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Abstract— Image steganography conceals secret message into 

digital image without influencing human perception. Recently, a 

steganographic method based on generative adversarial networks 

(GANs) has been tentatively applied to human face dataset in 

order that the generated images can evade being detected by 

steganalytic methods. In this paper, we propose a more effective 

GAN-based steganographic framework, named VAE-SGAN, 

which combines together several deep learning based network 

structures: the encoder, the decoder/generator, the discriminator, 

and the steganalyser. This proposed model can generate better 

visually convincing images with less model collapse. Through 

comparative experiments, it has been proved that the generated 

images are more secure against steganalysis than those generated 

by the previously established GAN-based methods when working 

under some popular steganography schemes, such as LSB-

matching, WOW and S-UNIWARD.  

I. INTRODUCTION 

Steganography [1] is a technique concealing a secret message 

in a type of medium, so that the presence of the hidden message 

can avoid to be detected by steganalytic methods. In the fast-

growing internet, there has been an abundance of images, 

audios and videos, of which the security urgently needs to be 

better guaranteed in covert communications, thereby the design 

of a secure stegnographic scheme is of much importance. 

However, how to develop an effective and secure 

steganographic framework is a tricky issue that researchers    

have always concerned about and pursued to solve, while the 

existing approaches [2] usually engage in the aspect of 

embedding means, such as falsifying image pixel bits, 

designing distortion functions, etc.  

Least Significant Bit (LSB) matching [3] is one of the most 

popular embedding schemes in spatial-domain steganography. 

This algorithm randomly adds or subtracts 1, called ±1-

embedding, into the least significant bits of pixel values of an 

image, but it might deteriorate statistical characteristics of the 

original image and so that makes the stego image easy to be 

detected.  

Except the LSB method, there exist other effective schemes 

employing a distortion function to select the embedding 

localization of the image, which are considered as content-

adaptive steganography, and these popular schemes can 

achieve good security in spatial domain. The distortion 

function was delicately designed in classic spatial-domain 

approaches such as the highly undetectable stego (HUGO) [4], 

wavelet obtained weights (WOW) [5], spatial universal 

wavelet relative distortion (S-UNIWARD) [6], minimizing the 

power of optimal detector (MiPOD) [7], and high-pass low-

pass low-pass (HILL) [8].  

It has been recently reported [9-12] that the generative 

adversarial networks (GANs) architecture has shown great 

advantage in generating sensible images by minimizing the 

differences of data distribution between samples and cover data. 

The original GAN model was proposed by Ian Goodfellow et 

al. [9] in 2014, but it was proven to be unstable in training and 

often produce unrealistic images. An obvious disadvantage of 

the framework is that any differentiable function is 

theoretically permitted in the model design, which makes the 

computation process difficult to be controlled in the case of 

training large images with lots of pixels.  

Deep Convolutional GAN (DCGAN) [10] is another GAN-

based scheme which integrates supervised learning (from 

CNN) into unsupervised learning (from GAN), where the 

generator and discriminator networks can learn hierarchical 

representations of input images separately. DCGAN is well 

designed in the aspect of topology and thus is more stable, 

which has been applied to different tasks of generating images. 

But the training of DCGAN model will sometimes collapse 

into an oscillating mode and thereby produce implausible 

images.   

Volkhonskiy et al. first combined steganography with the 

mechanism of GAN and proposed steganographic generative 

adversarial networks (SGANs) [11]. In their framework, except 

for the modules of discriminator and generator as similar as in 

the DCGAN model, another adversarial network called 

steganalyser was also introduced. The authors used CelebA 

dataset [12] to train the SGAN model and generate images 

using different random noise seed values as input. SGAN 

model shows the capability of acting as a container for 

steganographic applications. However, the steganalyser they 

employed in the model is so simple that the generated cover 

images produced by SGAN are not secure enough for 

steganography tasks and are prone to be implausible in human 

visual sense.  

Recently, Hu et al. [13] conducted to establish formal 

connections between GANs and VAEs (Variational Auto-

Encoders), and they revealed the relationships between these 

two network structures in a manner of unified interpretation, 

which theoretically explained the feasibility of the combination 

of generative models. Besides, many other reports [14,15,16] 

have also proved that strengthened VAEs can be directly 

applied to GANs to improve the model quality, whereas the 

improved GANs can also be added into VAEs to achieve a 

boost of performance.  

In this paper, based on the fundamentals of generative 
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adversarial networks and variational auto-encoders, we 

propose a steganography-oriented framework, named VAE-

SGAN, to generate convincing normal images more effectively 

and efficiently, in order that much better security can be 

achieved in spatial image steganography.  

II. THE PROPOSED FRAMEWORK 

A. Overall Architecture 

Our proposed deep learning structure, named VAE-SGAN 

as mentioned above, is made up of four neural networks, which 

are trained synergistically to make the net generate secure 

cover images other than merely visually convincing images.  

The detailed architecture can be shown as in Fig. 1, where 

the encoder receives raw images and characterizes features by 

outputting low-dimensional latent vectors. The decoder, also 

acting as the generator G, receives 128-dimensional latent 

vectors through iterative training in VAE model to make 

generated images revised gradually close to raw images. The 

discriminator D, as the opponent of G, tries to detect images as 

raw or generated, which guarantees the visual quality of 

generated images. Meanwhile, the steganalyser S tries to 

distinguish the stego images from the generated cover images. 

Taken into consideration the efficiency and performance of the 

implementation of steganalysis, we employ the model 

presented in [17] (referred as XuNet) as being the steganalyser 

S.   

B. Encoder 

The encoder network E maps the raw image 𝒙 to a latent 

representation 𝒛 through a learned distribution 𝑃(𝒛|𝒙).  

We use raw images as input data of the encoder. The encoder 

E contains four 5×5 convolutional layers with 2×2 strides, 

while each layer is followed by BN (batch normalization) and 

LeakyReLU (leaky rectified linear unit) activation, where the 

latter one has been proved to have better performance than 

ReLU (rectified linear unit) activation in convolutional neural 

networks [18]. The output of the last convolutional block is 

flattened and reshaped to be fed into two independent 128-

neuron fully-connected (FC) layers respectively. One FC-layer 

represents the mean of the compressed image, and the other one 

represents the logarithm of the image variance. We introduce a 

128-dimensional vector ξ with standard normal distribution, 

which can be regarded as a noise to compel the network to 

generate varieties of plausible images. The latent vector is the 

summation of the mean vector and the inner product from 

logarithmic variance and vector ξ. The network structure can 

be described as in Fig. 2.  

C. Decoder/Generator  

As is known, the generator G is used to generate secure cover 

images.  

In the generator, the 128-dimensional latent vector z is input 

into a series of blocks utilizing the fractionally-strided 

convolution, which is referred as FS-Conv for short. Inspired 

by [10], we use a fully-connected layer with 8192 neurons to 

be the input layer, and then reshape it into a 4-dimensional 

tensor, revising the matrix multiplication with BN followed by 

ReLU activation, as being the start of the convolution stack. 

Afterwards, four blocks are concatenated, while each of the 

first three blocks starts with a FS-Conv layer with 5×5 kernels 

and 2×2 strides, followed by BN, and ends with ReLU 

activation. Finally, a hyperbolic tangent function (TanH) layer 

 
Fig. 1. Architecture of the proposed VAE-SGAN framework.  
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Fig. 2. Architecture of the encoder. 
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Fig. 3. Architecture of the decoder. 
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is straightly connected to the last FS-Conv layer to be the 

output layer. This network structure can be shown as in Fig. 3.  

D. Discriminator 

To evaluate the human visual quality of the generated 

images produced by G, a discriminator D is also designed.  

Here, we do not adopt a complex model for D to prevent it 

to be over strong, otherwise G might be restrained too much to 

move on in iterations of the computation. The discriminator D 

utilizes the generic strided convolution, which guarantees the 

visual quality of the generated images. We use both of raw 

images and generated images as input data. The discriminator 

D contains four 5×5 convolutional layers with 2×2 strides, and 

each Conv layer is followed by BN and LeakyReLU. It is 

proven that using LeakyReLU in GAN framework is beneficial 

for the stability of the training process [19]. The output of the 

last convolutional layer is flattened and reshaped to be fed into 

a fully-connected layer with only one neuron. This network 

structure can be described as in Fig. 4.  

E. Steganalyser 

In regard to network S, it is designed to evaluate the security 

of a stego image using a generated image as being cover.  

As mentioned before, we introduce XuNet [17] to form the 

steganalyser taking into account the quality and performance 

of steganalytic implementation, making the generated images 

catered to steganographic tasks. It is worth noting that XuNet 

employs KV (Ker-Bohme) high-pass filter [20] at the 

beginning, which suppresses image content and preserves high-

frequency part to obtain a steganalysis-oriented noise residual. 

Inside the first convolutional block, an absolute activation 

(ABS) layer is inserted to force the statistical modeling to take 

into account the (Sign) symmetry [21] existed in noise 

residuals. The structure of the steganalyser network is 

demonstrated as in Fig. 5.  

 

III. DESIGN OF LOSS FUNCTIONS 

Most of the loss functions referred in our proposed network 

are designed based on cross entropy, which is a common 

measure in deep learning for the similarity between two 

probability distributions. The total loss of our framework is 

comprised of four parts.  

A. Loss of Encoder 

E is a network which encodes a data sample into a latent 

representation, so that low dimensional features can be better 

captured. Conventional GAN-based models usually employ 

random noise as input signal; on the contrary, we use latent 

vector as an incentive to the generator, which produces a more 

sensible signal for the subsequent training process. The loss 

function of generator G can be modeled as follows [22]: 

                           𝐿𝐸 = 𝛾𝐿𝐾𝐿 + 𝛿𝐿𝑟𝑒𝑐                             (1) 

where we choose γ= 0.025 and δ = 1 in the experiments. The 

settings of γ and δ are based on the magnitudes of 𝐿𝐾𝐿 (loss 

of KL divergence) and 𝐿𝑟𝑒𝑐  (loss of reconstruction), 

respectively.  

In Eq. (1), we have 

                          𝐿𝐾𝐿 = −0.5 × (1 + 𝑙𝑜𝑔𝜎2 − 𝜇2 − 𝜎2)          (2) 

where 𝜇 and 𝜎2 represent the mean and variance of the latent 

vector respectively. 𝐿𝑟𝑒𝑐  is used to measure the differences 

between raw image and generated image: 

                                   𝐿𝑟𝑒𝑐 = ∑(𝒙(𝒊) − 𝐺(𝒛(𝒊)))
2

𝑚

𝑖=1

                    (3) 

where  𝒙(𝒊) denotes a natural image and 𝐺(𝒛(𝒊)) represents a 

generated sample image aroused by latent vector 𝒛.  

B. Loss of Decoder/Generator 

Our ultimate goal is to train a steady and strong generator G, 

which can produce secure images in convincing visual sense 

for steganographic tasks. As mentioned in Section 2, the 

encoder is to map data into a low-dimensional vector and the 

decoder tries to reconstruct the data back, the discriminator D 

is used to guarantee the visual quality of generated images, and 

the steganalyser S is used to evaluate the security of stego 

images. In our framework, the generator is expected to produce 

secure cover images other than to merely reconstruct raw 

images.  

To better generate visually convincing images, we use the 

reconstruction feedback in the loss of G, denoted as 𝐿𝑟𝑒𝑐  in Eq. 

(3), which can regulate image samples and make the samples 

more reasonable, to measure the gap between raw images and 

generated images.   

From the perspective of generator, we wish the images 

generated by G can deceive the discriminator D and meanwhile 

D is difficult to discriminate generated images from original 

cover images as much as possible. Thus, setting the output of 

D as logits, fed with generated images, we have 𝐿G
D  (loss from 

discriminator) as:  

                                 𝐿𝐺
𝐷 = − ∑ log𝐷(𝐺(𝒛(𝒊)))

m

i=1

                       (4) 

 

Fig. 4. Architecture of the discriminator. 
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Fig. 5. Architecture of the steganalyser. 
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With similar mechanism, we wish the steganalyser S more 

unlikely to distinguish stego images from cover images in the 

view of generator. Setting the output of S as logits, fed with 

embedded generated images, we have 𝐿S
D  (loss from 

steganalyser) as:  

                        𝐿𝐺
𝑆 = − ∑ log (1 − 𝑆(

m

i=1

Stego(𝐺(𝒛(𝒊))))          (5) 

In functions (4) and (5), 𝐺(𝒛(𝒊)) represents a synthetic image 

for the input latent vector 𝒛(𝒊), 𝐷(𝒙) denotes the output of D 

fed with x as input, 𝑆(𝒙) indicates the output of S fed with x as 

input, Stego(𝒙)  stands for the result of embedding some 

hidden message in the cover x. These two equations used as 

loss functions instead of the ones used in [11] can save 

computation time and accelerate convergence without 

influencing the training performance.  

Considering the tradeoff of the feedbacks from E, D and S, 

the loss function of generator G can be modeled as follows:  

                𝐿𝐺 = 𝜂𝐿𝑟𝑒𝑐 + 𝛼𝐿𝐺
𝐷 + 𝛽𝐿𝐺

𝑆                            (6) 

where we choose η=1, α = 0.1 and β = 0.2 in the experiments. 

The settings of η, α and β are based on the magnitudes of 

𝐿𝑟𝑒𝑐 , 𝐿𝐺
𝐷 , and 𝐿𝐺

𝑆 , respectively.  

C. Loss of Discriminator 

The network of D is a GAN-oriented structure, which is 

similarly inverse to the structure of G. G and D contend against 

each other and can directly obtain the feedback from the rival 

to update the training to achieve better performance. But D 

needs to classify whether an image is real or generative. The 

discriminator has to be trained with the loss function as: 

          𝐿𝐷 = − ∑ log𝐷(𝒙(𝒊)) + log (1 − 𝐷 (𝐺(𝒛(𝒊))))

𝑚

𝑖=1

        (7) 

 

D. Loss of Steganalyser 

We employ XuNet [17] as being the steganalyser S to ensure 

the training efficiency and performance. S determines whether 

an image contains a covert message, and it is another opponent 

that G needs to compete against. With similar methodology, the 

loss function of S is defined as: 

                     𝐿𝑆 = − ∑ 𝑙𝑜𝑔𝑆 (𝑆𝑡𝑒𝑔𝑜 (𝐺(𝒛(𝒊))))

𝑚

𝑖=1

+ 𝑙𝑜𝑔 (1 − 𝑆 (𝐺(𝒛(𝒊))))                            (8) 

IV. EXPERIMENTS 

A. Experimental Setup  

The proposed networks were implemented by using 

TensorFlow framework [22] and were trained on a machine 

equipped with NVIDIA GeForce GTX-1060 GPU.  

Firstly, we use images from BOSSbase v1.01 [23] as the 

input of E to train VAE-SGAN. In order to make G simulate 

the distribution of raw images and generate steganography-

oriented secure covers, we also use the same dataset as one of 

the inputs of D. Besides, to make VAE-SGAN model better 

simulate the distribution of the raw data, we do not crop images 

at all.  

Before the training process, all the weight matrices of the 

encoder E, generator G, discriminator D and steganalyser S are 

initialized by Gaussian distributions with μ = 0 and σ = 0.02, 

and the bias vectors b are initialized to zeros. We set batch size 

to 64 and train VAE-SGAN for 200 epochs. For each minibatch, 

E’s weights are updated as a first step, and then the output is 

fed into G. Afterwards, the generated images, which are the 

output of G, will be input into D and S. The weights of D and 

S are updated for once after the weights of E and G are updated 

for twice.  

To update the encoder, we use Adam optimization [24] with 

a fixed learning rate of 0.0002, and the parameters are updated 

to be α = 0.5, β = 0.999, and ε =10−8. G and D share the same 

optimization rule as E. The leak slope of LeakyReLU in E and 

D is set to 0.2. The mini-batch gradient descent is used to train 

S, in which the momentum is fixed to 0.9, while the learning 

rate is initialized to 0.001 and scheduled to decrease by 10% 

for every 5000 iterations.  

Secondly, to evaluate security performance of the generated 

cover images from VAE-SGAN, SRM [17] and XuNet are 

utilized as two different steganalysers. The performance of 

security is quantified by the detection accuracy of a 

steganography scheme against a given steganalyser. In the 

experiments for evaluation, we use the same 10000 generated 

cover images produced by VAE-SGAN. To train XuNet, we 

randomly divide 10000 cover-stego pairs into three parts: 7000 

pairs for training, 1000 pairs for validation, and 2000 pairs for 

testing. To train SRM, we combine the training set with the 

validation set, and maintain the same left 2000 pairs for testing. 

Thirdly, for comparison, experiments on natural images 

from the BOSSbase dataset are also conducted, which is 

utilized to measure the feasibility of VAE-SGAN model. Here, 

we adopt 64×64 images, with the same size as the generated 

images. Besides, comparative experiments based on DCGAN 

model and SGAN model are also conducted to have proved that 
 

 

Fig. 6. Generated image samples from VAE-SGAN cover dataset 
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our proposed method can generate secure cover images, not 

merely visually convincing images. Furthermore, to assess the 

generality of the images produced by the generator, 

mainstream adaptive spatial steganography methods, such as 

LSB [3], WOW [5] and S-UNIWARD [6], are employed for 

the comparison of steganographic performance. 

B. Visual Quality 

A series of experiments have been conducted to evaluate the 

visual quality of the generated images and the feasibility of our 

proposed framework. As is known, CelebA dataset [12] only 

has the category of human faces, and LSUN dataset [25] 

mainly shows the category of bedrooms, but the BOSSbase 

dataset contains multiple categories of objects in images. 

Therefore, using BOSSbase, there are many different types of 

objects in the generated images, as shown in Fig. 6, such as the 

moon, cloud, mountain, lake, island, etc.  

 After training DCGAN, SGAN and VAE-SGAN models 

respectively for 200 epochs, 64 images can be randomly 

generated respectively, where 7(a)-7(c) display the generated 

sample images. It is observed that some features cannot be 

represented well enough when using the DCGAN model. And 

most of the samples generated by SGAN, as shown in Fig. 7(b), 

are pale-colored and some images are also similar from each 

other. We use red boxes to point out visually implausible 

images which look similar to each other. In Fig. 7(a), we can 

find 14 such failed images in red boxes, which indicates the 

generation rate of plausible images (quality ratio) by DCGAN 

is (1 - 14/64) ×100%  = 78.13%. In Fig. 7(b), there are 13 such 

image samples, thus the quality ratio from SGAN is (1 - 13/64) 

×100%  = 79.69%; meanwhile the quality ratio of generated 

images from VAE-SGAN, as seen from Fig. 7(c), is (1 - 8/64) 

×100% = 87.50%. No matter how to conduct the experiments 

under same settings and how many images are generated 

eventually, the quality ratios of generated images from these 

three models remain similar as mentioned above, which means 

our VAE-SGAN model can generate plausible images with 

better visual quality.  

We can observe the training process of the three models after 

different training epochs. For DCGAN model, we find some 

samples are hard to be trained and vary slightly no matter how 

many training epochs are experienced, and there exist some 

unstable evolutions. The samples generated by SGAN model 

usually seem difficult to be identified. But our proposed VAE-

SGAN model can maintain a steady training process and can 

generate images with fairly good quality and less model 

collapse. The images generated by VAE-SGAN can clearly 

represent the characteristics of various objects and seem more 

sensible and plausible than the images obtained by using 

DCGAN and SGAN. Owing to the structural fusion of VAE 

and GAN in a reasonable way, the generator of VAE-SGAN 

not only receives latent vectors resulting from VAE module, 

but also accepts the feedback from GAN module. VAE has 

high sensibility when producing images, but it is lack of 

diversity, due to the reason of reconstruction from latent 

vectors. Whereas, GAN method always engages in finding a 

way to cheat the discriminator as much as possible, in order to 

create the best image samples, thus the results probably have 

much better diversity. Anyway, our joint model of VAE and 

GAN guarantees both sensibility and diversity for the image 

generation.  

C. Performance Evaluation  

We adopt SRM and XuNet for the evaluation and 

comparison of security performance of steganography on cover 

images respectively derived from BOSSbase itself, DCGAN, 

SGAN and VAE-SGAN.  

Table 1 lists the detection accuracy for different cover image 

datasets with different steganography methods respectively 

detected by SRM and XuNet. The proposed VAE-SGAN 

model performs the best as seen from the experimental results 

with the lowest detection accuracy. The lower accuracy, the 

better approach for steganography.  

Using LSB, VAE-SGAN model achieves a superiority of 

about 4% to both SRM and XuNet compared with the natural 

image database, BOSSbase. SGAN performs the worst when it 

       
(a)                                                                                    (b)                                                                                    (c) 

Fig. 7. Generated sample images produced by frameworks of DCGAN (a), SGAN (b) and VAE-SGAN (c) after 200 epochs, respectively. The samples within red 

boxes denote the visually implausible, i.e., model-collapsed images. 
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is applied to the standard LSB steganography, while DCGAN 

performs the second best.  

When WOW and S-UNIWARD methods are applied to the 

corresponding cover image source datasets, our VAE-SGAN 

model still obtains the best results on both SRM and XuNet. 

With WOW, VAE-SGAN outperforms BOSSbase by about 

10% on SRM and about 7% on XuNet. Whereas, using S-

UNIWARD, VAE-SGAN outperforms BOSSbase method by 

about 9% on SRM and about 6% on XuNet.  

It is demonstrated that our approach not only is capable of 

producing images without outputting evident distortions in the 

view of human visual sense, but also can generate secure cover 

images for different steganographic tasks in spatial domain. 

VAE-SGAN may be potentially used as an effective tool to 

generate universal steganographic carrier images in the future. 

V. CONCLUSION 

This paper has introduced a framework of steganography-

oriented generative adversarial networks, named VAE-SGAN. 

The advantages of the proposed approach are as follows: 

(1) VAE-SGAN model can generate images with better visual 

quality and less model collapse.  

(2) The generated images from using the scheme are secure 

covers, which perform significantly better in covert 

communications than those produced by other existing 

GAN-based generators.  

(3) The proposed method works best not only under LSB-

matching steganography scheme but also under the 

adaptive steganography schemes, such as WOW and S-

UNIWARD.  
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