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Abstract—We propose an estimation method for the safety-
level of local regions in aerial images for the emergency landing
of Unmanned Aerial Vehicles (UAVs) based on Convolutional
Neural Networks (CNNs), and introduce a new definition of safe
areas and a new dataset. The estimation methods calculate scores
of the safety-level for each region, and based on the results,
the landing system detects safe areas where UAVs land without
injuring humans, animals, buildings, artifacts, and themselves.
Previous methods generally define natural flat regions, such as
grass, lawn, soil and sand areas, as safe. However, if the flat
regions are small and adjoin undesirable objects, the definition
is dangerous and has the possibility of the injuring. Therefore, we
introduce new definition to avoid the above complicated regions,
and produce the dataset. Based on the dataset, we propose a
CNN model to estimate scores of the safety-level. The proposed
model can use various local and global features, and consider
the environment of a target region. Hence, the proposed method
estimates safe regions without the complicated ones, and then has
better scores in the precision than the state-of-the-art method in
experiments.

I. INTRODUCTION

Unmanned Aerial Vehicles (UAVs) should be equipped
with automatic landing for emergency, and the landing sys-
tem frequently uses a technique estimating the safety-level
of landing areas from aerial images [1]–[4]. The technique
considers ground surfaces, humans, animals, buildings, and
artifacts. Based on results of the technique, the landing system
determines the area for the safety landing and UAVs move to
there. UAVs should avoid injuring people and artifacts, and
therefore the estimation methods require high precision.

Estimation methods of the safety-level are mainly clas-
sified into surface classification based methods and direct
estimation methods. The surface classification based method
is a technique which estimate types of ground surfaces using
classification algorithms [1]–[3]. In the type, ‘Safe’ is defined
as flat regions such as grass, soil, sand regions, and so
on. On the other hand, direct methods estimate the pixel-
wise safety-level by using the machine learning [4]. Since
classification methods cannot judge unknown classes and are
not practical. Hence, the direct estimation method has been

proposed recently.

Unfortunately, the direct estimation method often produces
the inaccurate safety-level in complicated regions. Compli-
cated regions have the same visual feature of safe regions. For
example, if a grass region adjoins an object such as human and
buildings, conventional methods make the misdetection and
cause an accident by the UAV landing. Although flat regions
are defined safe areas in conventional methods, they are not
always safety. Hence, the safety-level estimation methods need
to consider the complicated regions for the accurate safety-
level.

In Convolutional Neural Networks (CNNs), we presume
that the receptive field is an important factor to estimate the
accurate safety-level. The receptive field is the local region
of input images that is used for one CNN outputs. The size
of the receptive field is related to the size of objects that the
CNN models can consider. In complicated regions, there are
various objects with different sizes. Hence, CNNs should have
multiple sizes of receptive fields for considering the object in
complicated regions.

We propose a safety-level estimation method based on
CNNs and introduce a dataset for UAVs landing systems. First,
we propose a CNN architecture which considers surround fea-
tures of a target area. The proposed CNN model considers both
small objects and large regions by using residual blocks and
dilated convolution layers [5], [6]. These architectures realize
a CNN model with multiple sizes of receptive fields. A post-
processing detects a safe landing area which has an enough
size for UAV landing. Second, we propose a dataset which
includes complicated regions and their safe-level. The dataset
includes the different safety-level on same types of surface.
By the learning with the dataset, the proposed CNN model
can classify the complicated regions. In experiment, compared
with the state-of-the-art method, the proposed method shows
superior results in the precision.
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Fig. 1. An architecture of Residual block

II. FUNDAMENTALS OF CNNS

A. Basic constructions of CNNs

Since the safety-level estimation is similar to image clas-
sification, we explain CNN architectures for classification
algorithms in this section [5]–[7]. CNN models extract image
features using pooling layers and convolution (Conv) layers.
The models are construct by stacking those layers. An Conv
layer has hyperparameters which are filter size, stride size, and
zero-padding size. Zero-padding is the layer preprocess which
adds the pixel with the value of zero around the image border.
The padding is applied before the convolution operation. In
Conv layer, rectified activation functions, such as Rectified
Linear Unit (ReLU), Leaky Rectified Linear Unit (Leaky
ReLU), and Parametric Rectified Linear Unit (PReLU), are
used after Conv [8]–[10]. Then, the models apply the softmax
operation to resultant values as

p̂ik =
exp(x̂ik)∑
l exp(x̂ij)

, (1)

where l, x̂ik, and p̂ik denote the number of pixels, resultant
values of CNN models, and the class probability in the k-th
class of the i-th pixel, respectively. Finally, pixels are classified
according to pik. Through defining classes of the safety-level,
we easily adjust the models to the safety-level estimation.

B. Residual block

Residual blocks are known as effective architectures for
constructing deep CNN models [5], shown in Fig. 1. The
structure of residual blocks consists of two Conv layer, an
activation function, and a shortcut connection. The shortcut
connection performs the element-wise summation of the input
and the output. Several methods stack the block to construct
deep CNN models [5], [11]. Hence, the model becomes
ensemble of several CNNs with different sizes of receptive
fields [12]. The shortcut connection well propagates errors
between results and ground truths to previous blocks and
usually avoids the gradient vanishing problem in the training
of deep CNN models [13].

C. Dilated Conv layer

A dilated Conv layer performs the convolution with sparse
filters which are constructed via up-sampling filters with
arbitrary parameters [6]. The parameter indicates the size of
space between filter elements, which called a dilation in this

(a) Input image (b) Ground truth

Fig. 2. Examples of dataset images for training

paper. The receptive field of the dilated Conv layer is wide
without losing the spatial resolution of image features. Hence,
the receptive field of a CNN model using dilated Conv layers
is larger than one using Conv layers, and the CNN model can
also extract features of local regions.

III. PROPOSED METHOD

A. Frame work

In this paper, we introduce a definition of the safety-level
and a dataset for the UAV landing system, and propose a
method of the safety-level estimation based on CNNs. Even
if regions of the ground are classified into a same type of
surfaces, they often have different labels of the safety-level
because of surrounding environments. Hence, the proposed
method considers to surrounds of landing areas using a new
dataset. The proposed CNN model learned with the introduced
dataset estimates accurate labels of the safety-level at com-
plicated regions. The model estimates a map of pixel-wise
safety-level which are classified into three classes, ‘Other’,
‘Not recommend’, and ‘Safe’. We apply the morphological
opening for ‘Safe’ areas as the post-processing, and a large
area that is sufficient for the UAV landing is detected.

B. Dataset construction

For the introduced dataset, we randomly collected aerial
images from Google Maps in a region bounded by (35.1◦N,
138.5◦W) and (36.4◦N, 139.7◦W). The dataset has 125 images
and 50 images for training and testing, respectively. We
assumed the flight altitude 140 m, and the size of aerial images
is 576 × 576 px with approximately 8.2 px/m because of
the regulation of Google Maps. We divided these image into
patches with 16 × 16 px. UAVs are assumed to land at the
center of patches, and the size of patches is approximately
2× 2 m that is enough for safe landing.

We classified patches into three classes, ‘Safe’, ‘Not recom-
mended’, and ‘Other’. ‘Safe’ patches guarantee that UAVs can
land there without damaging not only people and artifacts but
also themselves. Conversely, at ‘Not recommended’ patches,
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Fig. 3. Overview of proposed CNN model

TABLE I
PARAMETERS OF PROPOSED CNN MODEL

Layer type Filter Padding Dilation Ch.
Conv 3x3 1 32

ResBlock
Conv 3x3 1 32
Conv 3x3 1 32

Conv 3x3 1 64

ResBlock
Conv 3x3 1 64
Conv 3x3 1 64

Conv 3x3 1 64
Dilated DilatedConv 3x3 2 2 64
ResBlock DilatedConv 3x3 4 4 64
Dilated DilatedConv 3x3 4 4 64
ResBlock DilatedConv 3x3 8 8 64

Conv 3x3 1 32

ResBlock
Conv 3x3 1 32
Conv 3x3 1 32

Conv 3x3 1 3

ResBlock
Conv 3x3 1 3
Conv 3x3 1 3

Conv 3x3 1 3

UAVs land only without damaging people and artifacts. Resid-
ual patches are classified into ‘Other’, and are often danger
areas.

Fig. 2 shows examples of the training set which are the
input images and the ground truth. In the ground truth, white,
gray, and black areas show the labels which are ‘safe’, ‘Not
recommend’, and ‘Other’, respectively. Based on the above
definition, ground truths are provided by various persons with
the majority rule. Images of the dataset have variety of objects
which are grass, trees, soil areas, artifacts, and so on. Patches
of the ‘safe’ class are grass, soil, and sand areas which are
not include water, trees, and artifacts. Patches of the ‘Not
recommend’ class are almost forest, river, and sloping area.
‘Other’ class are not only car, buildings, roads, and other
artifacts but also areas which are close to them and have
similar visual features of ‘safe’ or ‘Not recommend’ patches,
for example grass, trees, and gravel roads.

C. CNN model

The architecture of the proposed CNN model is shown
in Fig. 3, where ‘ResBlock’ and ‘Dilated ResBlock’ denote
residual blocks that uses normal Conv and dilated Conv layers,
respectively. The model parameter is shown in Table I, where
Filter, Padding and Ch. denote filter size of Conv layers, size
of zero-padding and the number of output channels for Conv

layers. We use the Leaky ReLU as the activation function in
Conv layers and Residual Blocks [9]. The stride size of all
Conv layers are 1. Let h and w be the height and the width of
an input RGB image, and then output signals of the model are
h×w×N , where N denotes the variation of the safety-level.

To use features in both small and large regions, we adopt
residual blocks and the dilated Conv layers. Small receptive
fields only include a part of large objects, and large receptive
fields include not only object regions but also background
regions for small objects. Small and normal sizes of recep-
tive fields are realized by shallow and normal networks as
mentioned in Sec. II-C. Since residual blocks make the model
a union of shallow and normal CNNs, Residual blocks realize
several sizes of reception fields. The dilated Conv layer real-
izes large reception fields without losing the spatial resolution.
The spatial resolution is necessary for extracting features of
small objects. Hence, the model has several receptive fields
and considers small object and large areas.

D. Training

In the training of the proposed CNN model, we use the
backpropagation algorithm and the mini-batch gradient de-
scent for optimization [14]. We determine 6 images as the
mini-batch size. We apply the batch normalization after all
activation functions except the last layer of the proposed CNN
model [15]. The model outputs the pixel-wise probability
of each safety-level. Therefore, we use the pixel-wise cross
entropy as the loss function, defined as

L = −
h×w∑
i=1

N∑
k=1

pik ln p̂ik, (2)

where pik is a one-hot vector of the ground truth class for
the k-th element at i-th pixel and p̂ik is defined in (1). For
the loss function, we use the ADADELTA algorithm which
automatically determines a learning rate [16].

E. Post processing

We apply the morphological opening to dump the small
region which does not have the enough size for landing [17].
First, the proposed method makes a binary image from esti-
mated safe areas. Then, we apply the morphological opening to
the binary image. The filter size of the morphological opening
is 16× 16 px which is decided from the ground resolution of
aerial images and the UAV sizes.
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(a) Input (b) Comp. A (c) Comp. B (d) Prop. (e) GT

Fig. 4. Resultant safe area of test images

IV. EXPERIMENT

For experiments, we compare the proposed method with
the state-of-the-art method of the safety-level estimation for
the safe landing of UAVs [4], and use the proposed dataset
as train and test sets. We applied several data augmentations
to the train set, random clipping, rotation with (90, 180, 270),
and Left-right flipping. Consequently, the size of train images
is 480 × 480 px, and the number of their pairs is 2400. For
the compared method, we divided train images according to
its definition and trained it with parameters shown in the
paper [4]. The proposed CNN model was trained with 12000
iterations.

We use the precision scores for quantitative evaluation [17].
In the case of the area detection for the safe landing of
UAVs, the precision is important. The misdetection of safe
areas induces dangerous accidents. UAVs requires only one
area for landing. Therefore, the detection system for the safe

landing requires a high precision score, and the recall and the
F-measure are unsuitable for measuring.

We compare the proposed method with the state-of-the-art
method by detection result of landing area [4]. The compared
method estimates the map of safety-level which is in the range
of [0, 255], and detects landing areas using simple thresholding
[4]. Thresholding parameters of the conventional method are
100 and 200 which are described in the paper [4]. The
proposed method estimates three level of area which are ‘safe’,
‘Not recommend’ and ‘Other’. Hence, we set the areas which
estimated the ‘safe’ and ‘Not recommend’ class as detection
results of the proposed method.

Table II, Table III show precision scores of only ‘Safe’ and
both ‘Safe’ and ‘Not recommended’, and resultant images. Fig.
4 shows resultant images which are selected from results of 50
test images. In these tables and the figure, ‘Comp. A’, ‘Comp.
B’, ‘Prop.’, ‘GT’, ‘Average’ denote the compared method with
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TABLE II
PRECISION SCORES OF SAFE AREA

Comp. A Comp. B Prop.
Image1 0.007 0.006 0.556
Image2 0.704 0.647 1.000
Image3 0.127 0.110 0.645
Image4 0.605 0.559 0.997
Image5 0.351 0.362 0.993

Average of 50 images 0.308 0.291 0.638

TABLE III
PRECISION SCORES OF SAFE AND NOT RECOMMENDED AREA

Comp. A Comp. B Prop.
Image1 0.156 0.109 0.740
Image2 0.654 0.590 0.816
Image3 0.573 0.542 0.904
Image4 0.397 0.386 0.983
Image5 0.653 0.829 0.979

Average of 50 images 0.578 0.504 0.871

the thresholding parameter of 100 and 200, the proposed
method, the ground truth, and average values of 50 images,
respectively. These tables shows that the proposed method
always outperforms the compared method. Fig. 4 shows that
the proposed method often detects smaller areas than the
ground truth, but its accuracy is usually high. The proposed
method considers surroundings of the building and small boxes
on the ground in comparison with conventional method. These
results indicate that the proposed method reduces misdetection
of the safety-level by considering surrounding of landing areas
and undesirable objects.

V. CONCLUSION

In this paper, we introduce a definition of the safety-level
and a dataset for the UAV landing system, and propose a
method of the safety-level estimation based on CNNs. The
proposed CNN model considers small and large region using
Residual Blocks and Dilated convolution layers. Our dataset
has images which have complicated regions. Thanks to the
strategy, the proposed method provides better results than the
state-of-the-art one.
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