work will focus on improving the accuracy of the PU
learning method and approaching supervised learning as much
as possible.
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